PHOT 411: Numerical Methods for Photonics
LECTURE 01

Michaél Barbier, Fall semester (2024-2025)
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ERRORS



WHERE DO ERRORS ORIGINATE FROM?

1. Significant figures: Measurement errors, Imperfect input data
2. Machine errors or round-off Errors: floating point representation

3. Truncation errors from Numerical approximations

Difference between type of errors:

e Precision <— uncertainty

e accuracy <— bias, systematic error
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WHERE DO ERRORS ORIGINATE FROM?

1. Significant figures: Measurement errors, Imperfect input data
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Inaccurate accurate inaccurate accurate
precise precise iImprecise Imprecise

Lecture 01: Errors



SIGNIFICANT FIGURES

e We only know some number up to certain accuracy

e Scientific notation indicates accuracy
Scientific notation:

1.50 x 10° km /h (3 significant digits)
7.85356 x 10° km/h (6 significant digits)

e More significant numbers is more accurate
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RELATIVE ERROR

e We only know some number up to certain accuracy
e Compare the error to the actual value
e Relative errors are important!

e How much accuracy do you need?

true error F; = true value — approximated value

true error

relative error €; =
true value

Do you have a good estimate for e, ?
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APPROXIMATING ERRORS

true error

relative error ¢; =
true value

e Often we don’t know the true value

e So...estimate the true value: approximate value — estimation
of the error

approximate error

Approximate relative error £, = _
approximate value

How to obtain a good estimate for g, ?
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FLOATING POINT NUMBERS (SINGLE & DOUBLE)

31 30 22

8 bits 23 bits

sign  exp. mantissa

S =sign-bit (1 bit), E/ = exponent (8 bits), M = mantissa (23 bits)

To calculate real number x:

x = (—1)% x M x 2(E-127)
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FLOATING POINT NUMBERS (SINGLE & DOUBLE)

To calculate real number x (single precision):

r = (—1)% x M x 2(F-127)

e Real numbers are finite in computers
e Finite number of significant figures (binary)
e Maximum number?

e Minimum nonzero number?

9.3/0.1 - 3
ans =

4.4409e-16
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FLOATING POINT NUMBERS (SINGLE & DOUBLE)

To calculate real number x (single precision):
r = (—1)% x M x 2(F-127)

type minimum maximum
single 27120 ~1.18 x 107 2.85 x 10%
double 271922 2223 x 1073  1.80 x 10%%®

realmin("double")
ans =

2.2251e-308
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CUMULATION OF ROUND-OFF ERRORS

aip; ai2 ais 1/10 —1/5 3/10
A= | asn axr a3 | = 0 2 4
asy as2 ass —1 1 0

o292 Q23 as21 Qo3 as21 Qa2
det(A) = a1 — a19 + Q13
asza Qass as;y ass asy aso

= det(A") =det(A-A-A-A...)=1
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CUMULATION OF MACHINE ERRORS

Numerical result for increasing power n:

det(A”1) = 1.0

det(A”2) = 1.0000000000000009
det(A”3) = ©.9999999999999853
det(Ar4) = ©.9999999999999742
det(Ar5) = ©.9999999999996483
det(A”6) = 0.9999999999888063
det(Ar7) = ©.9999999997708064
det(A”8) = 1.0000000024722748
det(A”9) = 1.0000000062737353

det(A*10) = 0.9999999184512143
det(A*11) = 0.9999991943727314
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ERRORS DUE TO NUMERICAL APPROXIMATIONS

e Depend on numerical method and its implementation
e These errors are independent of round-off errors

e There are also physical model approximations: these are
sometimes intertwined with the numerical method. Some
Examples:

» “Raycasting” (e.g. Zemax) uses geometric optics, very small
optical systems cannot be modeled.

