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SOLVING DIFFERENTIAL EQUATIONS

Differential equations are only useful for a handful of people:

mathematicians (not relevant for all of them)

scientists

engineers

3rd year students of photonics engineering

 Please remember your course on differential equations
Or consult some resources such as 
⟶

“Notes on Diffy Qs”, Jiri Lebl
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https://www.jirka.org/diffyqs/


STATIONARY SOLUTIONS &
ENERGY LEVELS
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SOLVING THE 1D SCHRODINGER EQUATION
The Schrodinger equation was given by:

iℏ = − + V (x, t)Ψ(x, t)
∂Ψ(x, t)

∂t
ℏ2

2m
Ψ(x, t)∂2

∂x2

The complex wave function  is not observable

Potential energy: 

 J s

Probability to find particle in  at time  given by :

Ψ(x, t)

V → V (x, y, z, t)

ℏ = = 1.055 ×h
2π 10−34

x t |Ψ(x, t)|2

P(x ∈ [a, b]) = |Ψ(x, t) dx∫
b

a

|2
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SOLVING THE 1D SCHRODINGER EQUATION

How do we solve this equation for given  ?

iℏ = − + V (x, t)Ψ(x, t)
∂Ψ(x, t)

∂t
ℏ2

2m
Ψ(x, t)∂2

∂x2

V (x, t)

Assume  independent of time: 

Solve by separation of the variables 

V (x, t) V (x) ← V (x, t)

Ψ(x, t) = ψ(x)ϕ(t)

iℏ = − + V (x)ψ(x)ϕ(t)
∂(ψ(x)ϕ(t))

∂t
ℏ2

2m
(ψ(x)ϕ(t))∂2

∂x2
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SOLVING THE 1D SCHRODINGER EQUATION

iℏ = − + V (x)ψ(x)ϕ(t)
∂(ψ(x)ϕ(t))

∂t
ℏ2

2m
(ψ(x)ϕ(t))∂2

∂x2

⇒ iℏψ(x) = −ϕ(t) + V (x)ψ(x)ϕ(t)
∂ϕ(t)

∂t
ℏ2

2m
ψ(x)∂2

∂x2

Divide the equation by Ψ(x, t) = ψ(x)ϕ(t)

⇒ iℏ = − + V (x)
1

ϕ(t)
∂ϕ(t)

∂t
ℏ2

2m
1

ψ(x)
ψ(x)∂2

∂x2

 the le� hand side depends only on  and the right hand side only on .⟶ x t

⇒ iℏ = − + V (x) = constant E
1

ϕ(t)
∂ϕ(t)

∂t
ℏ2

2m
1

ψ(x)
ψ(x)∂2

∂x2
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TIME-DEPENDENCE & STATIONARY EQUATION

iℏ = − + V (x) = E
1

ϕ(t)
∂ϕ(t)

∂t
ℏ2

2m
1

ψ(x)
ψ(x)∂2

∂x2

 System of 2 ordinary differential equations:

Time-dependency (le�) x-dependency (right)

⟶

= − Eϕ(t)dϕ(t)
dt

i
ℏ − + V (x)ψ(x) = Eψ(x)ℏ2

2m
ψ(x)d2

dx2

IF we can solve both equations   is a solution⟹ Ψ(x, t) = ψ(x)ϕ(t)
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TIME EVOLUTION
Solving the equation for ϕ(t)

= − Eϕ(t)
dϕ(t)
dt

i

ℏ

1st order differential equation with general solution:

ϕ(t) = C exp(−iEt/ℏ)

Full solution of the form (C is absorbed):

Ψ(x, t) = ψ(x)ϕ(t) = ψ(x) exp(−iEt/ℏ)

Notice that the probability  is independent of |Ψ(x, t) = |ψ(x)|2 |2 t
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TIME-INDEPENDENT EQUATION
Time-independent Schrodinger equation (TISE):

− + V (x)ψ(x) = Eψ(x)
ℏ2

2m
ψ(x)d2

dx2

Or we can write

ψ = Eψ with Hamiltonian  = − + V (x)Ĥ Ĥ
ℏ2

2m
d2

dx2

The expectation value of  is:Ĥ

⟨ ⟩ = ∫ Ψdx = ∫ EΨdx = E ∫ |Ψ dx = E ∫ |ψ dx = EĤ Ψ∗Ĥ Ψ∗ |2 |2
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GENERAL SOLUTION OF THE TDSE
From the theory of differential equations:

The general solution is a linear superposition of solutions

Independent solutions

Separate energies  for corresponding 

Solutions form an infinite and complete basis

Notice: General probability  does depend on time

{ (x)} = (x), (x), (x), …ψn ψ1 ψ2 ψ3

{ }En { (x)}ψn

Ψ(x, t) = (x)∑
n=1

∞

cnψn e−i t/ℏEn

|Ψ(x, t)|2
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GENERAL SOLUTION OF THE TDSE

