PHOT 301: Quantum Photonics
LECTURE 08 - 10
Michaël Barbier, Fall semester (2024-2025)
Wave functions
Observables
–> Quantum mechanics can be described with linear algebra
Complex numbers \(z \in \mathbb{C}\):
Assume \(\,\,z = x+iy \in \mathbb{C}\):
\[ \begin{aligned} \textrm{Representation} \qquad & z = x + i \, y = r e^{i \theta} = r \left(\cos\theta + i\,\sin\theta\right)\\ \textrm{Complex conjugate} \qquad & z^* = x - i \, y = r e^{-i \theta} = r \left(\cos\theta - i\,\sin\theta\right)\\ \textrm{Magnitude} \qquad & |z|^2 = z^* \, z = x^2 + y^2 = \Re\{z\}^2 + \Im\{z\}^2\\ \textrm{Phase} \qquad & \theta = -i\ln(z/|z|) = \arctan(y/x)\\ \textrm{Trigoniometry} \qquad & \cos\theta = \frac{e^{i\theta} + e^{-i \theta}}{2}, \qquad \sin\theta = \frac{e^{i\theta} - e^{-i \theta}}{2i}\\ \end{aligned} \]
Operations:
\[ \begin{aligned} \textrm{Addition} \qquad & z_1 + z_2 = (x_1 + x_2) + i\,(y_1 + y_2)\\ \textrm{Multiplication} \qquad & z_1 \, z_2 = r_1 r_2 e^{i (\theta_1 + \theta_2)}\\ \end{aligned} \]
A vector space \(\mathcal{V} = \left\{ | \alpha \rangle, | \beta \rangle, | \gamma \rangle, \dots\right\}\) over field \(F = \mathbb{C}\):
Property name | rule |
---|---|
(Addition) Commutative | \(| \alpha \rangle + | \beta \rangle = | \beta \rangle + | \alpha \rangle\) |
(Addition) Associative | \(| \alpha \rangle + (| \beta \rangle + |\gamma\rangle) = (| \alpha \rangle + | \beta \rangle) + |\gamma \rangle\) |
(Addition) Identity | \({\bf 0} + | \beta \rangle = | \beta \rangle \quad\) for all \(| \beta \rangle\) |
(Addition) Inverse element | for all \(| \beta \rangle\), exists \(\,\,-| \beta \rangle: \quad -| \beta \rangle + | \beta \rangle = {\bf 0}\) |
(Scalar) Compatible product | \(c \, (d \, | \alpha \rangle) = (c\, d)\, | \alpha \rangle\) |
(Scalar) Identity | \(1 \, | \alpha \rangle = | \alpha \rangle\) |
(Scalar) Distributivity | \(c(| \alpha \rangle + | \beta \rangle) = c \, | \beta \rangle + c \, | \alpha \rangle\) |
(Scalar) Distributivity | \((c + d) | \alpha \rangle = c \, | \alpha \rangle + d \, | \alpha \rangle\) |
Linear independence
A vector \(| \xi \rangle\) is linearly independent of \(\left\{ |\alpha \rangle, |\beta \rangle, |\gamma \rangle, \dots \right\}\)
\(\Leftrightarrow\) no linear combination: \(|\xi \rangle = a |\alpha \rangle + b |\beta \rangle + c |\gamma \rangle + \dots\)
Example: in 3D vector space:
Basis vectors:
Suppose a finite set of \(n\) basis vectors:
\[ \left\{ |e_1\rangle, \, |e_2\rangle, \dots , \, |e_n\rangle \, \right\} \]
Each vector \(|\alpha \rangle\) can be written as superposition:
\[ |\alpha \rangle = a_1 |e_1\rangle + a_2 |e_2\rangle + \dots + a_n |e_n \rangle \]
In component notation for specific basis:
\[ |\alpha \rangle = ( a_1, a_2, \dots, a_n) \]
\(\longrightarrow\) Simplifies understanding the properties:
