PHOT 301: Quantum Photonics LECTURE 02

Michaël Barbier, Fall semester (2024-2025)

SOLVING DIFFERENTIAL EQUATIONS

Differential equations are only useful for a handful of people:

- mathematicians (not relevant for all of them)
- scientists
- engineers
- 3rd year students of photonics engineering

 \longrightarrow Please remember your course on differential equations Or consult some resources such as ["Notes on Diffy Qs", Jiri Lebl](https://www.jirka.org/diffyqs/)

STATIONARY SOLUTIONS & ENERGY LEVELS

SOLVING THE 1D SCHRODINGER EQUATION

The Schrodinger equation was given by:

$$
i\hbar\frac{\partial\Psi(x,t)}{\partial t}=-\frac{\hbar^2}{2m}\frac{\partial^2\Psi(x,t)}{\partial x^2}+V(x,t)\Psi(x,t)
$$

- The complex wave function $\Psi(x,t)$ is not observable
- Potential energy: $V \rightarrow V(x,y,z,t)$
- $\hbar = \frac{h}{2\pi} = 1.055 \times 10^{-34}$ J s $\frac{h}{2\pi}=1.055\times10^{-34}$
- Probability to find particle in x at time t given by $|\Psi(x,t)|^2$:

$$
P(x\in [a,b])=\int_a^b|\Psi(x,t)|^2dx
$$

SOLVING THE 1D SCHRODINGER EQUATION

$$
i\hbar\frac{\partial\Psi(x,t)}{\partial t}=-\frac{\hbar^2}{2m}\frac{\partial^2\Psi(x,t)}{\partial x^2}+V(x,t)\Psi(x,t)
$$

How do we solve this equation for given $V(x,t)$?

- Assume $V(x,t)$ independent of time: $V(x) \leftarrow V(x,t)$
- Solve by separation of the variables $\Psi(x,t) = \psi(x) \phi(t)$

$$
i\hbar\frac{\partial (\psi(x)\phi(t))}{\partial t}=-\frac{\hbar^2}{2m}\frac{\partial^2 (\psi(x)\phi(t))}{\partial x^2}+V(x)\psi(x)\phi(t)
$$

SOLVING THE 1D SCHRODINGER EQUATION

$$
i\hbar \frac{\partial (\psi(x)\phi(t))}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 (\psi(x)\phi(t))}{\partial x^2} + V(x)\psi(x)\phi(t)
$$

$$
\Rightarrow i\hbar \psi(x)\frac{\partial \phi(t)}{\partial t} = -\phi(t)\frac{\hbar^2}{2m} \frac{\partial^2 \psi(x)}{\partial x^2} + V(x)\psi(x)\phi(t)
$$

Divide the equation by $\Psi(x,t) = \psi(x)\phi(t)$

$$
\Rightarrow i\hbar\frac{1}{\phi(t)}\frac{\partial\phi(t)}{\partial t}=-\frac{\hbar^2}{2m}\frac{1}{\psi(x)}\frac{\partial^2\psi(x)}{\partial x^2}+V(x)
$$

 \longrightarrow the left hand side depends only on x and the right hand side only on t .

$$
\Rightarrow i\hbar\frac{1}{\phi(t)}\frac{\partial\phi(t)}{\partial t}=-\frac{\hbar^2}{2m}\frac{1}{\psi(x)}\frac{\partial^2\psi(x)}{\partial x^2}+V(x)=\text{constant }E
$$

$$
= \frac{1}{2m}\frac{\partial\phi(t)}{\partial t}
$$

$$
= \frac{1}{2m}\frac{\partial^2\psi(x)}{\partial x^2} + V(x) = \text{constant }E
$$

TIME-DEPENDENCE & STATIONARY EQUATION

$$
i\hbar\frac{1}{\phi(t)}\frac{\partial\phi(t)}{\partial t}=-\frac{\hbar^2}{2m}\frac{1}{\psi(x)}\frac{\partial^2\psi(x)}{\partial x^2}+V(x)=E
$$

 \longrightarrow System of 2 ordinary differential equations:

