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ERRORS
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WHERE DO ERRORS ORIGINATE FROM?

1. Significant figures: Measurement errors, Imperfect input data

2. Machine errors or round-off Errors: floating point representation

3. Truncation errors from Numerical approximations

Difference between type of errors:

• Precision  uncertainty

• accuracy  bias, systematic error

⟷

⟷
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WHERE DO ERRORS ORIGINATE FROM?

1. Significant figures: Measurement errors, Imperfect input data

2. Machine errors or round-off Errors: floating point representation

3. Truncation errors from Numerical approximations

accurate
imprecise

inaccurate
imprecise

accurate
precise

inaccurate
precise
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SIGNIFICANT FIGURES

• We only know some number up to certain accuracy

• Scientific notation indicates accuracy

Scientific notation:

• More significant numbers is more accurate

1.50 ×  km/h102

7.85356 ×  km/h108
 (3 significant digits)
 (6 significant digits)
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RELATIVE ERROR

• We only know some number up to certain accuracy

• Compare the error to the actual value

• Relative errors are important!

• How much accuracy do you need?

true error  = true value − approximated valueEt

relative error  =εt

true error
true value

Do you have a good estimate for ?εa
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APPROXIMATING ERRORS

• O�en we don’t know the true value

• So … estimate the true value: approximate value  estimation
of the error

relative error  =εt

true error
true value

⟶

Approximate relative error  =εa

approximate error
approximate value

How to obtain a good estimate for ?εa
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FLOATING POINT NUMBERS (SINGLE & DOUBLE)

8 bits 23 bits

22 031 30

sign exp. man�ssa

 = sign-bit (1 bit),  = exponent (8 bits),  = mantissa (23 bits)

To calculate real number :

S E M

x

x = (−1 × M ×)S 2(E−127)
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FLOATING POINT NUMBERS (SINGLE & DOUBLE)
To calculate real number  (single precision):

• Real numbers are finite in computers

• Finite number of significant figures (binary)

• Maximum number?

• Minimum nonzero number?

ans =

4.4409e-16

x

x = (−1 × M ×)S 2(E−127)

0.3/0.1 - 31
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FLOATING POINT NUMBERS (SINGLE & DOUBLE)
To calculate real number  (single precision):

type minimum maximum

single

double

ans =

2.2251e-308

x

x = (−1 × M ×)S 2(E−127)

≈ 1.18 ×2−126 10−38 2.85 × 1045

≈ 2.23 ×2−1022 10−308 1.80 × 10308

realmin("double")1
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CUMULATION OF ROUND-OFF ERRORS

A
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CUMULATION OF MACHINE ERRORS

Numerical result for increasing power :n

     det(A^1) = 1.0

     det(A^2) = 1.0000000000000009

     det(A^3) = 0.9999999999999853

     det(A^4) = 0.9999999999999742

     det(A^5) = 0.9999999999996483

     det(A^6) = 0.9999999999888063

     det(A^7) = 0.9999999997708064

     det(A^8) = 1.0000000024722748

     det(A^9) = 1.0000000062737353

     det(A^10) = 0.9999999184512143

     det(A^11) = 0.9999991943727314
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ERRORS DUE TO NUMERICAL APPROXIMATIONS

• Depend on numerical method and its implementation

• These errors are independent of round-off errors

• There are also physical model approximations: these are
sometimes intertwined with the numerical method. Some
Examples:

▪ “Raycasting” (e.g. Zemax) uses geometric optics, very small
optical systems cannot be modeled.

▪ Finite difference methods can work in the time domain (FDTD) or
frequency domain. Their errors depend on the problem AND the
numerical approximations within the method.