\[ \begin{aligned} |0 \rangle + |\alpha \rangle = |\alpha\rangle \quad & \Longrightarrow |0 \rangle = ( 0, 0, \dots, 0)\\ |\alpha \rangle + |-\alpha \rangle = |0\rangle \quad & \Longrightarrow |-\alpha \rangle = ( -a_1, -a_2, \dots, -a_n)\\ |\alpha \rangle + c|\beta \rangle \quad & \Longrightarrow |\alpha \rangle + c|\beta \rangle = ( a_1 + c\, b_1, a_2 + c\, b_2, \dots, a_n+ c \,b_n)\\ \end{aligned} \]
Property name | rule |
---|---|
Non-negative | \(\| \beta \| \geq 0\) |
Positive definite | \(\| \beta \| = 0 \Leftrightarrow | \beta \rangle = | 0 \rangle\) |
Absolute homogeneity | \(\|c \, \beta \| = |c| \, \| \beta \|\) |
Triangle inequality | \(\| | \alpha \rangle + | \beta \rangle \| \leq \| \alpha \| + \| \beta \|\) |
\[ d(| \beta \rangle, | \alpha \rangle) = \| | \alpha \rangle - | \beta \rangle \| \]
\[ \langle \, \langle \alpha | \, , \, | \beta \rangle \, \rangle = \langle \alpha | \beta \rangle \longrightarrow c \in \mathbb{C} \]
Property name | rule |
---|---|
conjugate symmetry | \({\langle \beta | \alpha \rangle}^* = \langle \alpha | \beta \rangle\) |
linearity 2nd argument | \(\langle \alpha \, | \left( \, c\, | \beta \rangle \, + \, d \, | \gamma \rangle \right) \rangle \, = \, c \, \langle \alpha | \beta\rangle \, + \, d \, \langle \alpha | \gamma \rangle\) |
\(\Rightarrow\) conjugate linear 1st | \(\langle \, \left(c \, | \alpha \rangle \, + \, d \, |\beta\rangle \, \right) \, | \, \gamma \rangle \, = \, {c}^* \, \langle \alpha | \gamma \rangle \, + \, {d}^* \, \langle \beta | \gamma \rangle\) |
positive definite | \(\langle \beta | \beta \rangle > 0\) |
\[ \| \beta \| = \sqrt{\langle \beta | \beta \rangle} \]
\(\longrightarrow\) In component notation: \(\langle \alpha | \beta \rangle = a_1^* b_1 + \dots + a_n^* b_n \qquad \textrm{with} \quad a_i = \langle e_i | \alpha \rangle\)
The norm is given by:
\[ \| \alpha \|^2 = \langle \alpha | \alpha \rangle = a_1^* b_1 + \dots + a_n^* b_n \qquad \textrm{with} \quad a_i = |a_1|^2 + \dots + |a_n|^2 \]
In \(\mathbb{R}^n\) the angle between two vectors is \({\bf a} \cdot {\bf b} = \|{\bf a}\| \|{\bf b}\| \cos(\theta)\):
\[ \cos \theta = \frac{\sqrt{\langle \alpha | \beta \rangle \, \langle \beta | \alpha \rangle}}{\| \alpha \| \| \beta \|} \]
\[ |\langle \alpha | \beta \rangle|^2 \leq \langle \alpha | \alpha \rangle \, \langle \beta | \beta \rangle \]
\[ \| \, |\alpha\rangle + |\beta\rangle \, \| \leq \| \alpha \|^2 + \| \beta \|^2 \]
\[ |\alpha'\rangle = \hat{T} \, |\alpha\rangle \qquad \textrm{linearity: }\quad \hat{T}(c|\alpha\rangle + d|\beta\rangle) = a\,\hat{T}|\alpha\rangle + b\, \hat{T}|\beta\rangle \]
\[ \begin{aligned} |\alpha'\rangle & = \hat{T} \, |\alpha\rangle\\ & = \hat{T} \, \left( a_1|e_1\rangle + \dots + a_n|e_n\rangle \right)\\ & = \hat{T} \, a_1|e_1\rangle + \dots + \hat{T} \, a_n|e_n\rangle\\ & = a_1 \, \hat{T} \, |e_1\rangle + \dots + a_n \, \hat{T} \, |e_n\rangle\\ & = \sum_{i=1}^n a_i \, \hat{T} \, |e_i\rangle\\ \end{aligned} \]