Time-dependency (left) x-dependency (right) $=-\frac{\imath}{\hbar}E\phi(t)$ $d\phi(t)$ *dt i* $\frac{i}{\hbar}E\phi(t) \quad \qquad -\frac{\hbar^2}{2m}\frac{d^2\psi(x)}{dx^2}+V(x)\psi(x)=E\psi(x)$ 2*m* $d^{\,2}\psi(x)$ dx^2

IF we can solve both equations $\Longrightarrow \Psi(x,t) = \psi(x)\phi(t)$ is a solution

TIME EVOLUTION

• Solving the equation for $\phi(t)$

$$
\frac{d\phi(t)}{dt}=-\frac{i}{\hbar}E\phi(t)
$$

1st order differential equation with general solution:

$$
\phi(t)=C\exp(-iEt/\hbar)
$$

Full solution of the form (C is absorbed):

$$
\Psi(x,t)=\psi(x)\phi(t)=\psi(x)\exp(-iEt/\hbar)
$$

Notice that the probability $|\Psi(x,t)|^2 = \left|\psi(x)\right|^2$ is independent of t

TIME-INDEPENDENT EQUATION

Time-independent Schrodinger equation (TISE):

$$
-\frac{\hbar^2}{2m}\frac{d^2\psi(x)}{dx^2}+V(x)\psi(x)=E\psi(x)
$$

Or we can write

$$
\hat{H}\psi=E\psi\quad\text{with Hamiltonian}\quad \hat{H}=-\frac{\hbar^2}{2m}\frac{d^2}{dx^2}+V(x)
$$

The expectation value of \hat{H} is:

$$
\langle \hat{H} \rangle = \int \Psi^* \hat{H} \Psi dx = \int \Psi^* E \Psi dx = E \int |\Psi|^2 dx = E \int |\psi|^2 dx = E
$$

GENERAL SOLUTION OF THE TDSE

- From the theory of differential equations:
	- The general solution is a **linear superposition** of solutions $\{\psi_n(x)\} = \psi_1(x), \psi_2(x), \psi_3(x), \ldots$
	- **Independent solutions**
	- $\textsf{Separate energies}\left\{E_{n}\right\}$ for corresponding $\left\{\psi_{n}(x)\right\}$
	- Solutions form an **infinite** and **complete basis**

$$
\Psi(x,t)=\sum_{n=1}^\infty c_n\psi_n(x)\,e^{-iE_nt/\hbar}
$$

Notice: General probability $\left|\Psi(x,t)\right|^2$ does depend on time

GENERAL SOLUTION OF THE TDSE

$$
\Psi(x,t)=\sum_{n=1}^\infty c_n\psi_n(x)\,e^{-iE_nt/\hbar}
$$

One can proof that $\left| c_n \right|^2$ is the probability to measure energy as E_n (Griffith's Chapter 3):

$$
\langle \hat{H} \rangle = \int \Psi^* \hat{H} \Psi dx = \sum_{n=1}^\infty |c_n|^2 E_n \quad \text{ and } \quad \sum_{n=1}^\infty |c_n|^2 = 1
$$

POTENTIAL ENERGY FUNCTION V(X)

$$
\hat{H}\psi(x)=-\frac{\hbar^2}{2m}\frac{d^2\psi(x)}{dx^2}+V(x)\psi(x)=E\psi(x)
$$

- Potential energy $V(x)$ is linked to force $F = -\frac{\partial V}{\partial x}$ ∂*x*
- \Longrightarrow if $V(x)$ is a constant corresponds to zero force \Longrightarrow A linear $V(x)$ corresponds to a constant force \Longrightarrow A parabolic $V(x)$ corresponds to a linear force (like a spring)

SQUARE POTENTIAL ENERGY **WELL**

INFINITE WELL

- Inside the well a particle can exist \bullet
- Outside the well the potential is infinite

$$
\left\{ \begin{aligned} V(x<0)&=\infty \\ V(0L)&=\infty \end{aligned} \right.
$$

