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INFINITE WELL: SUMMARY
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PROPERTIES OF STATIONARY EIGENSTATES
Y, are orthonormal / Y (2)* W (2) dT = Sy
,, form a complete basis  f(z) = nf:lcnwn(x) V()
Coefficients c,, are given by ¢, = / ()" f(z)dz

Proof of last property:

n=1
— ch /¢m($)* Y, (x) dr = chdmn = ¢,
n=1 n=1
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STATIONARY SOLUTION OF THE TISE

For the infinite well s0-
0 25-
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e How does the wave function (2, color) and the >3-
probability (W\z, gray) look? 2

L

e What if we let time evolve? 0
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INFINITE WELL: SOLUTION OF THE TDSE

e Adding time evolution

Coefficients ]cn]2 give the probability to
measure energy as E,,:

(H) = /\IJ*I{V\I!da; =Y |enl’E,
n=1

But (£) = [2¥*W dz is not constant!

-1 —— Rel(¥)
—— Imiw)
— W)
-2 - i i
0 Lf2 L
x
@

L= e JEn [+

o 0Once @ Loop o Reflect

Lecture 03: The time-independent Schrodinger equation (ctu’d)



EXPAND A FUNCTION IN EIGENSTATES

e Suppose we have a certain function 25

f(z) = (L/2)"

e Since f(0) = f(L) = Owe canexpand f(x) in
eigenstates of the infinite well

— (z — L/2)*, withz € [0, L]
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o See the exercise sessions for the actual calculation
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HARMONIC OSCILLATOR
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INTRODUCTION

e Ball-spring problem

e Typical analog RCL electric circuit

e Many systems are approximately harmonic oscillators
= Classical optics
= 2nd order Taylor approximation of Potential wells
= Phonons, vibrations in molecules/matter

= Quantization of light: Photons

Lecture 03: The time-independent Schrodinger equation (ctu’d)

11



CLASSICAL HARMONIC OSCILLATOR

e mass attached to a spring

e The spring force counters any deviation: F' = —kx

e Motion described by Newton’s equation /' = ma:

d%x
ma =m— = —kx

dt?

This is a linear equation with constant coefficients

d2a3_ k 5

withw = \/k/m.

Resulting solutions are:

r o sin(wt)
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SOLVING THE QM HARMONIC OSCILLATOR

The time-independent Schrodinger equation (TISE):

— 5 5z V(@) + V(2)$() = By
Potential energy: V(z) = +mw?a?
h? 0* 1
" om 022 P(z) + §mw2x2¢(w) = E
Rewrite in dimensionless units: £ = , / 7~
1 02 1, E
3 5V — €O = — 10

— 2nd order linear differential equation
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SOLVING THE QM HARMONIC OSCILLATOR

1 9? 1,,. E
2 g1 V(O — 5 EVO = v

— Trial solution ¥ oc exp(—£2/2)
Substitute A,, exp(—£2/2) H, (£) with H,, () yet unknown

d*Hy,(§) dH,(§) | (2E
— 2 — —1)H,(& =0
i 3 i T\ hw (€)
Solutions exist for % — 1 = 2n, n=20,1,2,3...

Y, = Ay exp(—§2/2)Hn(§),

—
E,=(n+1/2)hw withn =0,1,2,...
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HARMONIC OSCILLATOR SOLUTIONS

¢n — An eXp(_€2/2)Hn(€)7

1
E, = (n—l— 5) hw withn =0,1,2,...

mw

1
An = \/\/?2”77,! ¢ = h

Hermite polynomials H,, (&)

Hy=1
H, = 2¢
H, = 4¢% — 2

Hy = 8¢% —12¢

H,(€) = 26H, 1 (€) — 2(n — 1) Hy_5(6)
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HARMONIC OSCILLATOR SOLUTIONS
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HARMONIC OSCILLATOR SOLUTIONS




ALTERNATIVE (ALGEBRAIC) DERIVATION

The time-independent Schrodinger equation (TISE):

h? 0?
O e + V() = By
with potential energy: V(z) = 3 mw?z?
h? 0? I 5
() + ymutet(e) = By

2m

This is a sum of squares — factorize u® + v* = (iu + v)(—iu + v)
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LADDER OPERATORS

Ladder operators é_a = (iu + v)(—iu + v) = u? + v*

. 1 . A A
Gy = (Fip + mwz),  [&,p] =xp — pz =
2hmw
The product is:
L 1
a_a, = (ip + mwz)(—ip + mwx)
2hmw
52
— (mwz)® — imw(x T
2hmw( . S ))
= L (5 (mwn)?) — S (ap 5
2hmw 2h
— (p* + (mwz)?) + L
2hmw 2
1 1
hw 2
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LADDER OPERATORS

Ladder operators é_a = (iu + v)(—iu + v) = u? + v*

1

G —
* vV 2hmw

We can also flip the ladder operators:

(Fip +mwz),  [2,p] = ep — pr = ih

Stationary Schrodinger equation becomes:
A o 1
H’lb: hw (a+a —+ 5) ’w: E¢
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LADDER OPERATORS GENERATE SOLUTIONS

If y(x) is a solution, the @ 1(x) is another solution:

Hi(x) = B¢ = H(a,p(z)) = (E + hw)(a ()

If 4(x) is a solution, then a_1)(x) is another solution:

Hi(x) = By = H(a (z)) = (E — hw)(a_t(z))
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LADDER OPERATORS GENERATE SOLUTIONS

Since energy I/ > 0 operating with a_ leads at some point to:

a1y =0

The leads to the following differential equation

! (h(i-+7nww) o (z) =

V2hmw \ dzT
d%( ) Z—%CE%(CL‘)
dzpo . mw
:>/ =~ /wdw
ﬁmwﬂ»:—%%f+0

= ’Qbo(il?) — Ae 2 ®
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LADDER OPERATORS GENERATE SOLUTIONS

mw 2

— ¢0(m) = Ae " ”

Normalization requires [ |y ()]’ =1

o0 o0 w2 7Th
/ o (@) dz = |Af / e = AP | T

©. @)

where we used the identity

This results in the solution:

mw)1/4 w2
- e o
mh

Yo(z) = (

Lecture 03: The time-independent Schrodinger equation (ctu’d)

23



SOLUTIONS WITH THE LADDER OPERATORS

Other solutions 1, (z) can now be generated:

Up(z) = Ay (a4)" Yo(x), with E, = (n -+ ;) hw

The normalization factor A,, can be calculated

0u(@) = —= (@) wh(a),  with EnZ(nJr;) ”

And operating with a single ladder operator:

aYPn = VT 141, a_ Y, = \/ﬁwn—l
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SUMMARY

e Infinite well

= Eigenstates evolve differentin time

= Pure eigenstates are stationary for finite expectation energy <I—:T>

= Mixing of eigenstates leads to non-constant (), i.e. a nonzero velocity
e Harmonic oscillator

= Energy levels equally spaced E, = hw(n + 1/2)

= Nonzero ground energy Ey = %hw

= Solutions proportional with Hermite polynomials H,, ()

= Alternative algebraic method

= [adder operators (Algebraic method)
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