PHOT 301: Quantum Photonics LECTURE 03

Michaël Barbier, Fall semester (2024-2025)

INFINITE DEEP WELL

INFINITE WELL: SUMMARY

$$egin{cases} \psi_n(x) = \sqrt{rac{2}{L}} \sin\Bigl(rac{n\pi x}{L}\Bigr) \ E_n = rac{\hbar^2 k_n^2}{2m} = rac{\hbar^2}{2m} \Bigl(rac{n\pi}{L}\Bigr)^2 \ n = 1, 2, 3, 4, \ldots$$

Plot shows the wave function (ψ , grey), probability ($|\psi|^2$, color) for first 3 eigenstates

PROPERTIES OF STATIONARY EIGENSTATES

$$\psi_n$$
 are orthonormal $\int \psi_m(x)^* \, \psi_n(x) \, dx = \delta_{mn}$ ψ_n form a complete basis $f(x) = \sum_{n=1}^\infty c_n \psi_n(x) \quad orall f(x)$ Coefficients c_n are given by $c_n = \int \psi_n(x)^* \, f(x) \, dx$

Proof of last property:

$$egin{align} \int \psi_m(x)^* \, f(x) \, dx &= \int \psi_n(x)^* \, \sum_{n=1}^\infty c_n \psi_n(x) \, dx \ &= \sum_{n=1}^\infty c_n \int \psi_m(x)^* \, \psi_n(x) \, dx = \sum_{n=1}^\infty c_n \delta_{mn} = c_m
onumber \ \end{cases}$$

STATIONARY SOLUTION OF THE TISE

For the infinite well

$$\psi(x) = \sqrt{rac{2}{L}} \sum_{n=1}^{\infty} c_n \sin\Bigl(rac{n\pi}{L}x\Bigr)$$

Example state:

$$\left\{egin{aligned} c_1=4/5,\ c_2=\sqrt{1-c_1^2}=3/5,\ n>2\longrightarrow c_n=0 \end{aligned}
ight.$$

- How does the wave function (ψ , color) and the probability ($|\psi|^2$, gray) look?
- What if we let time evolve?

INFINITE WELL: SOLUTION OF THE TDSE

Adding time evolution

$$\Psi(x,t) = \sum_{n=1}^\infty c_n \psi_n(x) \, e^{-iE_n t/\hbar}
onumber$$
 with $\sum_{n=1}^\infty |c_n|^2 = 1$

Coefficients $|c_n|^2$ give the probability to measure energy as E_n :

$$\langle \hat{H}
angle = \int \Psi^* \hat{H} \Psi dx = \sum_{n=1}^\infty |c_n|^2 E_n.$$

But $\langle \hat{x} \rangle = \int x \Psi^* \Psi \, dx$ is not constant!

EXPAND A FUNCTION IN EIGENSTATES

Suppose we have a certain function

$$f(x) = (L/2)^4 - (x - L/2)^4, \quad ext{with } x \in [0, L]$$

• Since f(0)=f(L)=0 we can expand f(x) in eigenstates of the infinite well

$$f(x) = \sqrt{rac{2}{L}} \sum_{n=1}^{\infty} c_n \sin\Bigl(rac{n\pi}{L}x\Bigr)$$
 with $c_n = \int_0^L \psi_n(x)^* f(x) \, dx$

See the exercise sessions for the actual calculation

HARMONIC OSCILLATOR

INTRODUCTION

- Ball-spring problem
- Typical analog RCL electric circuit
- Many systems are approximately harmonic oscillators
 - Classical optics
 - 2nd order Taylor approximation of Potential wells
 - Phonons, vibrations in molecules/matter
 - Quantization of light: Photons

CLASSICAL HARMONIC OSCILLATOR

- mass attached to a spring
- The spring force counters any deviation: F=-kx
- Motion described by Newton's equation F=ma:

$$ma=mrac{d^2x}{dt^2}=-kx$$

This is a linear equation with constant coefficients

$$rac{d^2x}{dt^2} = -rac{k}{m}x = -\omega^2x$$

with
$$\omega=\sqrt{k/m}$$
 .