Task: solve the stationary Schrodinger equation for $V(x)$

$$
-\frac{\hbar^2}{2m}\frac{d^2\psi(x)}{dx^2}+V(x)\psi(x)=E\psi(x)
$$

INFINITE WELL: SOLUTION IN THE WELL

- Particles outside would have infinite energy
- Wave function $\psi(x)$ should be zero outside
- $\bullet\,$ Assume $\psi(0)=\psi(L)=0\!\longleftarrow\psi(x)$ ctu
- Inside the well $V(x) = 0$:

$$
-\frac{\hbar^2}{2m}\frac{d^2\psi(x)}{dx^2}=E\psi(x)
$$

General solution:

$$
\psi(x)=A\cos(kx)+B\sin(kx)
$$

INFINITE WELL: SOLUTION IN THE WELL

INFINITE WELL: ENERGIES

$$
\psi(x)=B\sin(k\,x)\qquad \qquad ^{12-}
$$

Apply the other BC: $\psi(L) = 0$:

$$
k_n=\sqrt{2mE_n/\hbar^2}=n\pi/L\qquad \qquad \tiny\begin{array}{l} \text{sech} \\ \text{sech} \\ \text{sech} \end{array}
$$

 $10 -$

 $8 -$

INFINITE WELL

$$
\psi(x)=B\sin(k\,x)
$$

Apply the other BC: $\quad \psi(L) = 0$:

$$
k_n=\sqrt{2mE_n/\hbar^2}=n\pi/L
$$
\n
$$
\implies\left\{\begin{array}{l} \psi_n(x)=A_n\sin\Bigl(\frac{n\pi x}{L}\Bigr)\\[1.5ex] E_n=\frac{\hbar^2 k_n^2}{2m}=\frac{\hbar^2}{2m}\Bigl(\frac{n\pi}{L}\Bigr)^2\end{array}\right.
$$

INFINITE WELL: NORMALIZATION

$$
\psi_n(x)=A_n\sin\Bigl(\frac{n\pi x}{L}\Bigr)
$$

Obtain A_n from normalization $\int {|\psi|^2} = 1$

$$
1=\int_0^L |A_n|^2\Bigl|\sin\Bigl(\frac{n\pi x}{L}\Bigr)\Bigr|^2 dx=\frac{|A_n|^2L}{2}
$$

$$
\implies |A_n|^2=\frac{2}{L}\Rightarrow |A_n|=\sqrt{\frac{2}{L}}
$$

$$
\psi_n(x)=\sqrt{\frac{2}{L}}\sin\Bigl(\frac{n\pi x}{L}\Bigr)
$$

INFINITE WELL: SUMMARY

$$
\left\{ \begin{array}{l} \psi_n(x)=\sqrt{\dfrac{2}{L}}\sin\Bigl(\dfrac{n\pi x}{L}\Bigr) \\\\ E_n=\dfrac{\hbar^2 k_n^2}{2m}=\dfrac{\hbar^2}{2m}\Bigl(\dfrac{n\pi}{L}\Bigr)^2 \\\\ n=1,2,3,4,\ldots \end{array} \right.
$$

EIGENENERGIES AND EIGENSTATES

$$
\text{Eigenstates} \quad \psi_n(x) = \sqrt{\frac{2}{L}} \, \sin\!\left(\frac{n \pi x}{L}\right)
$$

$$
\text{Eigenenergies}\quad E_n=\frac{\hbar^2k_n^2}{2m}=\frac{\hbar^2}{2m}\Big(\frac{n\pi}{L}\Big)^2
$$

$$
n=1,2,3,4,\ldots
$$

- Lowest state $n=1$ we call ground state
- Higher states $n > 1$ are excited states
- Parity of wave functions is either:
	- **Even** $(n = 1, 3, 5, \ldots)$
	- \blacksquare Odd ($n = 2, 4, 6, ...$)

PROPERTIES

$$
\text{Eigenstates} \quad \psi_n(x) = \sqrt{\frac{2}{L}} \, \sin\!\left(\frac{n \pi x}{L}\right)
$$

The eigenstates are orthonormal:

$$
\int \psi_m(x)^* \, \psi_n(x) dx = \delta_{nm}
$$

Eigenstates form a complete basis Every $f(x)$ we can expand as a series:

$$
f(x)=\sum_{n=1}^\infty c_n\psi_n(x)=\sqrt{\frac{2}{L}}\sum_{n=1}^\infty c_n\sin\Bigl(\frac{n\pi x}{L}\Bigr)
$$

A MORE COMPLEX EXAMPLE

Ammonia molecule has two possible geometries

- The ammonia molecule $NH₃$ has two possible geometries
- Experiments tell that $NH₃$ flips between states
- Possible by quantum tunneling