PHOT 301: Quantum Photonics
LECTURE 12

Michaél Barbier, Fall semester (2024-2025)
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DIRAC NOTATION



BRACKETS: BRA'S AND KETS

e Inner product in matrix notation (separate “vectors”)

(@|f) = (a a3

e “bra” acts on the ket by row vector multiplication

(o)
by

\b:n/

= a’{bl -+ a§b2 +...axb,

e “bra” vector is separate from the “ket” vector: bra sits in a dual vector space

e Now with possible infinite basis:

=Y a(.);, — <a]:/a*(...)dac
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BRACKETS: BRA'S AND KETS

e Kets are vectors in vector space
e Bra’s are vectors in dual space
¢ Infinite dimensions:

= Kkets are column vectors

= bra’s are complex conjugate row vectors
(bra| = (o] = (a a3
(b1
ba

ket) = |8) =

\b;/
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DUAL SPACE AND HERMITIAN CONJUGATES

e Converting a |ket) to a (bra| and vice versa:

e An operator actingon a (bral:

At A A 1
(@@ = (Qa| = (Qlo))
— operators can act to the left as this is allowed by associativity

o Why is this? See definition of Hermitian conjugate of operators:

(@' alB) = (|0B)
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IN FINITE DIMENSIONS: MATRIX-FORMALISM

a
e Example in two dimensions, an operator actingon a |a) = ( ! ) :
a3

Ola) = Qa = (Qll Q12) (CL1) _ (Qllal +Q12a2)
Q21 Q2 as Q2101 + Q2202

The Hermitian conjugate gives
Qn s
Qly Cs

For this example we indeed see that:

@10 =alQ! = (i a5) ( ) = (Qiiai + Quas @3iai + Q)

@l@' = (Qy)’
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THE PROJECTION OPERATOR
e The projection operator defined for a normalized |a):

A

Po = |a)(c

— Projects any other vector | 8) onto the direction of |«):

P.|6) = ((alB)) |ex)

Example: projection in two dimensions

== 5) 18-
(

R 1 2
P.|B) = |a)(a|B) = v z) —27) (1):
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THE PROJECTION OPERATOR: EXAMPLE

Example: projection in two dimensions
1 1
a) = —
=) 18

PylB) = |} (al) = %(21) (1 —2i) (f) =509 (21)

The operator itself is an outer product:

P, = |a){a] = %(212) (1 —2) = %(212 _42i>

Two-dimensional vector spaces are actually useful: Spin, the two-level atom
approximation, etc.

|
N\
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IDENTITY OPERATORS

e If we have a complete basis { |e, )}

e Projection operator:

pn = ‘en><en’

Then the identity operator can be written as:
D Pu=2_len)eal =1
n n

Or for a continuous spectrum and eigenfunction basis:

(e,ler) = 6(z — 2') /\ez><ez1 dz=1
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FUNCTIONS OF OPERATORS: POWER SERIES

e Sums and products of operators, order is important:

(Q + cR)a) = Qla) + cRla)  QRla) = Q (Rla))

e Functions of operators are represented by their power series

e Likewise with matrices (also operators in our case):

Q110+ 20%+ L0+
=1+Q+5Q +45,Q +

1 R R R A
T o Ltet Q+Q +Q +
in(1+Q) = Q - 5@2%@3—3@
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THE WAVE FUNCTION IN RILBERT SPACE

e The wave function of a quantum state | (t))

V(z,t) = (x[¥()),  &|z) = zo|z)

—>  xg are eigenvalues of position operator

(x| P (2) / d(xz — z0)p = Y(x
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MOMENTUM EIGENVECTORS?

Momentum eigenvalue equation:

p|¥) = p|¥)
e Fillingin momentum operatorp = —ih%:
dipy () ip
de %wp(x)

This differential equation has solution:

Vp(T) = Aer/h =

Lecture 12: Dirac formalism PART Il

13