= Finite difference methods can work in the time domain (FDTD) or
frequency domain. Their errors depend on the problem AND the
numerical approximations within the method.
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THE TRAJECTORY OF A BALL

e Gravitation: g = 9.81 m/s?
e Airresistance: ignore for a slow heavy ball

e Horizontal velocity is constant
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TRAJECTORY OF A BALL: NUMERICALLY

e Smalltimesteps: 0t = 0.1s  Coordinates:

|
Q)

.10: (0.38,1.57)
.20: (0.76,1.84)
.30: (1.13,2.01)
.40: (1.51,2.08)
.50: (1.89,2.06)
.60: (2.27,1.94)
.70: (2.64,1.72)
.80: (3.02,1.40)
.99: (3.40,0.98)
.00: (3.78,0.47)
.10: (4.15,-0.15)

e Constant velocity over 0t

e Approximation true trajectory

+~ + &+ &+ &+ &+ &+ &+ + &+
T
P P OO OO
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TRAJECTORY OF A BALL: ERRORS

Mismatch with exact curve due to approximation

2.0-

— 1.57

y (in m

0.5]

0.0

1.0

—— Exact
— Approx.
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PROPAGATING ERRORS

Performing mathematical operations changes the error

(1.31 T 0.04) —+ (2.5 T 0.1) = 3817
Applying functions changes the error:

In(23+2) = 1In(23) £7

How to propagate the errors of variables in any formula ?
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PROPAGATING ERRORS: TAYLOR EXPANSIONS
Suppose a function f(x):

e truevalueisx

e trueerroris Ax

Taylor expansion: function of a single variable

f(z

Azx)

f()

f(z) Az

f”(ﬂl‘) sz

2!

Bundle higher orders togetherin a “rest” term R,,:

f(z + Az) = f(z) + f'(z) Az + Ry
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PROPAGATING ERRORS: TAYLOR EXPANSIONS
f(z + Az) = f(z) + f'(z) Az + R3
= f(z + Az) — f(z) = f'(z) Az + R3

Error on function values:

= Af = ‘9];;‘”) Az

Extend this to f(z,y, 2, . . .) with multiple variables:

of . 9f \  0f
(% 8y 82
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PROPAGATING ERRORS: TAYLOR EXPANSIONS

Error propagation formula:

of « . 9f . . 0f

A
/= aw 8y 82:

Az + ..

Apply this to the sum of two numbers:

flz,y) =z +y
o(x + vy)

Af = Az oz +y)

Ay = Az + A
Ox Oy Y T Ay
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PROPAGATING UNCERTAINTY VS. TRUE ERRORS

e Often we don’t know the true error

e We can use uncertainty of our value: estimated error o

How do we propagate the uncertainty o ?

e Uncertainty propagation for f(z, v, z, . . .)

® Supposex == 0;,Y L 0y, Z £ 0, are known

[Math Processing Error]
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PROPAGATING UNCERTAINTY

Propagation formula:
[Math Processing Error]

Example problem:
2 .
flz,y) =32z"+y with o, =0.1and o, =04

[Math Processing Error]
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SOLVING SYSTEMS OF LINEAR
EQUATIONS



LINEAR EQUATIONS

A system of linear equations with

e Unknown variables x;
e Constant coeftficients a;;

e Constants b;

[Math Processing Error]
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SOLVING SMALL SYSTEMS

A system of linear equations with

e Unknown variables x;
e Constant coeftficients a;;

e Constants b;

[Math Processing Error]
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MATRIX EQUATIONS

e Systems of linear equations in matrix-form

[Math Processing Error]

Which can be written more compact:

Al x| = [b] or Az =0
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APPROXIMATING FUNCTIONS



DISCRETIZING FUNCTIONS

e simplest: finite number of z; andy; = f(x;) (withi =1,..., N)
e Points x; can be regularly spaced
e Accuracy depends on:

= how smooth the real function is

= how close the points are taken But more points — more data,
slower

Lecture 01: Errors

28



DISCRETIZING FUNCTIONS
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DISCRETIZING FUNCTIONS
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DISCRETIZING FUNCTIONS

0 5 10 15 20 25 30 35
X

How many points should be taken ?
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