\[ \hat{T} \, |\alpha\rangle = \sum_{j=1}^n a_j \, \hat{T} \, |e_j\rangle\\ \]
The \(\hat{T} \, |e_i\rangle\) can be written as superposition:
\[ \begin{aligned} \hat{T} \, |e_1\rangle & = T_{11}|e_1\rangle + T_{21}|e_2\rangle + \dots + T_{n1}|e_n\rangle \\ \hat{T} \, |e_2\rangle & = T_{12}|e_1\rangle + T_{22}|e_2\rangle + \dots + T_{n2}|e_n\rangle \\ & \dots \\ \hat{T} \, |e_n\rangle & = T_{1n}|e_1\rangle + T_{2n}|e_2\rangle + \dots + T_{nn}|e_n\rangle \\ \end{aligned} \]
\[ \Rightarrow \hat{T} \, |\alpha\rangle = \sum_{j=1}^n a_j \, \hat{T} \, |e_j\rangle = \sum_{j=1}^{n}\sum_{i=1}^{n} a_j T_{ij} | e_i \rangle = \sum_{i=1}^{n} \left(\sum_{j=1}^{n} T_{ij} a_j\right) | e_i \rangle \\ \]
\[ \Rightarrow \hat{T} \, |\alpha\rangle = \sum_{j=1}^n a_j \, \hat{T} \, |e_j\rangle = \sum_{j=1}^{n}\sum_{i=1}^{n} a_j T_{ij} | e_i \rangle = \sum_{i=1}^{n} \left(\sum_{j=1}^{n} T_{ij} a_j\right) | e_i \rangle \\ \]
Operator \(\hat{T}\) as a matrix \(T_{ij}\) for basis \(\left\{|e_1\rangle\, ,\, \dots\, , \, |e_n\rangle\right\}\)
\[ a'_i = \sum_{j=1}^{n} T_{ij} a_j \]
And the matrix:
\[ T_{ij} = \begin{pmatrix} T_{11} & T_{12} & \cdots & T_{1n}\\ T_{21} & T_{22} & \cdots & T_{2n}\\ \vdots & \vdots & \ddots & \vdots\\ T_{n1} & T_{n2} & \cdots & T_{nn}\\ \end{pmatrix}\qquad \textrm{with } \quad T_{ij} = \langle e_i | \hat{T} | e_j \rangle \]
If we have a basis basis \(\left\{|e_1\rangle \, , \dots \, , \,| e_n \rangle \right\}\)
\[ |\alpha\rangle = \begin{pmatrix} a_1\\ a_2\\ \vdots\\ a_n\\ \end{pmatrix} \]
An operator acting on a vector \(|\alpha\rangle\): \[ \hat{T} |\alpha\rangle \longrightarrow \sum_{j=1}^n T_{ij} a_j = \begin{pmatrix} T_{11} & T_{12} & \cdots & T_{1n}\\ T_{21} & T_{22} & \cdots & T_{2n}\\ \vdots & \vdots & \ddots & \vdots\\ T_{n1} & T_{n2} & \cdots & T_{nn}\\ \end{pmatrix}\, \begin{pmatrix} a_1\\ a_2\\ \vdots\\ a_n\\ \end{pmatrix} \]
\[ \hat{U} = \hat{S} + \hat{T} \longrightarrow U_{ij} = S_{ij} + T_{ij} \]
\[ \hat{U} |\alpha\rangle = \hat{S} \hat{T} |\alpha\rangle \longrightarrow U_{ij} = \sum_k S_{ik} T_{kj} \]
The matrix product between matrices \(A\) and \(B\) is defined as
\[ \begin{aligned} A \cdot B & = \pmatrix{ a_{11} & a_{12} & a_{13}\\ a_{21} & a_{22} & a_{23}\\ } \pmatrix{ b_{11} & b_{12} & b_{13}\\ b_{21} & b_{22} & b_{23}\\ b_{31} & b_{32} & b_{33}\\ }\\ &\\ & = \sum_{j} a_{ij} b_{jk}\\ \end{aligned} \]
\[ \langle \alpha | \beta \rangle = a_1^* b_1 + a_2^* b_2 + \dots + a_n^* b_n = {\bf a}^\dagger {\bf b} \]
In vector notation: \[ \langle \alpha | \longrightarrow \vec{a} = \pmatrix{a^*_1 & a^*_2 & \dots & a^*_N} \qquad |\beta\rangle \longrightarrow \vec{b} = \pmatrix{b_1 \\ b_2 \\ \vdots \\ b_N} \]
\[ \langle \alpha' | \beta' \rangle = {\bf a'}^\dagger {\bf b'} = (U{\bf a})^\dagger ({U \bf b}) = {\bf a}^\dagger U^\dagger U {\bf b} = {\bf a}^\dagger {\bf b} = \langle \alpha | \beta \rangle \]