Resulting solutions are:

$$x \propto \sin(\omega t)$$

SOLVING THE QM HARMONIC OSCILLATOR

The time-independent Schrodinger equation (TISE):

$$-rac{\hbar^2}{2m}rac{\partial^2}{\partial x^2}\psi(x)+V(x)\psi(x)=E\psi$$

Potential energy: $V(x)=rac{1}{2}m\omega^2x^2$

$$-rac{\hbar^2}{2m}rac{\partial^2}{\partial x^2}\psi(x)+rac{1}{2}m\omega^2x^2\psi(x)=E\psi_0^2$$

Rewrite in dimensionless units: $\xi = \sqrt{rac{m\omega}{\hbar}}$

$$rac{1}{2}rac{\partial^2}{\partial \xi^2}\psi(\xi)-rac{1}{2}\xi^2\psi(\xi)=-rac{E}{\hbar\omega}\psi$$

---- 2nd order linear differential equation

SOLVING THE QM HARMONIC OSCILLATOR

$$rac{1}{2}rac{\partial^2}{\partial \xi^2}\psi(\xi) - rac{1}{2}\xi^2\psi(\xi) = -rac{E}{\hbar\omega}\psi$$

 \longrightarrow Trial solution $\psi \propto \exp(-\xi^2/2)$

Substitute $A_n \exp(-\xi^2/2) H_n(\xi)$ with $H_n(\xi)$ yet unknown

$$rac{d^2 H_n(\xi)}{d \xi^2} - 2 \xi rac{d H_n(\xi)}{d \xi} + \left(rac{2E}{\hbar \omega} - 1
ight) H_n(\xi) = 0$$

Solutions exist for
$$\frac{2E}{\hbar\omega}-1=2n, \qquad n=0,1,2,3\dots$$

$$egin{aligned} egin{aligned} \psi_n &= A_n \exp(-\xi^2/2) H_n(\xi), \ E_n &= (n+1/2) \hbar \omega \ ext{with} \ n=0,1,2,\ldots \end{aligned}$$

HARMONIC OSCILLATOR SOLUTIONS

$$egin{align} \psi_n &= A_n \exp(-\xi^2/2) H_n(\xi), \ E_n &= \left(n + rac{1}{2}
ight) \hbar \omega \; ext{with} \; n = 0, 1, 2, \ldots \ A_n &= \sqrt{rac{1}{\sqrt{\pi} \, 2^n n!}} \qquad \xi = \sqrt{rac{m \omega}{\hbar}} \ \end{array}$$

Hermite polynomials $H_n(\xi)$

$$egin{aligned} H_0 &= 1 \ H_1 &= 2\xi \ H_2 &= 4\xi^2 - 2 \ H_3 &= 8\xi^3 - 12\xi \ dots \ H_n(\xi) &= 2\xi H_{n-1}(\xi) - 2(n-1)H_{n-2}(\xi) \end{aligned}$$

Lecture 03: The time-independent Schrodinger equation (ctu'd)

HARMONIC OSCILLATOR SOLUTIONS

Lecture 03: The time-independent Schrodinger equation (ctu'd)

HARMONIC OSCILLATOR SOLUTIONS

Lecture 03: The time-independent Schrodinger equation (ctu'd)

ALTERNATIVE (ALGEBRAIC) DERIVATION

The time-independent Schrodinger equation (TISE):

$$-rac{\hbar^2}{2m}rac{\partial^2}{\partial x^2}\psi(x)+V(x)\psi(x)=E\psi$$

with potential energy: $V(x)=rac{1}{2}m\omega^2x^2$

$$-rac{\hbar^2}{2m}rac{\partial^2}{\partial x^2}\psi(x)+rac{1}{2}m\omega^2x^2\psi(x)=E\psi^2$$

Operator form:

$$rac{1}{2m}ig(\hat{p}^2+rac{1}{2}m\omega^2x^2ig)\,\psi(x)=E\psi, \qquad \hat{p}=-i\hbarrac{\partial}{\partial x}$$

This is a sum of squares \longrightarrow factorize $u^2+v^2=(iu+v)(-iu+v)$

LADDER OPERATORS

Ladder operators $\hat{a}_-\hat{a}_+=(iu+v)(-iu+v)=u^2+v^2$

$$\hat{a}_{\pm}=rac{1}{\sqrt{2\hbar m\omega}}(\mp i\hat{p}+m\omega x)\,, \qquad \left[\hat{x},\hat{p}
ight]=x\hat{p}-\hat{p}x=i\hbar$$

The product is:

$$egin{aligned} \hat{a}_-\hat{a}_+ &= rac{1}{2\hbar m\omega}(i\hat{p}+m\omega x)(-i\hat{p}+m\omega x) \ &= rac{1}{2\hbar m\omega}ig(\hat{p}^2+(m\omega x)^2-im\omega(x\hat{p}-\hat{p}x)ig) \ &= rac{1}{2\hbar m\omega}ig(\hat{p}^2+(m\omega x)^2ig)-rac{i}{2\hbar}(x\hat{p}-\hat{p}x) \ &= rac{1}{2\hbar m\omega}ig(\hat{p}^2+(m\omega x)^2ig)+rac{1}{2} \ &= rac{1}{\hbar\omega}\hat{H}+rac{1}{2} \end{aligned}$$

Lecture 03: The time-independent Schrodinger equation (ctu'd)

