
PHOT 445: Introduction to Quantum Optics
Final exam questions & solutions

Michaël Barbier, Spring semester (2023-2024)

Grading of the course

The project will count for 50% of your grade. For the project points are given on the combined
effort of the project and the oral explanation of it during the final exam.

The final exam comprises 50% of your grade and consists of 8 open questions. Each question
is weighed equally for your grade. You will first answer the exam questions on paper and
afterwards you can clarify further your written answers individually during the oral part.
Clarification of the written answer during the oral part can influence your earned points for
that question. For example, if a written answer is wrong but is afterwards corrected during
the oral part, partial marks are given to the question.

Exam questions

The different topics of the exam questions cover:

1. Photon statistics
2. Coherent, Bunched, and anti-bunched light
3. Squeezed states
4. Number states
5. Semi-classical: two-level atom and Rabi-oscillations
6. Quantized light and atoms: Jaynes-Cummings model
7. Quantum cryptography
8. Quantum logical gates and circuits
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Question 1: Photon statistics

The below plot shows a Poissonian distribution with average photon number ⟨𝑛⟩ = 𝑛̄ = 4 and
standard deviation Δ𝑛 =

√
𝑛̄ = 2. Add two other distributions with the same average photon

number 𝑛̄ = 4: one sub-Poissonian and one super-Poissonian distribution.
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Answer:

For a super-Poissonian distribution the standard deviation is larger than for coherent light:
Δ𝑛 >

√
𝑛̄ = 2 (“broader” distribution) while keeping 𝑛̄ = 4. For the sub-Poissonian distribu-

tion we require Δ𝑛 <
√

𝑛̄ = 2 (“narrower” distribution), again with 𝑛̄ = 4. We sketched a
possible distribution for both cases below:
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Question 2: Coherent, Bunched, and anti-bunched light

The second order correlation function 𝑔(2)(𝜏) given by:

𝑔(2)(𝜏) = ⟨𝐼(𝑡) 𝐼(𝑡 + 𝜏)⟩
⟨𝐼(𝑡)⟩ ⟨𝐼(𝑡 + 𝜏)⟩

A source that emits single photons can be used to create a beam of anti-bunched light. Do
you expect the value of 𝑔(2)(𝜏 ≈ 0) to be larger or smaller than 1? Can you sketch the photon
positions for such anti-bunched light in a 1D light beam?

Answer:

For anti-bunched light 𝑔(2)(𝜏 ≈ 0) < 1. The photons are more regularly spaced than in
the coherent case. As an example of anti-bunched light we can take photons being send out
periodically, i.e. perfect regular distribution in space. For a 1D beam we sketched periodically
spaced photon positions below (dots represent photon locations):
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photon locations

Question 3: Squeezed states

Coherent light can be expressed in the phase space of the dimensionless quadratures 𝑋1 and
𝑋2

⎧{{
⎨{{⎩

𝑋1(𝑡) = √ 𝜖0𝑉
4ℏ𝜔ℰ0 sin(𝜔𝑡)

𝑋2(𝑡) = √ 𝜖0𝑉
4ℏ𝜔ℰ0 cos(𝜔𝑡)

by the coherent state |𝛼⟩ with complex number 𝛼 = |𝛼|𝑒𝑖𝜃 = 𝑋1 + i 𝑋2. The uncertainty
relation in 𝑋1 and 𝑋2 is given by

Δ𝑋1 Δ𝑋2 ≥ 1
4

A corresponding uncertainty relation in photon number and phase can be found:

Δ𝑛 Δ𝜃 ≥ 1
2

Based on the above uncertainty relation (and the schematic figure) can you answer the following
questions:

• What do you expect from the phase uncertainty Δ𝜃 when |𝛼| increases?
• What is the phase uncertainty Δ𝜃 for the vacuum state?

Answer:

4



Figure 1: Coherent state |𝛼⟩

• What do you expect from the phase uncertainty Δ𝜃 when |𝛼| increases?

The uncertainty on the phase Δ𝜃 decreases if the uncertainty in number of photons Δ𝑛 in-
creases. For a coherent state |𝛼| = Δ𝑛 therefore, if |𝛼| increases, the uncertainty on the phase
should decrease.

• What is the phase uncertainty Δ𝜃 for the vacuum state?

For the vacuum state the phase becomes completely uncertain (as Δ𝑛 = |𝛼| = 0 ⇒ Δ𝜃 → ∞
). This can also geometrically be seen as the angle Δ𝜃 increases when the uncertainty circle
moves closer to the origin (the uncertainty area is minimal and thus constant for a coherent
state as Δ𝑋1 = Δ𝑋2 = 1

2 , assuming the isotropic case).

Question 4: Number states

A coherent state with value 𝛼 is described by:

|𝛼⟩ = 𝑒−|𝛼|2/2
∞

∑
𝑛=0

𝛼𝑛
√

𝑛!
|𝑛⟩

Prove that the expectation value (average) of the number of photons of a coherent state |𝛼⟩ is
⟨𝛼| 𝑛̂ |𝛼⟩ = 𝑛̄ = |𝛼|2.

