PHOT 411: Numerical Methods for Photonics
LECTURE 02
Michaël Barbier, Spring semester (2024-2025)
A system of linear equations with
\[ \left\{ \begin{aligned} a_{11}x_1 + a_{12}\,x_1 + \dots + a_{1n}\,x_n & = b_1\\ a_{21}x_1 + a_{22}\,x_2 + \dots + a_{2n}\,x_n & = b_2\\ \vdots\qquad & \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n & = b_m\\ \end{aligned} \right. \]
A system of linear equations with
\[ \left\{ \begin{aligned} a_{11}\, x_1 + a_{12}\,x_2 & = b_1\\ a_{21}x_1 + a_{22}\,x_2 & = b_2\\ \end{aligned} \right. \]
\[ \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n}\\ a_{21} & a_{22} & \dots & a_{2n}\\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn}\\ \end{pmatrix} \begin{pmatrix} x_1\\ x_2\\ \vdots\\ x_m\\ \end{pmatrix} = \begin{pmatrix} b_1\\ b_2\\ \vdots\\ b_m\\ \end{pmatrix} \]
Which can be written more compact:
\[ [A] \, [x] = [b] \qquad \textrm{or} \qquad A \, x = b \qquad \textrm{or} \qquad A \, \vec{x} = \vec{b} \]
Lecture 02: Solving systems of linear equations, and finding roots