LADDER OPERATORS

Ladder operators $\hat{a}_-\hat{a}_+=(iu+v)(-iu+v)=u^2+v^2$

$$\hat{a}_{\pm}=rac{1}{\sqrt{2\hbar m\omega}}(\mp i\hat{p}+m\omega x)\,, \qquad \left[\hat{x},\hat{p}
ight]=x\hat{p}-\hat{p}x=i\hbar$$

We can also flip the ladder operators:

$$\hat{H}=\left(\hat{a}_{-}\hat{a}_{+}-rac{1}{2}
ight)\hbar\omega \ \hat{H}=\left(\hat{a}_{+}\hat{a}_{-}+rac{1}{2}
ight)\hbar\omega$$

Stationary Schrodinger equation becomes:

$$\hat{H}\psi=\hbar\omega\left(\hat{a}_{+}\hat{a}_{-}+rac{1}{2}
ight)\,\psi=E\,\psi$$

LADDER OPERATORS GENERATE SOLUTIONS

If $\psi(x)$ is a solution, the $\hat{a}_+\psi(x)$ is another solution:

$$\hat{H}\psi(x)=E\psi\Rightarrow\hat{H}(\hat{a}_{+}\psi(x))=(E+\hbar\omega)(\hat{a}_{+}\psi(x))$$

If $\psi(x)$ is a solution, then $\hat{a}_-\psi(x)$ is another solution:

$$\hat{H}\psi(x)=E\psi\Rightarrow\hat{H}(\hat{a}_{-}\psi(x))=(E-\hbar\omega)(\hat{a}_{-}\psi(x))$$

LADDER OPERATORS GENERATE SOLUTIONS

Since energy E>0 operating with \hat{a}_- leads at some point to:

$$\hat{a}_-\psi_0=0$$

The leads to the following differential equation

$$egin{aligned} rac{1}{\sqrt{2\hbar m\omega}} \left(\hbar rac{d}{dx} + m\omega x
ight) \psi_0(x) &= 0 \ \Rightarrow rac{d\psi_0(x)}{dx} &= -rac{m\omega}{\hbar} \ x \ \psi_0(x) \ \Rightarrow \int rac{d\psi_0(x)}{\psi_0(x)} \, dx &= -rac{m\omega}{\hbar} \int x \, dx \ \Rightarrow \ln(\psi_0(x)) &= -rac{m\omega}{2\hbar} \ x^2 + C \ \Rightarrow \psi_0(x) &= A \, e^{-rac{m\omega}{2\hbar} \, x^2} \end{aligned}$$

LADDER OPERATORS GENERATE SOLUTIONS

$$\Rightarrow \psi_0(x) = A\,e^{-rac{m\omega}{2\hbar}\,x^2}$$

Normalization requires $\int \left|\psi_0(x)
ight|^2=1$

$$\int_{-\infty}^{\infty} \left|\psi_0(x)
ight|^2 dx = \left|A
ight|^2 \int_{-\infty}^{\infty} e^{-rac{m\omega}{\hbar} \; x^2} = \left|A
ight|^2 \sqrt{rac{\pi \hbar}{m\omega}}$$

where we used the identity

$$\int_{-\infty}^{\infty}e^{-ax^2}dx=\sqrt{rac{\pi}{a}}$$

This results in the solution:

$$\psi_0(x) = \left(rac{m\omega}{\pi\hbar}
ight)^{1/4} e^{-rac{m\omega}{2\hbar}x^2}$$

SOLUTIONS WITH THE LADDER OPERATORS

Other solutions $\psi_n(x)$ can now be generated:

$$\psi_n(x) = A_n \, (\hat{a}_+)^n \, \psi_0(x), \quad ext{with} \quad E_n = \left(n + rac{1}{2}
ight) \hbar \omega$$

The normalization factor A_n can be calculated

$$\psi_n(x) = rac{1}{\sqrt{n!}} \, (\hat{a}_+)^n \, \psi_0(x), \quad ext{with} \quad E_n = \left(n + rac{1}{2}
ight) \hbar \omega$$

And operating with a single ladder operator:

$$\hat{a}_+\psi_n=\sqrt{n+1}\psi_{n+1}, \qquad \hat{a}_-\psi_n=\sqrt{n}\psi_{n-1}$$

SUMMARY

- Infinite well
 - Eigenstates evolve different in time
 - lacktriangle Pure eigenstates are stationary for finite expectation energy $\langle \hat{H}
 angle$
 - Mixing of eigenstates leads to non-constant $\langle \hat{x} \rangle$, i.e. a nonzero velocity
- Harmonic oscillator
 - lacksquare Energy levels equally spaced $E_n=\hbar\omega(n+1/2)$
 - lacksquare Nonzero ground energy $\,E_0=rac{1}{2}\hbar\omega\,$
 - lacksquare Solutions proportional with Hermite polynomials $H_n(x)$
 - Alternative algebraic method
 - Ladder operators (Algebraic method)