\(\longrightarrow\) Apply unitary transformation to orthonormal basis is again orthonormal basis
\[ \{ |e_1\rangle, |e_2\rangle, \dots , |e_n\rangle \} \qquad | e'_i \rangle = U | e_i \rangle \quad\textrm{ is orthonormal} \]
If \(T\) transforms a basis: \(a_i \rangle = T | e_i \rangle\) to another orthonormal one: \(\langle a_j | a_i \rangle = \delta_{ij}\) \(\Longrightarrow T\) is unitary:
\[ \begin{aligned} \delta_{ij} & = \langle a_j | a_i \rangle\\ & = \langle a_j | T | e_i \rangle\\ & = \langle e_j | T^\dagger T | e_i \rangle \\ \end{aligned} \quad\Rightarrow\quad T^\dagger T = \mathbb{1} \quad\Rightarrow\quad T^\dagger = T^{-1} \]
\[ [\hat{S}, \hat{T}] = \hat{S}\hat{T} - \hat{T}\hat{S} \longleftrightarrow [S, T] = S\,T - T\,S \]
\[ \{\hat{S}, \hat{T}\} = \hat{S}\hat{T} + \hat{T}\hat{S} \longleftrightarrow \{S, T\} = S\,T + T\,S \]
Eigenvector \({\bf x} \neq {\bf 0}\) and eigenvalues \(\lambda\) of matrix \(A\):
\[ A {\bf x} = \lambda {\bf x} \Leftrightarrow (\lambda \mathbb{1} - A) {\bf x} = {\bf 0}\\ \]
Because \({\bf x} \neq {\bf 0}\) the inverse of \(\lambda \mathbb{1} - A\) cannot exist, because if it would:
\[ \begin{aligned} (\lambda \mathbb{1} - A) {\bf x} & = {\bf 0}\\ \Longrightarrow (\lambda \mathbb{1} - A)^{-1}(\lambda \mathbb{1} - A) {\bf x} & = (\lambda \mathbb{1} - A)^{-1} {\bf 0}\\ \Longrightarrow (\lambda \mathbb{1} - A)^{-1}(\lambda \mathbb{1} - A) {\bf x} & = {\bf 0}\\ \Longrightarrow {\bf x} & = {\bf 0} \end{aligned} \]
\[ \det(\lambda \mathbb{1} - A) = 0 \]
\[ A = \pmatrix{ -5 & 2\\ -7 & 4\\ } \]
This gives for the characteristic equation: \(\quad\det(\lambda \mathbb{1} − A) = 0\):
\[ \begin{aligned} \det\left[ \lambda \pmatrix{ 1 & 0\\ 0 & 1\\ } - \pmatrix{ -5 & 2\\ -7 & 4\\ } \right] = 0\\ \\ \Longrightarrow \det\left[ \pmatrix{ \lambda+5 & -2\\ 7 & \lambda-4\\ } \right] = 0\\ \end{aligned} \]
The determinant is:
\[ \lambda^2 + \lambda − 6 = 0 \longrightarrow (\lambda - 2)(\lambda + 3) = 0 \]
\[ A {\bf x} = \pmatrix{ -5 & 2\\ -7 & 4\\ } \qquad \lambda_1 = 2, \quad\lambda_2 = -3 \]
Eigenvector \(\,{\bf x}_1 = (x, y)\,\,\) for \(\,\,\lambda_1 = 2\)
\[ \begin{aligned} A = \pmatrix{ \lambda_1+5 & -2\\ 7 & \lambda_1-4\\ } \pmatrix{ x\\ y\\ } = \pmatrix{ 7 & -2\\ 7 & -2\\ } \pmatrix{ x\\ y\\ } = 0\\ \Longrightarrow {\bf x} = c \pmatrix{ 2\\ 7\\ }\\ \end{aligned} \]
Characteristic polynomial in \(\lambda\) of order \(N\) for \(N\times N\) matrix
\[ B = T^{-1} A T \qquad \Longrightarrow \qquad \{\lambda_i\} \quad\textrm{the same} \]
\[ (\lambda - b_{11})(\lambda - b_{22}) \,\dots\, (\lambda - b_{nn}) = 0 \]
\[ \Longrightarrow \quad \left\{ \begin{aligned} &\textrm{Eigenvalues}\qquad \lambda_i = b_{ii}\\ &\textrm{Eigenvectors}\quad {\bf x'}_i\,\,\textrm{of}\,\,B = T {\bf x}_i\\ \end{aligned} \right. \]
! General case is PROBLEMATIC !
