PHOT 301: Quantum Photonics

LECTURE 11

Michaël Barbier, Fall semester (2024-2025)

Summary of what we know

  • States \(|\Psi\rangle\) can be represented by the wave function:
    • \(\Psi(x,t) = \langle x | \Psi(t) \rangle\)
    • this is similar to a vector in vector component notation
  • Observables are measurable quantities (“real” results)
  • Observables \(Q\) correspond to operators \(\hat{Q}\):
    • Linear operators \(\longrightarrow \hat{Q}\alpha \rangle\)
    • Hermitian \(\longrightarrow \hat{Q}^\dagger = \hat{Q}\)
  • Observable operators have a spectrum of eigenvalues
  • Spectrum: \(\quad\) discrete (\(q_n, \, \, |f_n\rangle\)), \(\quad\) continuous (\(q(z), \, \, |f_z\rangle\)), \(\quad\) or a mixture

Observables, operators and collapse

  • We can measure observables:
    • position and momentum of a particle,
    • energy of a particle in a potential,
    • excitation-level of an electron in an atom
    • spin of an electron
  • Before measurement
    • superposition of eigenstates
    • Probability to find a particle in \(x\): \(|\Psi(x,t)|^2\)
    • \(\Psi(x,t) = \sum c_n(t) \psi_n(x) \longrightarrow P(n) = |c_n(t)|^2\)
  • Measurement: system collapses to single eigenstate

Infinite well

infinite well: Observable position

infinite well: energies

infinite well: Observable energy

wavepacket incident on barrier

wavepacket: Observable position

Observables, operators and collapse

  • State of a quantum system: \(| \Psi \rangle\)
  • Wave function represents state: \(\langle x | \Psi(t) \rangle \longrightarrow \Psi(x, t)\)
  • Observable is something we can measure (a real number)
  • Observable \(Q\) corresponds to an Hermitian operator \(\hat{Q}\)
  • Measuring NOT same as applying operator \(\hat{Q} | \Psi \rangle\)
  • Measurement operators DON’T always commute (incompatible observables)
  • Incompatible observables \(\longrightarrow\) NO common basis of eigenfunctions

Uncertainty principle

  • Heisenberg uncertainty principle

\[ \sigma_x \sigma_p \geq \frac{\hbar}{2} \]

  • Commutator is nonzero:

\[ [\hat{x}, \hat{p}] = \hat{x}\hat{p} - \hat{p}\hat{x} = i\hbar \]

  • Can’t measure position and momentum at the same time
  • Measuring position destroys the momentum measurement

Generalized Uncertainty principle

  • General uncertainty principle is related to the commutator

\[ \boxed{\sigma_A^2\sigma_B^2 \geq \left( \frac{1}{2i} \left\langle \left[ \hat{A}, \hat{B} \right] \right\rangle\right)^2} \]

  • Number between brackets is real but can be negative
  • We need the square at the right-hand-side
  • Commutating operators \(\longrightarrow\) no restriction on \(\sigma_A\), \(\sigma_B\)

How to proof this?

Example uncertainty principle

  • General uncertainty principle for position/momentum
  • The commutator for \(\hat{x}\) and \(\hat{p}\):

\[ [\hat{x}, \hat{p}] = i\hbar \]

Fill in in general uncertainty formula:

\[ \begin{aligned} \sigma_A^2\sigma_B^2 &\geq \left( \frac{1}{2i} \left\langle \left[ \hat{A}, \hat{B} \right] \right\rangle\right)^2\\ \Rightarrow\quad\sigma_x^2\sigma_p^2 &\geq \left( \frac{1}{2i} \langle \left[ \hat{x}, \hat{p} \right] \rangle\right)^2 = \left( \frac{1}{2i} \langle i\hbar \rangle\right)^2 = \frac{\hbar^2}{4}\\ \Rightarrow\quad\sigma_x\sigma_p &\geq \frac{\hbar}{2}\\ \end{aligned} \]

\(\longrightarrow\) Heisenberg uncertainty principle

Commutators and uncertainty

\[ \boxed{\sigma_A^2\sigma_B^2 \geq \left( \frac{1}{2i} \left\langle \left[ \hat{A}, \hat{B} \right] \right\rangle\right)^2} \]

  • Compatible observables: Commutating observables \(\quad [\hat{A}, \hat{B}] = 0\)
    • Measurements independent, order doesn’t matter
    • No restriction on the common uncertainty of the measurement
    • A common basis of eigenstates can be found
  • Incompatible observables: Non-commutating observables \(\quad [\hat{A}, \hat{B}] \neq 0\)
    • Order of the measurement matters !
    • Minimum uncertainty on the measurements according to formula
    • NO common basis of eigenstates can be found