PHOT 301: Quantum Photonics
LECTURE 12B
Michaël Barbier, Fall semester (2024-2025)
Method | Approximates? | |
---|---|---|
1 | Transfer matrix method | piece-wise constant \(V(x)\) |
2 | Finite basis method | limited \(\psi_n\), \(E_n\): Matrix-formalism |
3 | Finite difference method | discretizes wave function |
4 | Perturbation theory (stat.) | small perturbation known solutions |
5 | Time-dependent perturbation | small perturbation known solutions |
6 | Tight-binding approx. | electrons strongly bound (covalent) |
7 | Variational method | finding energy minima |
Usage of simple examples to compare over approximations
\[ \frac{d^2 \psi(x)}{dx^2} = -\frac{2m}{\hbar^2} (E - V) \psi(x) \]
\[ \psi(x) = A e^{i k x} + B e^{-i k x} \qquad k^2 = \frac{2m}{\hbar ^2} (E - V) \]
\[ \frac{d^2 \psi(x)}{dx^2} = -\frac{2m}{\hbar^2} (E - V) \psi(x) \]
\[ \psi(x) = A e^{- \kappa x} + B e^{\kappa x} \qquad \kappa^2 = \frac{2m}{\hbar ^2} (V - E) \]
\[ \frac{d^2 \psi(x)}{dx^2} = -\frac{2m}{\hbar^2} (E - V) \psi(x) \]
\[ \psi(x) = A + B \, x \]
\[ \frac{d^2 \psi(x)}{dx^2} = -\frac{2m}{\hbar^2} (E - V) \psi(x) \]
case | solutions | eigenvalue of \(\hat{p}\) | parameter |
---|---|---|---|
\(E > V\) | \(e^{\pm i k x}\) | \(\pm \hbar k\) | \(k^2 = \frac{2m}{\hbar ^2} (E - V)\) |
\(E = V\) | \(1\), \(x\) | \(0\), no e.v. | \(E = V\) |
\(E < V\) | \(e^{\mp \kappa x}\) | \(\pm i \hbar \kappa\) | \(\kappa^2 = \frac{2m}{\hbar ^2} (V - E)\) |
\[ \begin{aligned} \psi_I(a) &= \psi_{II}(a) \qquad & A e^{i k_1 a} + B e^{-i k_1 a} &= C e^{i k_2 a} + D e^{-i k_2 a}\\ \frac{d\psi_I(a)}{dx} &= \frac{d\psi_{II}(a)}{dx} \qquad & i k_1 A e^{i k_1 a} -i k_1 B e^{-i k_1 a} &= i k_2 C e^{i k_2 a} -i k_2 D e^{-i k_2 a}\\ \end{aligned} \]
\[ \begin{aligned} \psi_I(a) &= \psi_{II}(a) \qquad & A e^{i k_1 a} + B e^{-i k_1 a} &= C e^{i k_2 a} + D e^{-i k_2 a}\\ \frac{d\psi_I(a)}{dx} &= \frac{d\psi_{II}(a)}{dx} \qquad & i k_1 A e^{i k_1 a} -i k_1 B e^{-i k_1 a} &= i k_2 C e^{i k_2 a} -i k_2 D e^{-i k_2 a}\\ \end{aligned} \]
\[ \pmatrix{1 & 1 \\ i k_1 & - i k_1} \pmatrix{e^{i k_1 a} & 0 \\ 0 & e^{-i k_1 a}} \pmatrix{A\\ B} = \pmatrix{1 & 1 \\ i k_2 & - i k_2} \pmatrix{e^{i k_2 a} & 0 \\ 0 & e^{-i k_2 a}} \pmatrix{C\\ D} \]
\[ \pmatrix{1 & 1 \\ i k_1 & - i k_1} \pmatrix{e^{i k_1 a} & 0 \\ 0 & e^{-i k_1 a}} \pmatrix{A\\ B} = \pmatrix{1 & 1 \\ i k_2 & - i k_2} \pmatrix{e^{i k_2 a} & 0 \\ 0 & e^{-i k_2 a}} \pmatrix{C\\ D} \]
Express coefficient \(A\), \(B\) in \(C\), \(D\):
\[ \pmatrix{A\\ B} = \pmatrix{e^{i k_1 a} & 0 \\ 0 & e^{-i k_1 a}}^{-1} \pmatrix{1 & 1 \\ i k_1 & - i k_1}^{-1} \\ \qquad \qquad \qquad \qquad \qquad \qquad \times\pmatrix{1 & 1 \\ i k_2 & - i k_2} \pmatrix{e^{i k_2 a} & 0 \\ 0 & e^{-i k_2 a}} \pmatrix{C\\ D} \]
Rename the matrices as function of \(V\) and \(a\):
\[ \pmatrix{A\\ B} = E_1^{-1}(a) K_1^{-1} K_2 E_2(a) \pmatrix{C\\ D} \]
\[ E_j(a) = \pmatrix{e^{i k_j a} & 0 \\ 0 & e^{-i k_j a}} , \qquad K_j \pmatrix{1 & 1 \\ i k_j & - i k_j} \]
\[ \pmatrix{A_1\\ B_1} = E_1^{-1}(a) K_1^{-1} K_2 E_2(a) \pmatrix{A_2\\ B_2} \]
We can define the transfer matrix for a single step:
\[ T_{12} = E_1^{-1}(a) K_1^{-1} K_2 E_2(a) \]
Connection between coefficient before/after step:
\[ \pmatrix{A_1\\ B_1} = T_{12} \, \pmatrix{A_2\\ B_2} \]
Extending the relation over multiple steps:
\[ \pmatrix{A_1\\ B_1} = T_{12} \, \pmatrix{A_2\\ B_2} = T_{12} \, T_{23} \, \pmatrix{A_3\\ B_3} \]
In general, after N steps we obtain:
\[ \pmatrix{A_0\\ B_0} = T \pmatrix{A_{N+1}\\ B_{N+1}} = T_{01} \, T_{12} \, \dots \, T_{N,N+1} \pmatrix{A_{N+1}\\ B_{N+1}} \]
Or renaming the indices on the left and right:
\[ \pmatrix{A_L\\ B_L} = \pmatrix{t_{11} & t_{12}\\ t_{21} & t_{22}} \pmatrix{A_R\\ B_R} \]
Scattering: \(B_R = 0\)
\[ \pmatrix{A_L\\ B_L} = \pmatrix{t_{11} & t_{12}\\ t_{21} & t_{22}} \pmatrix{A_R\\ 0} \]
Therefore the transmission and reflection coefficients become:
\[ \begin{aligned} \textrm{Transmission}\quad & T(E) = |A_R/A_L|^2 = 1\,/\,|t_{11}(E)|^2\\ \textrm{Reflection}\quad & R(E) = |B_L/A_L|^2 = |t_{21}(E)|^2\,/\,|t_{11}(E)|^2\\ \end{aligned} \]
Bound states: \(A_L = 0, \quad B_R = 0\)
\[ \pmatrix{0\\ B_L} = \pmatrix{t_{11} & t_{12}\\ t_{21} & t_{22}} \pmatrix{A_R\\ 0} \Longrightarrow \begin{aligned} A_L = t_{11}(E) \,A_R\\ B_L = t_{21}(E) \,A_R\\ \end{aligned} \]
Lecture 12B: Approximations PART I