PHOT 411: Numerical Methods for Photonics
LECTURE 03
Michaël Barbier, Spring semester (2024-2025)
\[ f(x_i) = a_0 + a_1 x_i + a_2 x_i^2 + \dots + a_n x_i^n = y_i \] System of equations \(f(x_i) = y_i\) in matrix form \(A\,\vec{a} = \vec{y}\): \[ \begin{pmatrix} 1 & x_1 & x_1^2 & \dots & x_1^n \\ 1 & x_2 & x_2^2 & \dots & x_2^n \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_i & x_i^2 & \dots & x_i^n \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_N & x_N^2 & \dots & x_N^n \\ \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_i \\ \vdots \\ y_N \end{pmatrix} \]
| Natural | clamped | not-a-knot | |
|---|---|---|---|
| Boundary condition | \(g''(x_0) = 0\) | \(g'(x_0)\) fixed | \(g'''(x_1) = 0\) |
\[ I_\textrm{mid} = \sum_i f\left(\frac{x_{i-1} + x_{i}}{2}\right) h \quad I_\textrm{trap} = \sum_i \frac{f(x_{i-1}) + f(x_{i})}{2} h \]
\[ E_\textrm{mid} \propto \frac{1}{24} h^2 \, (B-A) \qquad E_\textrm{trap} \propto \frac{1}{12} h^2 \, (B-A) \]
\[ I_\textrm{Simpson} = \sum_i \frac{f(x_{i-1}) + 4f(x|_{i-1/2}) + f(x_{i})}{6} h \]
\[ E_\textrm{Simpson} \propto h^4 \, (B-A) \]
| \(f_i'\) backward | \(f_i'\) forward | \(f_i'\) central |
|---|---|---|
| \(\frac{f_i - f_{i-1}}{x_i - x_{i-1}} =\frac{f_i - f_{i-1}}{h}\) | \(\frac{f_{i+1} - f_{i}}{x_{i+1} - x_{i}} = \frac{f_{i+1} - f_i}{h}\) | \(\frac{f_{i+1} - f_{i-1}}{x_{i+1} - x_{i-1}} =\frac{f_{i+1} - f_{i-1}}{2h}\) |
Lecture 03: Interpolation, integration, and differentiation
Comments on integration schemes