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SUMMARY

• What can quantum mechanics describe?

▪ Nanostructures - quantumdots, quantum wells, nanowire, nanotubes, low-
dimensional materials, thin films, surfaces, …

▪ Materials - electronic structure (periodic structures)

▪ Atoms and Molecules - Hydrogen atom

• The Schrodinger equation in 3D:

▪ Momentum operator: 

▪ Potential  and position operator: 

• Extra quantum numbers :

▪ Principal, Azimuthal, Magnetic, Spin quantum numbers

• Spin leads to Pauli “Schrodinger” equation

• Multiple electrons/particles: bosons & fermions

⟶ = iℏp̂x p ⃗ ^ ∇⃗ 

V ( )r ⃗ ^ r ⃗ ^

|n, l, , ⟩ml ms
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RECAP OF HYDROGEN ATOM
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SUMMARY ANGULAR MOMENTUM
Common basis of eigenstates of angular momentum:

•  and  integers to get single-valued

• The solutions are the spherical harmonics :

with the associated Legendre polynomials

|l, m⟩ = l(l + 1) |l, m⟩L̂
2

ℏ2 |l, m⟩ = mℏ|l, m⟩L̂z

l m = −l, … , −1, 0, 1, … , l

Y (θ, ϕ) = Θ(θ)Φ(ϕ) = Θ(θ)eimϕ

Y (θ, ϕ)

(θ, ϕ) = (−1 (cos θ)Ylm )m+|m|[ ]2l + 1
4π

(l − |m|)!
(l + |m|)!

1/2

P
|m|

l eimϕ

(z) = ( − 1P m
l

(1 − /2z2)m

l!2l

dm+l

dzm+l
z2 )l
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SUMMARY ANGULAR MOMENTUM

Lower order  polynomials:

0

1

2

(θ, ϕ) = (−1 (cos θ)Ylm )m+|m|[ ]2l + 1
4π

(l − |m|)!
(l + |m|)!

1/2

P
|m|

l eimϕ

(z) = ( − 1P m
l

(1 − /2z2)m

l!2l

dm+l

dzm+l
z2 )l

(z)P m
l

l m = −2 m = −1 m = 0 m = 1 m = 2

1

− (1 −1
2 x2)1/2 x (1 − x2)1/2

(1 − )1
8 x2 − x(1 −1

2 x2)1/2 (3 − 1)1
2 x2 3x(1 − x2)1/2 3(1 − )x2
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VISUAL REPRESENTATION

• The  eigenstates have a torus (donut) shape

• Specific basis connected to z-axis via ,

• Other choices  or  possible, correspond to other bases

• The magnetic quantum numbers  are eigenvalues of 

m = ±1

L̂z

L̂x L̂y

ml L̂z
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SPHERICAL HARMONICS: REAL BASIS

• Rotating the basis using spherical symmetry

• Superposition of eigenstates ( ), start from the solutions:

Use the identities  and :

L̂z

(θ, ϕ) = (−1 (cos θ)Ylm )m+|m|[ ]2l + 1
4π

(l − |m|)!
(l + |m|)!

1/2

P
|m|

l eimϕ

cos(mϕ) = +eimϕ e−imϕ

2 sin(mϕ) = −eimϕ e−imϕ

2i

⎧

⎩
⎨
⎪⎪⎪⎪
⎪⎪⎪⎪

(θ, ϕ)px

(θ, ϕ)py

= R{ } = (−1 (cos θ) cos(mϕ)Ylm )m+|m|[ ]2l + 1
4π

(l − |m|)!
(l + |m|)!

1/2

P
|m|

l

= I{ } = (−1 (cos θ) sin(mϕ)Ylm )m+|m|[ ]2l + 1
4π

(l − |m|)!
(l + |m|)!

1/2

P
|m|

l
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DIFFERENT BASIS P-STATES

• Different eigenstate basis: Symmetric dumbells vs. donuts in xy-plane

• Superposition of a  and a -orbital gives a torus(donut)-orbital and vice versa.px py
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SPHERICAL HARMONICS WAVE FUNCTION

• Appropriate real-valued orthonormal basis, superposition of orbitals

9Lecture 09: The Pauli-equation



SPHERICAL HARMONICS PROBABILITY

• Appropriate real-valued orthonormal basis, superposition of orbitals
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SUPERPOSITION

• Electrons can be in a superposition of orbital states.

