PHOT 301: Quantum Photonics

LECTURE 01

Michaël Barbier, Fall semester (2024-2025)

Introduction

Classical view

  • Matter is described with particles
  • Newton’s equation:

\[ \vec{F} = m \, \vec{a} = \frac{\partial^2 r_i}{{\partial t}^2} \]

  • Forces act on point masses
  • The force is the gradient of the potential energy:

\[ \vec{F} = - \nabla V \]

  • Conservation of energy \(E = E_{kin} + E_{pot} = T + V\)

Classical view

  • Light is described by waves
  • Maxwell’s equations

\[ \left\{\begin{aligned} \nabla \cdot \vec{E} &= \frac{\rho}{\epsilon_0}\\ \nabla \cdot \vec{B} &= 0\\ \nabla \times \vec{E} &= - \frac{\partial \vec{B}}{\partial t}\\ c^2 \, \nabla \times \vec{B} &= \frac{\vec{J}}{\epsilon_0} + \frac{\partial \vec{E}}{\partial t}\\ \end{aligned}\right . \]

Classical view

  • Light is described by waves
  • Maxwell’s equations
  • If there are no charges or currents then \(\rho = 0\) and \(\vec{J} = 0\) then:

\[ \left\{\begin{aligned} \nabla^2 \vec{E} - \frac{1}{c^2}\frac{\partial^2 \vec{E}}{\partial t^2} &= 0 \\ \nabla^2 \vec{B} - \frac{1}{c^2}\frac{\partial^2 \vec{B}}{\partial t^2} &= 0 \\ \end{aligned}\right . \]

Vector components \(u := E_i,\, B_i\) obey the wave equation:

\[ \nabla^2 u - \frac{1}{c^2}\frac{\partial u}{\partial t^2} = 0 \]

Classical view

Light and matter are treated different

  • Light has wave-like behavior
  • Matter exists of particles

Problems:

  • Hydrogen atom: Electron should fall on nuclues
  • Specific energy bands of atomic spectra?
  • Electrons can tunnel through potential energy barriers

Quantum mechanics combines both
And solves everything?

The Schrödinger equation

\[ i \hbar \frac{\partial \Psi}{\partial t} = -\frac{\hbar^2}{2m} \nabla^2 \Psi + V \Psi \]

where

  • Complex wave function: \(\Psi \rightarrow \Psi(x, y, z, t)\)
  • Laplacian \(\nabla^2 = \nabla\cdot\nabla = \frac{\partial^2}{\partial^2 x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial}{\partial z^2}\)
  • potential energy: \(V \rightarrow V(x,y,z,t)\)
  • \(\hbar = \frac{h}{2\pi} = 1.055 \times 10^{-34}\) J s

The Schrödinger equation

We will first consider 1D problems:

\[ i \hbar \frac{\partial \Psi(x,t)}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 \Psi(x,t)}{\partial x^2} + V(x,t) \Psi(x,t) \]

  • The complex wave function \(\Psi(x, t)\) is not observable
  • Probability to find particle in \(x\) at time \(t\) given by \(|\Psi(x, t)|^2\):

\[ P(x \in [a,b]) = \int_a^b |\Psi(x, t)|^2 dx \]

Probabilistic view

\[ P(x \in [a,b]) = \int_a^b |\Psi(x, t)|^2 dx \]

Probabilistic view: Measerement problem

Copenhagen interpretation:

  • Before measurement: probability according to \(|\Psi(x, t)|^2\)
  • Measurement: Wave function collapses to a single state \(\longrightarrow\) \(\delta\)-function
  • After measurement: \(\delta\)-function spreads out again over time.

Double slit experiments:

Typical thought-experiment

  • What happens if electron “particles” are fired through a double slit?
  • What happens if light at low intensity (single photons) is used?

Probability and Expectation values


Probability density function \(\rho(x)\):

\[ \begin{aligned} \textrm{Expectation value of }x \qquad & \langle x \rangle = \int_{-\infty}^\infty x \,\rho(x)\,dx\\ \textrm{Expectation value of }f(x) \qquad & \langle f(x) \rangle = \int_{-\infty}^\infty f(x) \,\rho(x)\,dx\\ \end{aligned} \]

Probability and Expectation values


Probability density function \(\rho(x)\):

\[ \begin{aligned} \textrm{Expectation value of }x \qquad & \langle x \rangle = \int_{-\infty}^\infty x \,\rho(x)\,dx\\ \textrm{Expectation value of }f(x) \qquad & \langle f(x) \rangle = \int_{-\infty}^\infty f(x) \,\rho(x)\,dx\\ \textrm{Variance }\sigma^2 \qquad & \langle (\Delta x)^2 \rangle = \int_{-\infty}^\infty (x - \langle x \rangle)^2 \,\rho(x)\,dx\\ \qquad & \qquad\quad = \langle x^2 \rangle - \langle x \rangle^2\\ \textrm{Standard deviation } \qquad & \sigma = \sqrt{\langle x^2 \rangle - \langle x \rangle^2}\\ \end{aligned} \]

