PHOT 301: Quantum Photonics
LECTURE 12
Michaël Barbier, Fall semester (2024-2025)
\[ \langle \alpha | \beta \rangle = \pmatrix{a^*_1 & a^*_2 & \dots & a^*_n} \pmatrix{b_1 \\ b_2 \\ \vdots \\ b_n} = a^*_1 b_1 + a^*_2 b_2 + \dots a^*_n b_n \]
\[ \langle\alpha| = \sum_j a_j^* (\dots)_j \quad\longrightarrow\quad \langle \alpha | = \int \alpha^* (\dots) dx \]
\[ \begin{aligned} \langle \textrm{bra} | &= \langle \alpha | = \pmatrix{a^*_1 & a^*_2 & \dots & a^*_n}\\ & \\ | \textrm{ket} \rangle &= | \beta \rangle = \pmatrix{b_1 \\ b_2 \\ \vdots \\ b_n} \end{aligned} \]
\[ \langle \alpha | = | \alpha \rangle^\dagger \]
\[ \langle \alpha | \hat{Q}^\dagger = \langle \hat{Q} \alpha | = \left(\hat{Q} | \alpha \rangle\right)^\dagger \]
\(\longrightarrow\) operators can act to the left as this is allowed by associativity
\[ \langle \hat{Q}^\dagger \alpha | \beta \rangle = \langle \alpha | \hat{Q} \beta \rangle \]
\[ \hat{Q} | \alpha \rangle = Q {\bf a} = \pmatrix{Q_{11} & Q_{12} \\ Q_{21} & Q_{22}} \pmatrix{a_1 \\ a_2} = \pmatrix{Q_{11} a_1 + Q_{12} a_2 \\ Q_{21} a_1 + Q_{22} a_2} \]
The Hermitian conjugate gives
\[ \langle \alpha | \hat{Q}^\dagger = {\bf a}^\dagger Q^\dagger = \pmatrix{a^*_1 & a^*_2} \pmatrix{Q^*_{11} & Q^*_{21} \\ Q^*_{12} & Q^*_{22}} = \pmatrix{Q^*_{11} a^*_1 + Q^*_{12} a^*_2 & Q^*_{21} a^*_1 + Q^*_{22} a_2} \]
For this example we indeed see that:
\[ \langle \alpha | \hat{Q}^\dagger = \left(\hat{Q} | \alpha \rangle\right)^\dagger \]
\[ \hat{P}_\alpha = | \alpha \rangle \langle \alpha | \]
\(\longrightarrow\) Projects any other vector \(|\beta\rangle\) onto the direction of \(|\alpha\rangle\):
\[ \hat{P}_\alpha|\beta\rangle = (\langle \alpha | \beta \rangle) \, | \alpha \rangle \]
Example: projection in two dimensions
\[ | \alpha \rangle = \frac{1}{\sqrt{5}}\pmatrix{1 \\ 2 i}, \quad | \beta\rangle = \pmatrix{2 \\ 1} \]
\[ \hat{P}_\alpha |\beta\rangle = | \alpha \rangle \langle \alpha | \beta \rangle = \frac{1}{5}\pmatrix{1 \\ 2i}\pmatrix{1 & -2i} \pmatrix{2 \\ 1} = \frac{2}{5} (1 - i) \pmatrix{1 \\ 2 i} \]
Example: projection in two dimensions
\[ | \alpha \rangle = \frac{1}{\sqrt{5}}\pmatrix{1 \\ 2 i}, \quad | \beta\rangle = \pmatrix{2 \\ 1} \]
\[ \hat{P}_\alpha |\beta\rangle = | \alpha \rangle \langle \alpha | \beta \rangle = \frac{1}{5}\pmatrix{1 \\ 2i}\pmatrix{1 & -2i} \pmatrix{2 \\ 1} = \frac{2}{5} (1 - i) \pmatrix{1 \\ 2 i} \]
The operator itself is an outer product:
\[ \hat{P}_\alpha = | \alpha \rangle \langle \alpha | = \frac{1}{5}\pmatrix{1 \\ 2i}\pmatrix{1 & -2i} = \frac{1}{5}\pmatrix{1 & -2i \\ 2i & 4} \]
Two-dimensional vector spaces are actually useful: Spin, the two-level atom approximation, etc.
\[ \hat{P}_n = | e_n \rangle \langle e_n | \]
Then the identity operator can be written as:
\[ \boxed{\sum_n \hat{P}_n = \sum_n | e_n \rangle \langle e_n | = \hat{1}} \]
Or for a continuous spectrum and eigenfunction basis:
\[ \langle e_z | e_z'\rangle = \delta(z - z') \qquad \boxed{\int | e_z \rangle \langle e_z | \,dz = \hat{1}} \]
\[ (\hat{Q} + c\hat{R}) |\alpha\rangle = \hat{Q}|\alpha\rangle + c \hat{R} |\alpha\rangle \qquad \hat{Q}\hat{R} |\alpha\rangle = \hat{Q} \left(\hat{R} |\alpha\rangle\right) \]
\[ \begin{aligned} e^{\hat{Q}} = 1 + \hat{Q} + \frac{1}{2} \, \hat{Q}^2 + \frac{1}{3!} \, \hat{Q}^3 + \dots\\ \frac{1}{1-\hat{Q}} = 1 + \hat{Q} + \hat{Q}^2 + \hat{Q}^3 + \hat{Q}^4 + \dots\\ \ln(1 + \hat{Q}) = \hat{Q} - \frac{1}{2} \, \hat{Q}^2 + \frac{1}{3} \, \hat{Q}^3 - \frac{1}{4} \, \hat{Q}^4 \dots\\ \end{aligned} \]
\[ \Psi(x,t) = \langle x |\Psi(t)\rangle, \qquad \hat{x} | x \rangle = x_0 | x \rangle \]
\(\longrightarrow \quad x_0\) are eigenvalues of position operator \(\hat{x}\)
\[ \langle x_0 |\Psi(t)\rangle = \int_{-\infty}^\infty \delta(x-x0) \psi(x) dx = \psi(x_0) \]
Momentum eigenvalue equation:
\[ \hat{p} |\Psi\rangle = p |\Psi\rangle \]
\[ \frac{d \psi_p(x)}{dx} = \frac{i p}{\hbar} \psi_p(x) \]
This differential equation has solution:
\[ \psi_p(x) = A e^{ipx/\hbar} = \frac{1}{\sqrt{2\pi}} e^{ipx/\hbar} \]
Lecture 12: Dirac formalism PART III