PHOT 301: Quantum Photonics LECTURE 11

Michaël Barbier, Fall semester (2024-2025)

SUMMARY OF WHAT WE KNOW

- States $|\Psi
 angle$ can be represented by the wave function:
 - $\Psi(x,t)=\langle x|\Psi(t)
 angle$
 - this is similar to a vector in vector component notation
- Observables are measurable quantities ("real" results)
- Observables Q correspond to operators \hat{Q} :
 - Linear operators $\longrightarrow \hat{Q} lpha
 angle$
 - Hermitian $\longrightarrow \hat{Q}^{\dagger} = \hat{Q}$
- Observable operators have a spectrum of eigenvalues
- Spectrum: discrete $(q_n, |f_n\rangle)$, continuous $(q(z), |f_z\rangle)$, or a mixture

OBSERVABLES, OPERATORS AND COLLAPSE

- We can measure observables:
 - position and momentum of a particle,
 - energy of a particle in a potential,
 - excitation-level of an electron in an atom
 - spin of an electron
 - ••••
- Before measurement
 - superposition of eigenstates
 - Probability to find a particle in x: $\left|\Psi(x,t)
 ight|^2$

•
$$\Psi(x,t) = \sum c_n(t) \psi_n(x) \longrightarrow P(n) = |c_n(t)|^2$$

• Measurement: system collapses to single eigenstate

INFINITE WELL

Lecture 08 - 10: Dirac formalism PART II

INFINITE WELL: OBSERVABLE POSITION

Lecture 08 - 10: Dirac formalism PART II

INFINITE WELL: ENERGIES

Energy (E_n) measurement

INFINITE WELL: OBSERVABLE ENERGY

Energy (E_n) measurement

Every measurement probabilistic BUT average energy $\langle H \rangle \propto \sum_{n} P(E_n) E_n$

WAVEPACKET INCIDENT ON BARRIER

Lecture 08 - 10: Dirac formalism PART II

WAVEPACKET: OBSERVABLE POSITION

OBSERVABLES, OPERATORS AND COLLAPSE

- State of a quantum system: $|\Psi
 angle$
- Wave function represents state: $\langle x|\Psi(t)
 angle \longrightarrow \Psi(x,t)$
- Observable is something we can measure (a real number)
- Observable Q corresponds to an Hermitian operator \hat{Q}
- Measuring NOT same as applying operator $\hat{Q}|\Psi
 angle$
- Measurement operators DON'T always commute (**incompatible** observables)
- Incompatible observables \longrightarrow NO common basis of eigenfunctions

UNCERTAINTY PRINCIPLE

• Heisenberg uncertainty principle

$$\sigma_x\sigma_p \leq rac{\hbar}{2}$$
 .

• Commutator is nonzero:

$$[\hat{x},\hat{p}\,]=\hat{x}\hat{p}\,-\hat{p}\,\hat{x}=i\hbar$$

- Can't measure position and momentum at the same time
- Measuring position *destroys* the momentum measurement

GENERALIZED UNCERTAINTY PRINCIPLE

• General uncertainty principle is related to the commutator

$$\left| \sigma_A^2 \sigma_B^2 \leq \left(rac{1}{2i} \langle \left[\hat{A}, \hat{B}
ight]
angle
ight)^2
ight|$$

- Number between brackets is real but can be negative
- We need the square at the right-hand-side
- Commutating operators \longrightarrow no restriction on σ_A , σ_B

How to proof this?

EXAMPLE UNCERTAINTY PRINCIPLE

- General uncertainty principle for position/momentum
- The commutator for \hat{x} and \hat{p} :

$$[\hat{x},\hat{p}]=i\hbar$$

Fill in in general uncertainty formula:

$$egin{aligned} &\sigma_A^2\sigma_B^2 \leq \left(rac{1}{2i}\langleig[\hat{A},\hat{B}ig]
angle
ight)^2 \ \Rightarrow &\sigma_x^2\sigma_p^2 \leq \left(rac{1}{2i}\langle[\hat{x},\hat{p}ig]
angle
ight)^2 = \left(rac{1}{2i}\langle i\hbar
angle
ight)^2 = rac{\hbar^2}{4} \ \Rightarrow &\sigma_x\sigma_p \leq rac{\hbar}{2} \end{aligned}$$

 \longrightarrow Heisenberg uncertainty principle

COMMUTATORS AND UNCERTAINTY

$$\sigma_A^2\sigma_B^2 \leq \left(rac{1}{2i}\langle \left[\hat{A},\hat{B}
ight]
angle
ight)^2$$

- Compatible observables: Commutating observables $[\hat{A},\hat{B}]=0$
 - Measurements independent, order doesn't matter
 - No restriction on the common **uncertainty** of the measurement
 - A common basis of eigenstates can be found
- Incompatible observables: Commutating observables $[\hat{A},\hat{B}]>0$
 - Order of the measurement matters !
 - Minimum uncertainty on the measurements according to formula
 - NO common basis of eigenstates can be found

DIRAC NOTATION

VECTORS IN HILBERT SPACE

• The wave function of a quantum state $|\Psi(t)
angle$

 \longrightarrow

$$\Psi(x,t)=\langle x|\Psi(t)
angle, \qquad \hat{x}|x
angle=x_0|x
angle$$

 x_0 are eigenvalues of position operator \hat{x}

$$\langle x_0|\Psi(t)
angle = \int_{-\infty}^\infty \delta(x-x0)\psi(x)dx = \psi(x_0)$$

MOMENTUM EIGENVECTORS?

Momentum eigenvalue equation:

$$\hat{p}\ket{\Psi}=p\ket{\Psi}$$

• Filling in momentum operator $\hat{p} = -i\hbar \frac{d}{dx}$:

$$rac{d\psi_p(x)}{dx} = rac{ip}{\hbar}\psi_p(x)$$

This differential equation has solution:

$$\psi_p(x) = A e^{ipx/\hbar} = rac{1}{\sqrt{2\pi}} e^{ipx/\hbar}$$

BRACKETS: BRA'S AND KETS

• Inner product in matrix notation

$$egin{array}{cccc} \langlelpha|eta
angle=(a_1^* & a_2^* & \dots & a_n^*) egin{pmatrix} b_1\ b_2\ dots\ b_n \end{pmatrix} = a_1^*b_1 + a_2^*b_2 + \dots a_n^*b_n \ dots\ b_n \end{pmatrix}$$

- "Bra" acts on the ket by row vector multiplication
- Now with possible infinite basis:

$$\langle lpha | = \int lpha^*(\ldots) dx$$

PROJECTION AND IDENTITY OPERATORS

• Projection operator:

$$\hat{P}=|i
angle\langle i|$$

• identity operator:

$$\hat{1} = \sum_n \ket{i}\!ig\langle i
vert$$

Lecture 08 - 10: Dirac formalism PART II