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INTRODUCTION
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CLASSICAL VIEW
Matter is described with particles

Newton’s equation:

Forces act on point masses

The force is the gradient of the potential energy:

Conservation of energy 

= m =F ⃗  a ⃗ 
∂2ri

∂t2

= −∇VF ⃗ 

E = + = T + VEkin Epot
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CLASSICAL VIEW
Light is described by waves

Maxwell’s equations
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∇ ⋅ E ⃗ 

∇ ⋅ B⃗ 

∇ × E ⃗ 

∇ ×c2 B⃗ 

=
ρ

ϵ0

= 0

= −
∂B⃗ 
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J ⃗ 
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∂E ⃗ 

∂t
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CLASSICAL VIEW
Light is described by waves

Maxwell’s equations

If there are no charges or currents then  and  then:ρ = 0 = 0J ⃗ 

⎧

⎩
⎨
⎪⎪⎪

⎪⎪⎪

−∇2E ⃗  1
c2

∂2E ⃗ 

∂t2

−∇2B⃗  1
c2

∂2B⃗ 

∂t2

= 0

= 0

Vector components  obey the wave equation:u := ,Ei Bi

u − = 0∇2 1
c2

∂u
∂t2
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CLASSICAL VIEW
Light and matter are treated different

Light has wave-like behavior

Matter exists of particles

Problems:

Hydrogen atom: Electron should fall on nuclues

Specific energy bands of atomic spectra?

Electrons can tunnel through potential energy barriers

Quantum mechanics combines both
And solves everything?
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THE SCHRÖDINGER EQUATION

where

Complex wave function: 

Laplacian 

potential energy: 

 J s

iℏ = − Ψ + V Ψ
∂Ψ
∂t

ℏ2

2m
∇2

Ψ → Ψ(x, y, z, t)

= ∇ ⋅ ∇ = + +∇2 ∂2

∂2x2
∂2

∂y2
∂

∂z2

V → V (x, y, z, t)

ℏ = = 1.055 ×h
2π 10−34
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THE SCHRÖDINGER EQUATION
We will first consider 1D problems:

iℏ = − + V (x, t)Ψ(x, t)
∂Ψ(x, t)

∂t
ℏ2

2m
Ψ(x, t)∂2

∂x2

The complex wave function  is not observable

Probability to find particle in  at time  given by :

Ψ(x, t)

x t |Ψ(x, t)|2

P(x ∈ [a, b]) = |Ψ(x, t) dx∫
b

a

|2
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PROBABILISTIC VIEW

P(x ∈ [a, b]) = |Ψ(x, t) dx∫
b

a

|2
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PROBABILISTIC VIEW: MEASEREMENT PROBLEM
Copenhagen interpretation:

Before measurement: probability according to 

Measurement: Wave function collapses to a single state  -function

After measurement: -function spreads out again over time.

|Ψ(x, t)|2

⟶ δ

δ
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DOUBLE SLIT EXPERIMENTS:
Typical thought-experiment

What happens if electron “particles” are fired through a double slit?

What happens if light at low intensity (single photons) is used?
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PROBABILITY AND EXPECTATION VALUES

Probability density function :ρ(x)

Expectation value of x

Expectation value of f(x)

⟨x⟩ = x ρ(x) dx∫
∞

−∞

⟨f(x)⟩ = f(x) ρ(x) dx∫
∞

−∞
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PROBABILITY AND EXPECTATION VALUES

Probability density function :ρ(x)

Expectation value of x

Expectation value of f(x)

Variance σ2

Standard deviation 

⟨x⟩ = x ρ(x) dx∫
∞

−∞

⟨f(x)⟩ = f(x) ρ(x) dx∫
∞

−∞

⟨(Δx ⟩ = (x − ⟨x⟩ ρ(x) dx)2 ∫
∞

−∞
)2

= ⟨ ⟩ − ⟨xx2 ⟩2

σ = ⟨ ⟩ − ⟨xx2 ⟩2
− −−−−−−−−

√
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NORMALIZATION OF THE WAVE FUNCTION
 is like the probability density 

The total probability to find a particle somewhere must be one:

|Ψ(x, t)|2 ρ(x)

|Ψ(x, t) dx = 1∫
∞

−∞
|2

So wave function :

Is a solution of the Schrodinger equation

Must be normalizable

Ψ(x, t)

⟺ |Ψ(x, t) dx exists and is finite∫
∞

−∞
|2
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NORMALIZATION OF THE WAVE FUNCTION

If  is normalized at  then it is always normalized.Ψ(x, t) t = 0

Follows from the Schrodinger equation (see Griffiths page 15):

|Ψ(x, t) dx = 0
d

dt
∫

∞

−∞
|2
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EXPECTATION VALUES

What are the particle’s:

position ?

velocity  ? or

momentum  ?

x

v

p = mv

Calculate the expectation (average) values:

Expectation value of x ⟨x⟩ = x |Ψ(x, t) dx∫
∞

−∞
|2

Expectation value of p = mv m = −iℏ dx
d⟨x⟩
dt

∫
∞

−∞
Ψ∗ ∂Ψ

∂x
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POSITION AND MOMENTUM OPERATORS

Expectation values are calculated as

Position x ⟨x⟩ = x |Ψ(x, t) dx = [x] Ψ dx∫
∞

−∞
|2 ∫

∞

−∞
Ψ∗

Momentum p m = −iℏ dx = [−iℏ ] Ψ dx
d⟨x⟩
dt

∫
∞

−∞
Ψ∗ ∂Ψ

∂x
∫

∞

−∞
Ψ∗ ∂

∂x

Position operator = xx̂

Momentum operator = −iℏp̂
∂

∂x
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SCHRODINGER EQUATION WITH OPERATORS

We have the operators:

iℏ = − Ψ + V Ψ
∂Ψ
∂t

ℏ2

2m
∂2

∂x

Position operator = xx̂

Momentum operator = −iℏp̂
∂

∂x

Using operators in the Schrodinger equation:

iℏ Ψ = [−iℏ Ψ + V Ψ = Ψ + V Ψ = ( + )Ψ = Ψ
∂
∂t

1
2m

∂
∂x

]2
p̂2

2m
T̂ V̂ Ĥ
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CORRESPONDENCE PRINCIPLE
Large systems: Quantum mechanics  classical physics

Ehrenfest’s theorem:

⟶

m ⟨x⟩, ⟨p⟩ = −⟨ ⟩
d

dt

d

dt

∂V (x)
∂x

21Lecture 01: Introduction to the Schrodinger equation



UNCERTAINTY RELATION: POSITION VS. MOMENTUM
de Broglie relation

Think about a Gaussian wave pulse in Fourier analysis

Sharp pulses in space are spread out in (momentum) k-space

Sharp pulses in k-space are spread out in space

Uncertainty of position vs. momentum

p = = (= ℏk)
h

λ

2πℏ
λ

≥σxσp
ℏ
2
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SUMMARY
Quantum mechanics is governed by the Schrodinger equation

iℏ = − Ψ + V Ψ
∂Ψ
∂t

ℏ2

2m
∇2

Similar to our standard wave equation

But the wave function  is complex-valuedΨ(x, y, z, t)

Probability density to find a particle |Ψ(x, t) = (x, t) Ψ(x, t)|2 Ψ∗

“Real” quantities and measurements represented by operators acting on the
wave function
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