Mathematical correspondence:
Dirac “bra-ket” notation: \(\qquad \langle \textrm{bra} |, \quad| \textrm{ket}\rangle\)
A Cauchy series:
\[ \forall\,\, m,\, n > N: \quad \| v_n - v_m \| < \varepsilon \quad\textrm{ with } v_n, v_m \in \mathcal{V} \]
A Banach space:
A Hilbert space
Vectors in Hilbert space are well-behaved
\[ \langle \hat{T}^\dagger \alpha | \beta \rangle = \langle \alpha | \hat{T} \beta \rangle \]
Quantum mechanics \(\longrightarrow\) specific Hilbert space: \(L^2(a, b)\)
\[ \|f \|^2 = \int_a^b |f(x)|^2 dx < \infty\\ \Longrightarrow f(x) \quad\textrm{normalizable} \]
\[ \langle f | g \rangle = \int_a^b f(x)^* g(x) dx \leq 1 \qquad \textrm{norm: }\| f \| = \sqrt{\langle f | f \rangle} \]
The last inequality requires normalized \(f(x)\) and \(g(x)\)
\[ |\langle f | g \rangle| \leq \sqrt{\langle f | f \rangle \langle g | g \rangle} \]
\[ \langle f_m| f_n \rangle = \int_a^b f_m(x)^*f_n(x) dx = \delta_{mn} \]
\[ | f \rangle = \sum_n c_n \, | f_n \rangle, \qquad c_n = \langle f_n| f \rangle = \int_a^b f_n(x)^* f(x) dx \]
\(\longrightarrow\) We will use sometimes \(f\), \(g\) instead of \(|\psi\rangle\), \(|\psi_n\rangle\), etc. for (wave) functions
\[ \langle Q \rangle = \int \Psi^* \hat{Q} \Psi \, dx = \langle \Psi | \hat{Q}\Psi\rangle \]
Since measurements need to be real: \(\langle Q \rangle = \langle Q \rangle^*\)
\[ \langle \Psi | \hat{Q}\Psi\rangle = \langle \hat{Q}\Psi | \Psi\rangle \]
\(\Longrightarrow\) The operator \(\hat{Q} = \hat{Q}^\dagger\) is Hermitian
\[ \begin{aligned} \langle f | \hat{p} g \rangle & = \langle f | -i\hbar \frac{d}{dx} g \rangle\\ & = - i\hbar \int f(x)^* \frac{d g(x)}{dx} dx\\ & = - f(x)^* g(x) \Big|^{+\infty}_{-\infty} + i\hbar \int \frac{d f(x)^*}{dx} \, g(x) dx\\ & = i\hbar \int \frac{d f(x)^*}{dx} \, g(x) dx\\ & = \langle -i\hbar \frac{d}{dx} f | g \rangle \\ & = \langle \hat{p} f | g \rangle \\ \end{aligned} \]
\(\longrightarrow\) Important that \(f\) and \(g\) become zero at \(x = \pm \infty\)
\[ \Longrightarrow \sigma^2 = \langle (Q - \langle Q \rangle)^2 \rangle = \langle\Psi | (Q - q)^2 \Psi\rangle = \langle (Q - q)\Psi | (Q - q) \Psi\rangle = 0 \]
\[ \Longrightarrow (Q - q) | \Psi \rangle = | 0 \rangle \quad \Longrightarrow \quad Q | \Psi \rangle = q | \Psi \rangle \]
\[ \hat{H} |\psi \rangle = E |\psi \rangle \]
\[ \textrm{Assume eigenvalue } q \quad \hat{Q} f = q f \]
\[ \Longrightarrow q \langle f|f \rangle = \langle f|\hat{Q} f \rangle = \langle \hat{Q} f | f \rangle = q^* \langle f|f \rangle \]