Use hereby that the number operator 𝑛̂ = ̂𝑎† ̂𝑎 and applying the annihilation operator ̂𝑎 on a
coherent state results in ̂𝑎 |𝛼⟩ = 𝛼 |𝛼⟩.
Answer:

To prove that ⟨𝛼| 𝑛̂ |𝛼⟩ = |𝛼|2 we first use 𝑛̂ = ̂𝑎† ̂𝑎 and calculate then ⟨𝛼| ̂𝑎† ̂𝑎 |𝛼⟩:
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⟨𝛼| 𝑛̂ |𝛼⟩ = ⟨𝛼| ̂𝑎† ̂𝑎 |𝛼⟩
= (⟨𝛼| ̂𝑎†) ( ̂𝑎 |𝛼⟩)

= (⟨𝛼| 𝛼∗) (𝛼 |𝛼⟩) because ⟨𝛼| ̂𝑎† = ( ̂𝑎 |𝛼⟩)
†

= (𝛼 |𝛼⟩)
†

= ⟨𝛼|𝛼∗

= ⟨𝛼| 𝛼∗ 𝛼 |𝛼⟩
= ⟨𝛼| |𝛼|2 |𝛼⟩
= |𝛼|2 ⟨𝛼|𝛼⟩
= |𝛼|2

Question 5: Semi-classical - two-level atom and Rabi-oscillations

In a two-level atom interacting with a single mode of light we can observe Rabi oscillations
where the two-level atom is oscillating between the ground and its excited state. In case the
excitation energy ℏ𝜔21 of the two-level atom equals the frequency of the light ℏ𝜔 then the
detuning is zero (𝛿 = 𝜔 − 𝜔21 = 0) and the probability to be in the excited state 𝑃2 is given
by

𝑃2(𝑡) = sin2(Ω0 𝑡/2)

Can you make a sketch of the probability 𝑃2 as function of the time 𝑡? What is the probability
𝑃1 for being in the ground state?

Answer:

Below is the sketch of the probability 𝑃2(𝑡) to be in the excited state. The probability to be
in the ground state is 𝑃1(𝑡) = 1 − 𝑃2(𝑡) = cos2(Ω0 𝑡/2)
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Question 6: Jaynes-Cummings model

The Jaynes-Cummings model takes into account a single two-level atom and quantized light
of a single mode. The Hamiltonian is written as:

𝐻̂𝐽𝐶 = 𝐻̂𝑎 + 𝐻̂𝑐 + 𝐻̂𝐼

Where the parts are the Hamiltonian of the free atom, the cavity, and the interaction between
them. In the rotating wave approximation, the Hamiltonian becomes:

𝐻̂𝐽𝐶 = ℏ𝜔𝑎𝜎†𝜎 + ℏ𝜔𝑐𝑎†𝑎 + ℏ𝑔(𝜎†𝑎 + 𝜎𝑎†)
where the first term is sometimes rewritten as 1

2ℏ𝜔𝑎𝜎𝑧

• Can you explain the different terms?
• What does 𝑔 represent? (in words)

Answer:

The different terms of the Hamiltonian:

• The first term ℏ𝜔𝑎𝜎̂†𝜎̂: Represents the “number” operator for the excited state, where 𝜎̂
brings the excitation back to the ground state (annihilates an “excitation”). There are
only two energy levels and ℏ𝜔𝑎 is the excitation energy between them.
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• The second term ℏ𝜔𝑐 ̂𝑎† ̂𝑎 is similar to the first term but for “free space” photons in the
cavity mode. ̂𝑎 is the annihilation operator for photons.

• The third term ℏ𝑔(𝜎̂† ̂𝑎 + 𝜎̂ ̂𝑎†) represents the interaction between the atom and the
photons in the cavity: here 𝜎̂† ̂𝑎 represents the absorption of a photon bringing the atom
in the excited state. 𝜎̂ ̂𝑎† represents the spontaneous emission with the atom going from
the excited state to the ground state.

The coupling constant 𝑔 incorporates the dipole moment matrix elements ⃗𝑑12, polarization
vector ⃗𝜖𝑘⃗, and electric field within the cavity. These are constants depending on cavity and
atom. The expression for 𝑔 is given by (not required for this question):

𝑔 = 𝑔𝑘⃗ = √ 𝜔𝑘⃗
ℰ0𝑉

⃗𝑑12 ⋅ ⃗𝜖𝑘⃗

where 𝑘⃗ is the wave vector of the cavity mode, 𝜔𝑘⃗ its frequency and 𝑉 the cavity volume).

Question 7: Quantum cryptography

When using linearly polarized light to compose a signal, how can you represent bits of infor-
mation?

Answer:

A bit of information can be represented by polarization under different angles, the (linear)
polarization can written in the basis of for example vertically and horizontally polarized light.
Since they form an orthonormal basis we can use e.g. vertically polarized light as |0⟩ or 0-bit
and horizontally polarized light as |1⟩ or 1-bit.

Question 8: Quantum logical gates and circuits

A qubit 𝑞 can be written as |𝜓⟩ = 𝑐0 |0⟩ + 𝑐1 |1⟩ or in column vector notation: 𝑞 = (𝑐0
𝑐1

).

The Hadamard gate (𝐻) and the NOT gate (𝑋) are single qubit logical gates given by the
following matrix representations:

𝐻 = 1√
2

(1 1
1 −1) , 𝑋 = (0 1

1 0)

If you start from a qubit 𝑞 in state |1⟩ = (0
1) and you apply first a Hadamard gate and

afterwards a NOT gate, what is the resulting qubit state 𝑞′.
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𝑞′ = 𝑋 ⋅ 𝐻 ⋅ 𝑞

Answer:

The resulting qubit state 𝑞′ is given by:

𝑞′ = 𝑋 ⋅ 𝐻 ⋅ 𝑞

= (0 1
1 0) 1√

2
(1 1

1 −1) (0
1)

= (0 1
1 0) 1√

2
( 1

−1)

= 1√
2

(−1
1 )

= 1√
2

( − |0⟩ + |1⟩)
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