13Lecture 01: Errors



THE TRAJECTORY OF A BALL

• Gravitation:  m/s

• Air resistance: ignore for a slow heavy ball

• Horizontal velocity is constant

g = 9.81 2
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TRAJECTORY OF A BALL: NUMERICALLY

• Small time steps:  s

• Constant velocity over 

• Approximation true trajectory

Coordinates:δt = 0.1

δt    t = 0.10: (0.38,1.57)

   t = 0.20: (0.76,1.84)

   t = 0.30: (1.13,2.01)

   t = 0.40: (1.51,2.08)

   t = 0.50: (1.89,2.06)

   t = 0.60: (2.27,1.94)

   t = 0.70: (2.64,1.72)

   t = 0.80: (3.02,1.40)

   t = 0.90: (3.40,0.98)

   t = 1.00: (3.78,0.47)

   t = 1.10: (4.15,-0.15)
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TRAJECTORY OF A BALL: ERRORS
Mismatch with exact curve due to approximation
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PROPAGATING ERRORS
Performing mathematical operations changes the error

(1.31 ± 0.04) + (2.5 ± 0.1) = 3.81 ± ?

Applying functions changes the error:

ln(23 ± 2) = ln(23) ± ?

How to propagate the errors of variables in any formula ?
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PROPAGATING ERRORS: TAYLOR EXPANSIONS
Suppose a function :

• true value is 

• true error is 

f(x)

x

Δx

Taylor expansion: function of a single variable

f(x + Δx) = f(x) + (x) Δx + Δ + Δ + …f ′ (x)f ′′

2!
x2 (x)f (3)

3!
x3

Bundle higher orders together in a “rest” term :Rn

f(x + Δx) = f(x) + (x) Δx +f ′ R3
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PROPAGATING ERRORS: TAYLOR EXPANSIONS

f(x + Δx) = f(x) + (x) Δx +f ′ R3

⇒ f(x + Δx) − f(x) = (x) Δx +f ′ R3

Error on function values:

⇒ Δf = Δx
∂f(x)

∂x

Extend this to  with multiple variables:f(x, y, z, …)

Δf = Δx + Δy + Δz + …
∂f

∂x

∂f

∂y

∂f

∂z

19Lecture 01: Errors



PROPAGATING ERRORS: TAYLOR EXPANSIONS
Error propagation formula:

Δf = Δx + Δy + Δz + …
∂f

∂x

∂f

∂y

∂f

∂z

Apply this to the sum of two numbers:

f(x, y) = x + y

Δf = Δx + Δy = Δx + Δy
∂(x + y)

∂x

∂(x + y)
∂y
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PROPAGATING UNCERTAINTY VS. TRUE ERRORS

• O�en we don’t know the true error

• We can use uncertainty of our value: estimated error σ

How do we propagate the uncertainty  ?σ

• Uncertainty propagation for 

• Suppose , , , are known

[Math Processing Error]

f(x, y, z, …)

x ± σx y ± σy z ± σz
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PROPAGATING UNCERTAINTY
Propagation formula:

[Math Processing Error]

Example problem:

f(x, y) = 3 + y with = 0.1 and  = 0.4x2 σx σy

[Math Processing Error]
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SOLVING SYSTEMS OF LINEAR
EQUATIONS
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LINEAR EQUATIONS
A system of linear equations with

• Unknown variables 

• Constant coefficients 

• Constants 

[Math Processing Error]

xi

aij

bi
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SOLVING SMALL SYSTEMS
A system of linear equations with

• Unknown variables 

• Constant coefficients 

• Constants 

[Math Processing Error]

xi

aij

bi
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MATRIX EQUATIONS

• Systems of linear equations in matrix-form

[Math Processing Error]

Which can be written more compact:

[A] [x] = [b] or A x = b or A =x⃗  b ⃗ 
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APPROXIMATING FUNCTIONS
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DISCRETIZING FUNCTIONS

• simplest: finite number of  and  (with )

• Points  can be regularly spaced

• Accuracy depends on:

▪ how smooth the real function is

▪ how close the points are taken But more points more data,
slower

xi = f( )yi xi i = 1, … , N

xi

⟶
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DISCRETIZING FUNCTIONS
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DISCRETIZING FUNCTIONS
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DISCRETIZING FUNCTIONS

How many points should be taken ?
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