\[ \begin{aligned} & \textrm{Assume: } \quad \hat{Q} f = q f \qquad \hat{Q} g = q' g\\ & \\ &\Longrightarrow q' \langle f | g \rangle = \langle f | \hat{Q} g \rangle = \langle \hat{Q} f | g \rangle = q^* \langle f|g\rangle\\ & \Longrightarrow q' = q^* = q \end{aligned} \]
Properties
Axiom: Any observable operator in Hilbert space has a complete basis of eigenfunctions
\[ \quad f(x) = \sum_n c_n f_n(x), \qquad \textrm{with}\quad c_n = \langle f_n | f \rangle = \int f_n(x)^* f(x) dx \]
\(\Longrightarrow\) Observable operators are Hermitian and have a complete basis of eigenfunctions
\[ \Psi(x, t) = \sum_n c_n(t) f_n(x), \qquad \textrm{with}\quad c_n(t) = \langle f_n | \Psi \rangle = \int f_n(x)^* \Psi(x, t) dx \]
\[ \begin{aligned} \langle \hat{Q} \rangle = \langle \Psi | \hat{Q} \, \Psi \rangle & = {\LARGE\langle} \sum_m c_m(t) f_m(x) {\LARGE|} \hat{Q} \,\sum_n c_n(t) f_n(x) {\LARGE\rangle}\\ & = \sum_m\sum_n c_m(t)^* c_n(t) q_n \langle f_m(x) | f_n(x)\rangle\\ & = \sum_m\sum_n c_m(t)^* c_n(t) q_n \delta_{mn} = \sum_n |c_n(t)|^2 q_n\\ \end{aligned} \]
Dirac delta distribution:
\[ \left\{ \begin{aligned} \delta(x \neq 0) &= 0\\ \delta(x = 0) &= +\infty \end{aligned} \right. \]
\[ \int_{-\infty}^{+\infty} \delta(x) = 1 \]
Limit of series of functions:
Filters out single point: \(f(a) = \int_{-\infty}^{+\infty} f(x) \, \delta(x-a) \, dx\)
\[ \textrm{Orthonormality} \qquad \langle f_{z'}| f_{z}\rangle = \delta(z' - z) \]
\[ \textrm{Completeness} \qquad f(x) = \int c(z) f_z dz \qquad \textrm{with} \quad c(z) = \langle f_z | f \rangle \]
\[ \langle f_{z'}| f \rangle = \int c(z) \langle f_{z'} | f_z \rangle dz = \int c(z)\delta(z' - z) dz = c(z') \]
Momentum operator for a free particle
Eigenvalues and eigenfunctions:
\[ -i \hbar \frac{d}{dx} f_p(x) = p f_p(x) \quad \textrm{with} \qquad f_p(x) = A e^{ipx/\hbar} \]
If eigenvalues \(\,\,p\in \mathbb{R}\) then \(\{f_p\}\) is orthogonal:
\[ \langle f_{p'} | f_p\rangle = \int f_{p'}^* f_p dx = |A|^2 \int e^{i(p - p')x/\hbar} dx = |A|^2 2\pi \hbar \delta(p - p') \]
Completeness follows from Fourier analysis:
\[ f(x) = \int c(p) f_p(x) dp = \frac{1}{\sqrt{2\pi\hbar}} \int c(p) e^{ipx/\hbar} dp \]
Momentum operator for a free particle
Completeness follows from Fourier analysis:
\[ f(x) = \int c(p) f_p(x) dp = \frac{1}{\sqrt{2\pi\hbar}} \int c(p) e^{ipx/\hbar} dp \]
The coefficients \(c(p)\) are as expected:
\[ \langle f_{p'} | f_p \rangle = \int c(p) f_{p'}^* \, f_p \, dp = \int c(p) \delta(p - p') dp = c(p') \]
\(\longrightarrow\) Create normalized wave function from superposition
Lecture 08 - 10: Dirac formalism