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SUMMARY OF WHAT WE KNOW

States  can be represented by the wave function:

this is similar to a vector in vector component notation

|Ψ⟩

Ψ(x, t) = ⟨x|Ψ(t)⟩

Observables are measurable quantities (“real” results)

Observables  correspond to operators :

Linear operators 

Hermitian 

Q Q̂

⟶ α⟩Q̂

⟶ =Q̂
†

Q̂

Observable operators have a spectrum of eigenvalues

Spectrum:  discrete ( ),  continuous ( ),  or a mixture, | ⟩qn fn q(z), | ⟩fz
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OBSERVABLES, OPERATORS AND COLLAPSE

We can measure observables:

position and momentum of a particle,

energy of a particle in a potential,

excitation-level of an electron in an atom

spin of an electron

…

Before measurement

superposition of eigenstates

Probability to find a particle in : x |Ψ(x, t)|2

Ψ(x, t) = ∑ (t) (x) ⟶ P (n) = | (t)cn ψn cn |2

Measurement: system collapses to single eigenstate
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INFINITE WELL
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INFINITE WELL: OBSERVABLE POSITION
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INFINITE WELL: ENERGIES
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INFINITE WELL: OBSERVABLE ENERGY
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WAVEPACKET INCIDENT ON BARRIER
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WAVEPACKET: OBSERVABLE POSITION
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OBSERVABLES, OPERATORS AND COLLAPSE

State of a quantum system: 

Wave function represents state: 

Observable is something we can measure (a real number)

Observable  corresponds to an Hermitian operator 

Measuring NOT same as applying operator 

|Ψ⟩

⟨x|Ψ(t)⟩ ⟶ Ψ(x, t)

Q Q̂

|Ψ⟩Q̂

Measurement operators DON’T always commute (incompatible observables)

Incompatible observables  NO common basis of eigenfunctions⟶
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UNCERTAINTY PRINCIPLE

Heisenberg uncertainty principle

Commutator is nonzero:

Can’t measure position and momentum at the same time

Measuring position destroys the momentum measurement

≤σxσp
ℏ
2

[ , ] = − = iℏx̂ p̂ x̂p̂ p̂ x̂
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GENERALIZED UNCERTAINTY PRINCIPLE

General uncertainty principle is related to the commutator

Number between brackets is real but can be negative

We need the square at the right-hand-side

Commutating operators  no restriction on , 

How to proof this?

≤σ2
A
σ2
B ( ⟨[ , ]⟩)1

2i
Â B̂

2

⟶ σA σB
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EXAMPLE UNCERTAINTY PRINCIPLE

General uncertainty principle for position/momentum

The commutator for  and :

Fill in in general uncertainty formula:

 Heisenberg uncertainty principle

x̂ p̂

[ , ] = iℏx̂ p̂

σ2
A
σ2
B

⇒ σ2
xσ

2
p

⇒ σxσp

≤ ( ⟨[ , ]⟩)1
2i

Â B̂
2

≤ = =( ⟨[ , ]⟩)1
2i

x̂ p̂
2

( ⟨iℏ⟩)1
2i

2 ℏ2

4

≤
ℏ
2

⟶
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COMMUTATORS AND UNCERTAINTY

Compatible observables: Commutating observables 

Measurements independent, order doesn’t matter

No restriction on the common uncertainty of the measurement

A common basis of eigenstates can be found

≤σ2
A
σ2
B ( ⟨[ , ]⟩)1

2i
Â B̂

2

[ , ] = 0Â B̂

Incompatible observables: Commutating observables 

Order of the measurement matters !

Minimum uncertainty on the measurements according to formula

NO common basis of eigenstates can be found

[ , ] > 0Â B̂
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DIRAC NOTATION

16Lecture 08 - 10: Dirac formalism PART II



VECTORS IN HILBERT SPACE

The wave function of a quantum state 

 are eigenvalues of position operator 

|Ψ(t)⟩

Ψ(x, t) = ⟨x|Ψ(t)⟩, |x⟩ = |x⟩x̂ x0

⟶ x0 x̂

⟨ |Ψ(t)⟩ = δ(x − x0)ψ(x)dx = ψ( )x0 ∫
∞

−∞
x0
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MOMENTUM EIGENVECTORS?
Momentum eigenvalue equation:

Filling in momentum operator :

This differential equation has solution:

|Ψ⟩ = p|Ψ⟩p̂

= −iℏp̂ d

dx

= (x)
d (x)ψp

dx

ip

ℏ
ψp

(x) = A =ψp eipx/ℏ 1

2π−−√
eipx/ℏ
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BRACKETS: BRA’S AND KETS

Inner product in matrix notation

“Bra” acts on the ket by row vector multiplication

Now with possible infinite basis:

⟨α|β⟩ = ( ) = + + …a∗
1 a∗

2 … a∗
n

⎛

⎝

⎜⎜⎜⎜

b1

b2

⋮

bn

⎞

⎠

⎟⎟⎟⎟
a∗

1b1 a∗
2b2 a∗

nbn

⟨α| = ∫ (…)dxα∗
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PROJECTION AND IDENTITY OPERATORS

Projection operator:

identity operator:

= |i⟩⟨i|P̂

= |i⟩⟨i|1̂ ∑
n
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