• We used a specific basis, other bases are possible

• The electron magnetic quantum number  is an eigenvalue of the donut basis of
eigenstates

ml
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EVOLUTION IN TIME

• Phase factor  over time

▪ -orbital: Phase changes in time, phase difference of 

▪ -orbital: Phase rotates

eimϕ+i t/ℏEnl

p0 π

p1

12Lecture 09: The Pauli-equation



RADIAL SOLUTIONS
Solutions are given by Laguerre polynomials

Normalization factor for :

The normalized radial solutions:

[− + (r)] χ(r) = Eχ(r)  with (r) = + V (r)
ℏ2

2μ

∂2

∂r2 Ve Ve
l(l + 1)ℏ2

2μr2

χ(s) = (s) , s = , = −sl+1L2l+1
n−l−1 e−s/2 2r

na0
En

Ry

n2

R(r) = χ(s)/r

1 = (r) dr = ( (s)) ds =∫ ∞

0
R2 r2 ∫ ∞

0
s2l L2l+1

n−l−1 e−s s2 2 n (n + l)!
(n − l − 1)!

(s) = (s)Rnl [ ](n − l − 1)!
2 n (n + l)!

( )2
n a0

3 1/2

sl L2l+1
n−l−1 e−s/2
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RADIAL SOLUTIONS

(s)Rnl

s

En

= (s)[ ](n − l − 1)!
2 n (n + l)!

( )2
n a0

3 1/2

sl L2l+1
n−l−1 e−s/2

= , = = 0.529 A
2r

na0
a0

4πε0ℏ2

μe2

= − , Ry = = = 13.6 eV
Ry

n2

ℏ2

2μa2
0

μ

2
( )e2

4π ℏε0

2
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RADIAL PART: WAVE FUNCTION

• Radial wave function  has  zerosR(r) n − l − 1
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RADIAL PART: PROBABILITY

• Electron localization:

▪ S-orbitals large probability in zero

▪ P-orbital zero probability in zero
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ORBITALS: RADIAL + ANGULAR PARTS
The wave function 

with , associated Legendre and associated Laguerre polynomials

ψ( ) = (r) (θ, ϕ)r ⃗  Rnl Ylm

(θ, ϕ)Ylm

(s)Rnl

= (−1 (cos θ))m+|m|[ ]2l + 1
4π

(l − |m|)!
(l + |m|)!

1/2

P
|m|

l eimϕ

= (s)[ ](n − l − 1)!
2 n (n + l)!

( )2
n a0

3 1/2

sl L2l+1
n−l−1 e−s/2

s = 2 r
n a0

(z) = ( − 1 , (z) = (−1 ( )P m
l

(1 − /2z2)m

l!2l

dm+l

dzm+l
z2 )l Lα

k ∑
j=0

k

)j k + α

k − j

xj

j!
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COMPARISON OF S-P-D-F ORBITALS

• Overview of all orbitals:

From Wikipedia
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ORBITALS OF THE HYDROGEN ATOM

• Orbital eigenstates are 

• Electron eigenstates in the Hydrogen atom are structured in:

▪ Shells: Different principal quantum number 

▪ Sub-shells: Different azimuthal quantum number 

◦ Named s, p, d, f orbitals

◦ Historical names: Sharp, Principal, Diffuse, and Fundamental coming from
appearance of atomic spectral lines

▪ Specific orbitals: magnetic quantum number  (also called )

▪ Spin of the electron: spin quantum number (we will see spin a�erwards)

|n, l, , ⟩ml ms

n

l

m ml

ms
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ENERGY DIAGRAM OF S-P-D-F ORBITALS

• Hydrogen has only 1 electron: energy depends on  only (shell)

• Other atoms: Multiple electrons and different sub-shells have different energies

▪ electron-electron interactions

▪ different sub-shell result in different electron distances (interaction-energies)

n

20Lecture 09: The Pauli-equation



THE PAULI EQUATION
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MAGNETIC FIELD: SPIN INTERACTION

• Extension Schrodinger equation

• Includes the spin magnetic moment: 

• Energy of spin magnetic moment in magnetic field 

Quantum Mechanics: Corresponding Hamiltonian (convert to operators)

