PHOT 301: Quantum Photonics
LECTURE 12B

Michaél Barbier, Fall semester (2024-2025)
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INTRODUCTION TO DIFFERENT
APPROXIMATIONS



APPROXIMATIONS

Method Approximates?
1 Transfer matrix method piece-wise constant V()
2 Finite basis method limited v,,, E,,: Matrix-formalism
3  Finite difference method discretizes wave function
4 Perturbation theory (stat.) small perturbation known solutions
5 Time-dependent perturbation small perturbation known solutions
6 Tight-binding approx. electrons strongly bound (covalent)
7  Variational method finding energy minima

Usage of simple examples to compare over approximations

e Infinite square well with E-field (David Miller’s book)
e Harmonic oscilator

e Transmission: Smoothed finite barrier
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TRANSFER MATRIX METHOD IN
1D



INTRO: TRANSFER MATRIX METHOD

e For 1D potential energy functions V() (here assume 1D systems)
e Approximation of potential energy V() by piece-wise constant V;

e Transmission or bound states

T V) V()]
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INTRO: TRANSFER MATRIX METHOD

e For 1D potential energy functions V() (here assume 1D systems)
e Approximation of potential energy V() by piece-wise constant V;

e Transmission or bound states

T V) V(x)]
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INTRO: TRANSFER MATRIX METHOD

e For 1D potential energy functions V() (here assume 1D systems)
e Approximation of potential energy V() by piece-wise constant V;

e Transmission or bound states

T V) V(x)]
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INTRO: TRANSFER MATRIX METHOD

e For 1D potential energy functions V() (here assume 1D systems)

Approximation of potential energy V (x) by piece-wise constant V;

Schrodinger equation for constant V() =

d*P(z)  2m

de2 h2

Solution depends onvalueof & — V:

If energy is larger than the potential energy 2 > V', then we have propagating waves

¢(w) _ Aeika} + Be—ikw k2 _
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INTRO: TRANSFER MATRIX METHOD

e For 1D potential energy functions V() (here assume 1D systems)
e Approximation of potential energy V() by piece-wise constant V;

e Schrodinger equation for constant V() =

d*P(z)  2m

e Solution dependsonvalueof £ — V:

e If energy is less than the potential £ < V, then we have evanescent waves:

5  2m

Y(x) = Ae” """ + Be"™ K™= 25 —(V—-F)
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INTRO: TRANSFER MATRIX METHOD

e For 1D potential energy functions V() (here assume 1D systems)
e Approximation of potential energy V() by piece-wise constant V;

e Schrodinger equation for constant V() =

d*P(z)  2m

e Solution dependsonvalueof £ — V:

e If energy is the same as the potential energy £ = V/, then:

Y(x) = A+ Bz
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INTRO: TRANSFER MATRIX METHOD

e For 1D potential energy functions V(x) (here assume 1D systems)
e Approximation of potential energy V() by piece-wise constant V;

e Schrodinger equation for constant V() =

d?v(z) 2m

e Solution dependsonvalueof £ — V:

case solutions eigenvalue of p parameter
E>V = +hk k= 22(E—-V)
E=V 1,z 0, noe.v. E=V
E<V etrr +ihk K2 = 2}_}—’?(V — F)
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BOUNDARY CONDITIONS ACROSS A STEP IN V(X)

e Suppose there is a step in the potential in z = a.

e Boundary conditions: Continuity of wave function ¥ (x) and derivative dz;w):
wl(a’) — ’(p_[](a/) Aeikla _|_ Be—ikla — Ce’ikza _|_ De—ikQG
dyr(a dyrr(a . . . .
'QD;( ) — wclzj( ) iklAezkla — ’I:]{tlBe_Zkla = 7:]{12067’]@& — ingB_ka
x x
e
A elklx + Be—tklx Celkzx + De—lkzx

a X
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BOUNDARY CONDITIONS ACROSS A STEP IN V(X)

¢I(a) _ ¢Ij(a) Aeikla _|_ Be—ikla — Ceikga _|_ De—ikza
d d . . . .
¢;(a’) — ¢;I (a’) iklAe’Lkla o Z’lee—’Lkla — ikzoelkga o Z’k2De—’Lk2a
XL X
() (o o) (8) = (i) (0 ) (5)
iky  —iky 0 eta)\B) \iky —iks 0 eikae )\ D
e e
A elklx 4 Be—tklx Celkzx 4 De—tkzx
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BOUNDARY CONDITIONS ACROSS A STEP IN V(X)

( 1 1 ) (e“ﬂa 0 ) (A) B ( 1 1 ) (é’fza 0
ik, —iky 0 e e )\ B) \iky —iks 0 e thea
xpress coefficie .



TRANSFER MATRIX FOR A SINGLE STEP

eikja 0 1
E- — . ) K
i) ( 0 e i@ ) ! (ikj

(4) - B @ Kaa(a) (

We can define the transfer matrix for a single step:
Ti» = E; ' (a)K; ' K2 E»(a)

Connection between coefficient before/after step:
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MULTIPLE POTENTIAL STEPS

Extending the relation over multiple steps:

Al A2 A3
(Bl) . (Bz) e (33)

In general, after N steps we obtain:

A A A
( O)ZT( N+1):T01T12~--TN,N+1( NH)
By By By
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SCATTERING AND BOUND STATES

Scattering: B = 0
(AL) _ (tu tlz) (AR)
Br to1  too 0
Therefore the transmission and reflection coefficients become:

Transmission T(FE) = \AR/AL\Q =1/t (E)‘2
Reflection R(FE) = !BL/AL\2 = \t21(E)’2 / \tll(E)\z
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SCATTERING AND BOUND STATES

Boundstates: A, =0, Br =0

( 0 ) B (tll t12) (AR) Ap =t (E) Ag
o —

By, tor tao 0 B, = t21(E) Ag

e Bound states are given by zeros of {11

e The total wave function is defined upon the coefficients B, and Ag. We can obtain
these unknowns by

= first using the second equation: By, = to91(F) Ap to obtain By, and then

= applying normalization to the whole wave function to fix Ag.
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