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SOLVING DIFFERENTIAL EQUATIONS

Differential equations are only useful for a handful of people:

e mathematicians (not relevant for all of them)

e scientists
e engineers

e 3rd year students of photonics engineering

— Please remember your course on differential equations
Or consult some resources such as
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https://www.jirka.org/diffyqs/

STATIONARY SOLUTIONS &
ENERGY LEVELS
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SOLVING THE 1D SCHRODINGER EQUATION

The Schrodinger equation was given by:

2 92
ih(?\I!(a:,t) - h* 0°¥(z,t)

Ot 2m  Ox?

+ V(z,t)¥(z,t)

The complex wave function W(x, t) is not observable

e Potentialenergy:V — V(z,y, 2, t)
e h= =1.055x10"%*Js
e Probability to find particle in z at time ¢ given by | ¥(z, t)|*:

b
P(z € [a,b]):/ W (z,t)|°de
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SOLVING THE 1D SCHRODINGER EQUATION

L 0V(z,t) h? 0¥ (x,t)
— - W
1h " 5 5 + V(z,t)¥(x,t)

How do we solve this equation for given V (x, t) ?

e Assume V' (x,t) independent of time: V() < V (x, t)
e Solve by separation of the variables ¥(x, t) = 1(x)o(t)

2m
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SOLVING THE 1D SCHRODINGER EQUATION
O(p(z)¢(t)) Rk 0*(¥(z)¢(t))

n20Ee0) B EW@) o)y
= () 200 = () T (el

Divide the equation by ¥ (x,t) = ¥(x)d(t)

L1 06t B 1 9(a)
:>Zhgb(t) ot 2mo(z) 0z + V(x)

— the left hand side depends only on x and the right hand side only on £.

L 1 0p(t)  R* 1 0%p(z) _
:>th5(t) o~ 2mu(z) 0z + V(z) = constant E
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TIME-DEPENDENCE & STATIONARY EQUATION

s 1 06(t) R 1 @) o
RSO ot T 2mo@) oaz V@ =E

— System of 2 ordinary differential equations:

Time-dependency (left) x-dependency (right)

W0 — £ Eg() — 222U 4 V(2)y(z) = Ey(a)

IF we can solve both equations = ¥ (x, t) = 1(x)@(t) is a solution
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TIME EVOLUTION

e Solving the equation for ¢(t)

do(t) i
i~ oW

1st order differential equation with general solution:
b(t) = C exp(—iEt/h)
Full solution of the form (C is absorbed):
V(z,t) = 9(z)9(t) = ¢(z) exp(—iEt/h)
Notice that the probability | ¥(z, t)|* = [¢(z)|® is independent of ¢
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TIME-INDEPENDENT EQUATION

Time-independent Schrodinger equation (TISE):

R dy(a)
2m  dx?

+ V(z)p(z) = E¢(z)
Or we can write

h2 d?
2m dx?

Hy = Ey with Hamiltonian H = — + V(x)

The expectation value of His:

A

(H) = /\IJ*FI\I!d:c = /\If*E\Ifd:r; = E/\\Il|2da: = E/l¢\2dx = F
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GENERAL SOLUTION OF THE TDSE

e From the theory of differential equations:

= The general solution is a linear superposition of solutions
{Yn(z)} = 1 (x), Y2 (), ¥3(2), - - -

= |ndependent solutions
= Separate energies { E, } for corresponding {1, () }

= Solutions form an infinite and complete basis

o0

U(z,t) = Y cnthn(z) e B/

n=1

Notice: General probability | ¥ (z, t)|* does depend on time
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GENERAL SOLUTION OF THE TDSE

©¢)

U(z,t) = Z Cnthy () € PEnt/R

n=1

One can proof that |c,n\2 is the probability to measure energy as E,, (Griffith’s
Chapter 3):

() — / VAV = |eal’B, and Y Jen? =1
n=1 n=1
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POTENTIAL ENERGY FUNCTION V(X)

. h? d*yY(x
y(e) =~ LUD 4 viap(e) = Bo)
2m dzx
e Potential energy V() is linked to force F' = —%—Z

— if V() is a constant corresponds to zero force
—> Alinear V(z) corresponds to a constant force

—> A parabolic V() corresponds to a linear force (like a spring)
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SQUARE POTENTIAL ENERGY
WELL
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INFINITE WELL

e Inside the well a particle can exist 12-

e Qutside the well the potential is infinite

10 -

V($<O):OO 8-
VO<z<L)=0 <
V(z > L) =00

e Task: solve the stationary Schrodinger
equation for V() 2-

h2 d2¢($) B 0
IV | Viapi(e) = Bl
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INFINITE WELL: SOLUTION IN THE WELL

e Particles outside would have infinite energy 12-

e Wave function ¥(z) should be zero outside _
e Assume (0) = ¥Y(L) = 0 +— Y(x) ctu

e Inside thewell V(z) = O: 7

R? dy(a) 3

_ _ B >

2m  dz? ¥(2) 4

General solution: 2-

Y(x) = Acos(kx) + Bsin(kz) 0-
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INFINITE WELL: SOLUTION IN THE WELL
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INFINITE WELL: ENERGIES

Y(xz) = Bsin(k ) .

Apply the other BC: (L) = 0:

kn, = \/ZmEn/h2 =nmw/L E“ 6

Yo (x) = Ay sin(%) |

) 5 BB R (mr)2 )
" 2m  2m\ L 0-
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INFINITE WELL

Y(x) = Bsin(k z) .

Apply the other BC: (L) = 0:

k, = \/QmE’n/h2 =nmw/L fE“ 6

Yo (x) = Ay sin(%) |

) 5 BB R ('mr)2 )
" 2m  2m\ L 0-
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INFINITE WELL: NORMALIZATION

nmr

() = A, sin(T)

10 -

» Obtain A,, from normalization [ |¢|° = 1

L 9 A 2L EG
1:/ \An|25in(ﬂ)|dw:’ d
0 L 2
2 2
— (A== = A =4/ =
Au® = 7 = 14a] = 4/ 5

¥n(z) = \E sin ()
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INFINITE WELL: SUMMARY
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V(x) (in 2m/h?)

12 -

10 -

x(inL)
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EIGENENERGIES AND EIGENSTATES

Eigenstates ,(x) = \/% sin(

2 7.2 2
Eigenenergies FE, = M = h (mr
2m 2m \ L
n=123,4,...
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e Loweststaten = 1 we call ground state
e Higher statesm > 1 are excited states
e Parity of wave functions is either:

» Even(n =1,3,5,...)

» Odd (n = 2,4,6,...)
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PROPERTIES

2
Eigenstates ,(z) = \/; Sin(nzm)

The eigenstates are orthonormal:

/ o (2)* () = Gy

Eigenstates form a complete basis
Every f(x) we can expand as a series:

fla) = 3 eutule) = 1/ § D ensin(“0)

n=1
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A MORE COMPLEX EXAMPLE

state

Ammonia molecule has two possible geometries

e The ammonia molecule N H3 has two possible geometries
e Experiments tell that [N H3 flips between states

e Possible by quantum tunneling

Lecture 02: The Time-Independent Schrodinger equation

Ammonia
Inversion state
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