
PHOT 301: Quantum Photonics LECTURE 00

Michaël Barbier, Fall semester (2024-2025)

COURSE INFORMATION

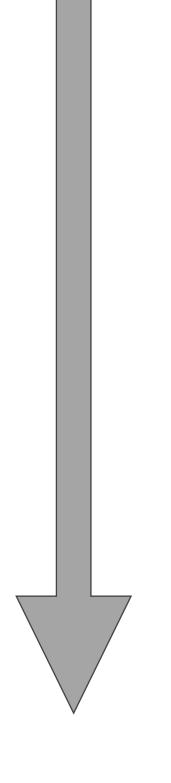
Instructor

Dr. Michaël Barbier e-mail: michaelbarbier@iyte.edu.tr Office: door on the right of Z5 Hours: 9:00-17:00 (via appointment)

Course Schedule

Tuesday	13:30 – 15:15
Friday	13:30 – 15:15

Teaching Assistants


Yağız Oyun e-mail: yagizoyun@iyte.edu.tr Office: Z9B hours: TBA

Building F, lecture room D2 Building F, lecture room D2

CONTENTS OF THE COURSE

- Wave function & Schrödinger's equation
- "Mathematical" formalism
- Electrons in materials
- Quantization of light: photons
- Photons interacting with atoms/materials

Lecture 01: Introduction to the course

Course book

D.J. Griffiths, Introduction to Quantum Mechanics, Pearson

D.A.B. Miller, Quantum Mechanics for Scientists and Engineers, Cambridge

Supplementary material

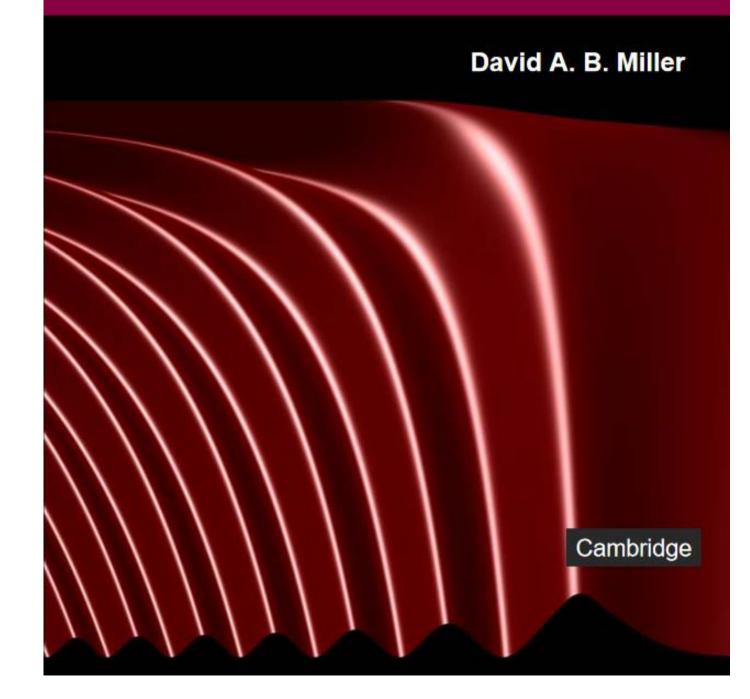
C.C. Gerry and P.L. Knight, Introductory Quantum Optics, Cambridge, 2005

'RODUCTION TO UANTUM ECHANICS

THIRD EDITION

DAVID J. GRIFFITHS DARRELL F. SCHROETER

Course book


D.J. Griffiths, Introduction to Quantum Mechanics, Pearson

D.A.B. Miller, Quantum Mechanics for **Scientists and Engineers, Cambridge**

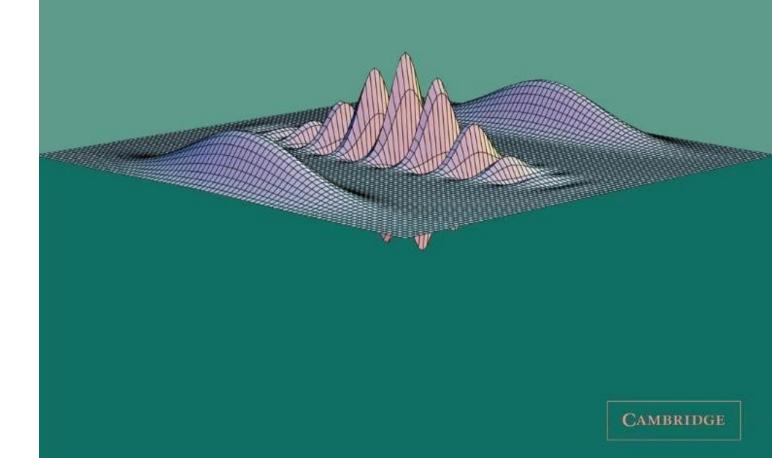
Supplementary material

C.C. Gerry and P.L. Knight, Introductory Quantum Optics, Cambridge, 2005

Quantum Mechanics for Scientists and Engineers

Course book

D.J. Griffiths, Introduction to Quantum Mechanics, Pearson


D.A.B. Miller, Quantum Mechanics for Scientists and Engineers, Cambridge

Supplementary material

C.C. Gerry and P.L. Knight, Introductory Quantum Optics, Cambridge, 2005

Christopher C. Gerry and Peter L. Knight

Introductory Quantum Optics

Supplementary material

David Miller's webpage on quantum mechanics https://dabm.stanford.edu/teaching/quantum-mechanics/

QuVis: Web site with quantum mechanics simulations

QuTip: Python library quantum mechanical simulations

Applet(s) by Paul Falstad for 1D quantum systems (other applets available on www.falstad.com/)

OVERVIEW OF THE COURSE

week	
Week 1	Waves and Schrödinger's equation
Week 2	Time-independent Schrödinger's equation
Week 3	Quantum mechanics formalism: Functions
Week 4	Approximation methods
Week 5	Approximation methods (Cont'd)
Week 6	Periodic structures, Band structure, Bloch
Week 7	Midterm exam
Week 8	Methods for one-dimensional problems: T
Week 9	Angular momentum and Hydrogen atom
Week 10	Spin
Week 11	Identical particles
Week 12	The density matrix
Week 13	Harmonic oscillators and photons
Week 14	Absorption, spontaneous emission, and st

topic
n
s and operators
functions
Transmission, bound states

timulated emission

COURSE SYLLABUS AND CLASS WORKFLOW

Homework/projects

- Working together on solutions allowed
- But .. individual reports

Exams

- Theoretical open questions
- Exercises are important