One can proof that  is the probability to measure energy as  (Griffith’s
Chapter 3):

Ψ(x, t) = (x)∑
n=1

∞

cnψn e−i t/ℏEn

|cn|2 En

⟨ ⟩ = ∫ Ψdx = |  and  | = 1Ĥ Ψ∗Ĥ ∑
n=1

∞

cn|2En ∑
n=1

∞

cn|2
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POTENTIAL ENERGY FUNCTION V(X)

Potential energy  is linked to force 

 if  is a constant corresponds to zero force

 A linear  corresponds to a constant force

 A parabolic  corresponds to a linear force (like a spring)

ψ(x) = − + V (x)ψ(x) = Eψ(x)Ĥ
ℏ2

2m
ψ(x)d2

dx2

V (x) F = − ∂V
∂x

⟹ V (x)

⟹ V (x)

⟹ V (x)
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SQUARE POTENTIAL ENERGY
WELL
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INFINITE WELL
Inside the well a particle can exist

Outside the well the potential is infinite

⎧

⎩
⎨
⎪

⎪

V (x < 0)
V (0 < x < L)

V (x > L)

= ∞
= 0
= ∞

Task: solve the stationary Schrodinger
equation for V (x)

− + V (x)ψ(x) = Eψ(x)
ℏ2

2m
ψ(x)d2

dx2
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INFINITE WELL: SOLUTION IN THE WELL
Particles outside would have infinite energy

Wave function  should be zero outsideψ(x)

Assume    ctuψ(0) = ψ(L) = 0 ⟵ψ(x)

Inside the well :V (x) = 0

− = Eψ(x)
ℏ2

2m
ψ(x)d2

dx2

General solution:

ψ(x) = A cos(kx) + B sin(kx)
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INFINITE WELL: SOLUTION IN THE WELL
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INFINITE WELL: ENERGIES

ψ(x) = B sin(k x)

Apply the other BC: :ψ(L) = 0

= = nπ/Lkn 2m /En ℏ2
− −−−−−−−

√

⟹

⎧

⎩
⎨
⎪⎪

⎪⎪

(x)ψn

En

= sin( )An
nπx

L

= =
ℏ2k2

n

2m
ℏ2

2m
( )nπ

L

2
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INFINITE WELL

Apply the other BC: :

ψ(x) = B sin(k x)

ψ(L) = 0

= = nπ/Lkn 2m /En ℏ2
− −−−−−−−

√

⟹

⎧

⎩
⎨
⎪⎪

⎪⎪

(x)ψn

En

= sin( )An
nπx

L

= =
ℏ2k2

n

2m
ℏ2

2m
( )nπ

L

2
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INFINITE WELL: NORMALIZATION

(x)ψn = sin( )An
nπx

L

Obtain  from normalization An ∫ |ψ = 1|2

1 = | dx =∫
L

0
An|2 sin( )∣

∣
nπx

L
∣
∣
2 | LAn|2

2

⟹ | = ⇒ | | =An|2
2
L

An
2
L

−−
√

(x) = sin( )ψn
2
L

−−
√ nπx

L
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INFINITE WELL: SUMMARY

⎧

⎩

⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

(x)ψn

En

n

= sin( )2
L

−−
√ nπx

L

= =
ℏ2k2

n

2m
ℏ2

2m
( )nπ

L

2

= 1, 2, 3, 4, …
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EIGENENERGIES AND EIGENSTATES

Eigenstates

Eigenenergies

n

(x) = sin( )ψn
2
L

−−
√ nπx

L

= =En
ℏ2k2

n

2m
ℏ2

2m
( )nπ

L

2

= 1, 2, 3, 4, …
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Lowest state  we call ground staten = 1

Higher states  are excited statesn > 1

Parity of wave functions is either:

Even ( )n = 1, 3, 5, …

Odd ( )n = 2, 4, 6, …
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PROPERTIES

Eigenstates (x) = sin( )ψn
2
L

−−
√ nπx

L

The eigenstates are orthonormal:

∫ (x (x)dx =ψm )∗ ψn δnm

Eigenstates form a complete basis
Every  we can expand as a series:f(x)

f(x) = (x) = sin( )∑
n=1

∞

cnψn
2
L

−−
√ ∑

n=1

∞

cn
nπx

L
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A MORE COMPLEX EXAMPLE

Ammonia molecule has two possible geometries

The ammonia molecule  has two possible geometriesNH3

Experiments tell that  flips between statesNH3

Possible by quantum tunneling
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