Factor 1/2 comes from  definition

= gμe
→

μBσ⃗ 

B⃗ 

= ⋅ = g ⋅Es μe
→

B⃗  μBσ⃗  B⃗ 

= ⋅ = [ ( ) + ( ) + ( )]Ĥs
gμB

2
σ⃗ ^ B⃗  gμB

2
Bx

0
1

1
0

By
0
i

−i

0
Bz

1
0

0
−1

σ⃗ ^
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MAGNETIC FIELD: MOVING CHARGES
Classically: Lorentz force:

• Write the electric and magnetic fields (  and ) as potentials:

• These potentials are derived from Maxwell’s equations

• The particle’s momentum 

Quantum Mechanics: use corresponding momentum operator 

= q + q( × )F ⃗  E ⃗  v ⃗  B⃗ 

E ⃗  B⃗ 

Electric field:

Magnetic field:

= −e∇V −E ⃗  ∂A ⃗ 

∂t

= ∇ ×B⃗  A ⃗ 

⟶ − ep ⃗  p ⃗  A ⃗ 

⟶ − ep ⃗ ^ p ⃗ ^ A ⃗ 
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PAULI EQUATION
Add both spin  and vector potential .

where  is a spinor

The part  can be written as (operator precedence):

• Last term  for most magnetic fields

⋅gμB

2 σ⃗ ^ B⃗  − ep ⃗ ^ A ⃗ 

[ ( − e 1 + V 1 + ⋅ ] Ψ( , t) = iℏ Ψ( , t)
1

2m0
p̂ ⃗  A ⃗ )2 gμB

2
σ⃗ ^ B⃗  r ⃗ 

∂
∂t

r ⃗ 

Ψ( , t) = ( )r ⃗ 
( , t)Ψ↑ r ⃗ 

( , t)Ψ↓ r ⃗ 

( − ep̂ ⃗  A ⃗ )2

( − e ) ⋅ ( − e ) = − e ⋅ + iℏe∇ ⋅ +p̂ ⃗  A ⃗  p̂ ⃗  A ⃗  p̂2 A ⃗  p ⃗ ^ A ⃗  e2A2

≈ 0e2A2
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EXAMPLE: THE ZEEMAN EFFECT
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ZEEMAN EFFECT

• The Zeeman effect: splitting of spectral lines under magnetic field

• Energy level splitting of atomic orbital levels

• Level-splitting depends on spin and magnetic quantum number

• Additional selection rules for observed emission/spectral lines
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ZEEMAN EFFECT FOR HYDROGEN

• Hydrogen as a model system (only 1 electron)

• Assume magnetic field  along the z-direction (spherical symmetry)

• Start from the Pauli-equation

where a we choose vector potential 

where we approximated 

= (0, 0, )B⃗  Bz

[ ( − e 1 + V 1 + ⋅ ] Ψ( , t) = iℏ Ψ( , t)
1

2m0
p̂ ⃗  A ⃗ )2 gμB

2
σ⃗ ^ B⃗  r ⃗ 

∂
∂t

r ⃗ 

= B (−y, x, 0)A ⃗  1
2

( − ep̂ ⃗  A ⃗ )2 = − e ⋅ + iℏe∇ ⋅p̂2 A ⃗  p ⃗ ^ A ⃗ 

≈ 0e2A2
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DERIVATION ZEEMAN EFFECT

where the z-component of angular momentum: 

Filling this in the Pauli equation:

