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DIRAC NOTATION
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BRACKETS: BRA’S AND KETS

• Inner product in matrix notation (separate “vectors”)

• “bra” acts on the ket by row vector multiplication

• “bra” vector is separate from the “ket” vector: bra sits in a dual vector space

• Now with possible infinite basis:
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BRACKETS: BRA’S AND KETS

• Kets are vectors in vector space

• Bra’s are vectors in dual space

• In finite dimensions:

▪ kets are column vectors

▪ bra’s are complex conjugate row vectors
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DUAL SPACE AND HERMITIAN CONJUGATES

• Converting a  to a  and vice versa:

• An operator acting on a :

 operators can act to the le� as this is allowed by associativity

• Why is this? See definition of Hermitian conjugate of operators:

|ket⟩ ⟨bra|

⟨α| = |α⟩†

⟨bra|

⟨α| = ⟨ α| =Q̂
†

Q̂ ( |α⟩)Q̂
†

⟶

⟨ α|β⟩ = ⟨α| β⟩Q̂
†

Q̂
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IN FINITE DIMENSIONS: MATRIX-FORMALISM

• Example in two dimensions, an operator acting on a :

The Hermitian conjugate gives

For this example we indeed see that:
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THE PROJECTION OPERATOR

• The projection operator defined for a normalized :

 Projects any other vector  onto the direction of :

|α⟩

= |α⟩⟨α|P̂ α

⟶ |β⟩ |α⟩

|β⟩ = (⟨α|β⟩) |α⟩P̂ α

Example: projection in two dimensions

|α⟩ = ( ) , |β⟩ = ( )1
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THE PROJECTION OPERATOR: EXAMPLE
Example: projection in two dimensions

The operator itself is an outer product:

Two-dimensional vector spaces are actually useful: Spin, the two-level atom
approximation, etc.
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IDENTITY OPERATORS

• If we have a complete basis 

• Projection operator:

Then the identity operator can be written as:

Or for a continuous spectrum and eigenfunction basis:

{ | ⟩}en

= | ⟩⟨ |P̂ n en en

= | ⟩⟨ | =∑
n

P̂ n ∑
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en en 1̂

⟨ | ⟩ = δ(z − )ez e′
z z′ ∫ | ⟩⟨ | dz =ez ez 1̂
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FUNCTIONS OF OPERATORS: POWER SERIES

• Sums and products of operators, order is important:

• Functions of operators are represented by their power series

• Likewise with matrices (also operators in our case):
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THE WAVE FUNCTION IN HILBERT SPACE

• The wave function of a quantum state 

 are eigenvalues of position operator 

|Ψ(t)⟩

Ψ(x, t) = ⟨x|Ψ(t)⟩, |x⟩ = |x⟩x̂ x0

⟶ x0 x̂

⟨ |Ψ(t)⟩ = δ(x − x0)ψ(x)dx = ψ( )x0 ∫ ∞

−∞
x0
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MOMENTUM EIGENVECTORS?
Momentum eigenvalue equation:

• Filling in momentum operator :

This differential equation has solution:

|Ψ⟩ = p|Ψ⟩p̂

= −iℏp̂ d
dx

= (x)
d (x)ψp

dx

ip

ℏ
ψp

(x) = A =ψp eipx/ℏ 1
2π
−−√

eipx/ℏ
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