Normalization of the wave function

  • \(|\Psi(x, t)|^2\) is like the probability density \(\rho(x)\)
  • The total probability to find a particle somewhere must be one:

\[ \int_{-\infty}^\infty |\Psi(x, t)|^2 dx = 1 \]

So wave function \(\Psi(x, t)\):

  • Is a solution of the Schrodinger equation
  • Must be normalizable

\[ \Longleftrightarrow \int_{-\infty}^\infty |\Psi(x, t)|^2 dx \textrm{ exists and is finite} \]

Normalization of the wave function


If \(\Psi(x, t)\) is normalized at \(t = 0\) then it is always normalized.

Follows from the Schrodinger equation (see Griffiths page 15): \[ \frac{d}{dt} \int_{-\infty}^\infty |\Psi(x,t)|^2 dx = 0 \]

Expectation values


What are the particle’s:

  • position \(x\)?
  • velocity \(v\) ? or
  • momentum \(p = mv\) ?

Calculate the expectation (average) values:

\[ \textrm{Expectation value of }x \qquad \langle x \rangle = \int_{-\infty}^\infty x \, |\Psi(x,t)|^2 \, dx \]

\[ \textrm{Expectation value of }p = mv \qquad m\frac{d \langle x \rangle}{dt} = -i\hbar \int_{-\infty}^\infty \, \Psi^* \frac{\partial \Psi}{\partial x} \, dx \]

Position and Momentum operators


Expectation values are calculated as

\[ \textrm{Position }x \qquad \langle x \rangle = \int_{-\infty}^\infty x \, |\Psi(x,t)|^2 \, dx = \int_{-\infty}^\infty \, \Psi^* \, [x] \, \Psi \, dx \]

\[ \textrm{Momentum }p \quad m\frac{d \langle x \rangle}{dt} = -i\hbar \int_{-\infty}^\infty \, \Psi^* \frac{\partial \Psi}{\partial x} \, dx = \int_{-\infty}^\infty \, \Psi^* [-i\hbar\frac{\partial }{\partial x}]\,\Psi \, dx \]

\[ \textrm{Position operator} \qquad \hat{x} = x \] \[ \textrm{Momentum operator} \qquad \hat{p} = -i\hbar\frac{\partial }{\partial x} \]

Schrodinger equation with operators

\[ i \hbar \frac{\partial \Psi}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x} \Psi + V \Psi \]

We have the operators:

\[ \textrm{Position operator} \qquad \hat{x} = x \] \[ \textrm{Momentum operator} \qquad \hat{p} = -i\hbar\frac{\partial }{\partial x} \]

Using operators in the Schrodinger equation:

\[ i \hbar \frac{\partial }{\partial t} \Psi = \frac{1}{2m}[-i\hbar\frac{\partial }{\partial x}]^2 \Psi + V \Psi = \frac{\hat{p}^2}{2m} \Psi + V \Psi = (\hat{T} + \hat{V}) \Psi = \hat{\mathcal{H}} \Psi \]

Correspondence principle

  • Large systems: Quantum mechanics \(\longrightarrow\) classical physics
  • Ehrenfest’s theorem:

\[ m \frac{d}{dt}\langle x \rangle, \qquad \frac{d}{dt}\langle p \rangle = - \langle\frac{\partial V(x)}{\partial x}\rangle \]

Uncertainty relation: position vs. momentum

  • de Broglie relation

\[ p = \frac{h}{\lambda} = \frac{2\pi\hbar}{\lambda} \quad (= \hbar k) \]

  • Think about a Gaussian wave pulse in Fourier analysis
    • Sharp pulses in space are spread out in (momentum) k-space
    • Sharp pulses in k-space are spread out in space
  • Uncertainty of position vs. momentum

\[ \sigma_x \sigma_p \ge \frac{\hbar}{2} \]

Summary

  • Quantum mechanics is governed by the Schrodinger equation

\[ i \hbar \frac{\partial \Psi}{\partial t} = -\frac{\hbar^2}{2m} \nabla^2 \Psi + V \Psi \]

  • Similar to our standard wave equation
  • But the wave function \(\Psi(x,y,z,t)\) is complex-valued
  • Probability density to find a particle \(|\Psi(x,t)|^2 = \Psi^*(x,t)\, \Psi(x,t)\)
  • “Real” quantities and measurements represented by operators acting on the wave function