( − ep̂ ⃗  A ⃗ )2 = + iℏe ⋅ ∇ + iℏe∇ ⋅p̂2 A ⃗  A ⃗ 

= + (−y, x, 0) ⋅ ( , , ) + ( , , ) ⋅ (−y, x, 0)p̂2 iℏeB

2
p̂x p̂y p̂z

iℏeB

2
p̂x p̂y p̂z

= + (−y + x ) + 0p̂2 eBℏ2

2
∂x ∂y

eBℏ2

2

= +p̂2 ℏeB

2
L̂z

= −iℏ(x − y )L̂z ∂x ∂x

[( + V ) + + ⋅ ] Ψ( , t) = iℏ Ψ( , t)
p̂ ⃗ 2

2m0

ℏeB

4m0
L̂z

gμB

2
σ⃗ ^ B⃗  r ⃗ 

∂
∂t

r ⃗ 

28Lecture 09: The Pauli-equation



DERIVATION ZEEMAN EFFECT CTU’D
Approximating  and using the Bohr magneton 

The first term is just the Hydrogen Hamiltonian 

For stationary solutions we assume 

g/2 ≈ 1 =μB
eℏ
m0

[( + V ) + ( + B )] Ψ( , t) = iℏ Ψ( , t)
p̂ ⃗ 2

2m0

BμB

2ℏ
L̂z σ̂z r ⃗ 

∂
∂t

r ⃗ 

Ĥ0

[ + ( + )] Ψ( , t) = iℏ Ψ( , t)Ĥ0
BμB

2ℏ
L̂z σ̂z r ⃗ 

∂
∂t

r ⃗ 

Ψ( , t) = ψ( )r ⃗  r ⃗  e−iEt/ℏ

[ + ( + )] ψ( ) = Eψ( )Ĥ0
BμB

2ℏ
L̂z σ̂z r ⃗  r ⃗ 
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DERIVATION ZEEMAN EFFECT CTU’D

Remember that  and we have a matrix equation:

This corresponds to two uncoupled equations for spin-up and spin-down:

Fill in solutions of the Hydrogen atom (eigenstates of ):

ψ( ) = ( )r ⃗ 
ψ↑

ψ↓

[ 1 + ( 1 + ℏ ( ))] ( ) ( ) = E ( )Ĥ0
BμB

2ℏ
L̂z

1
0

0
−1

( )ψ↑ r ⃗ 

( )ψ↓ r ⃗ 
r ⃗ 

( )ψ↑ r ⃗ 

( )ψ↓ r ⃗ 

[ + ( + ℏ)] ( )Ĥ0
BμB

ℏ
L̂z ψ↑ r ⃗ 

[ + ( − ℏ)] ( )Ĥ0
BμB

ℏ
L̂z ψ↓ r ⃗ 

= E ( )ψ↑ r ⃗ 

= E ( )ψ↓ r ⃗ 

Ĥ0

|n, l, m, ↑⟩ = , |n, l, m, ↓⟩ =ψ↑ ψ↓
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EIGENENERGIES AND EIGENSTATES

The solutions are eigenstates of the Hydrogen atom, and 

[Math Processing Error]

Fill in solutions of the Hydrogen atom (eigenstates of ):

( ) + ( + ℏ) ( )Ĥ0ψ↑ r ⃗ 
BμB

ℏ
L̂z ψ↑ r ⃗ 

( ) + ( − ℏ) ( )Ĥ0ψ↓ r ⃗ 
BμB

ℏ
L̂z ψ↓ r ⃗ 

= E ( )ψ↑ r ⃗ 

= E ( )ψ↓ r ⃗ 

L̂z

Ĥ0

( ) + B(m + 1) ( )Enlψ↑ r ⃗  μB ψ↑ r ⃗ 
( ) + B(m − 1) ( )Enlψ↑ r ⃗  μB ψ↑ r ⃗ 

= E ( )ψ↑ r ⃗ 
= E ( )ψ↑ r ⃗ 
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EIGENENERGIES AND EIGENSTATES
Fill in solutions of the Hydrogen atom (eigenstates of ):

The eigenenergies  depend now also on the magnetic quantum number 
and the spin :

• The splitting of energy levels depends on magnetic field strength 

• Selection rules determine between which energy levels emission is allowed

Ĥ0

( ) + B(m + 1) ( )Enlψ↑ r ⃗  μB ψ↑ r ⃗ 
( ) + B(m − 1) ( )Enlψ↑ r ⃗  μB ψ↑ r ⃗ 

= E ( )ψ↑ r ⃗ 
= E ( )ψ↑ r ⃗ 

E = Enlm↑ m

↑ (↓)

= + B(m + 1) withEnlm↑ Enl μB ψ↑

= + B(m − 1) withEnlm↓ Enl μB ψ↓

B
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ENERGY-LEVEL SPLITTING

• The splitting of energy levels depends on magnetic field strength 

• Magnetic field for p-orbital level splitting (right plot)  T

= + B(m + 1) withEnlm↑ Enl μB ψ↑

= + B(m − 1) withEnlm↓ Enl μB ψ↓

B

B = 15
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ENERGY-LEVEL SPLITTING

• Bohr magneton  eV/T  splitting small for normal magnetic field
strengths . Record laboratory magnetic fields are e.g.:

▪ Stable magnetic field of  T

▪ Peak, i.e. only a few , magnetic fields as a pulsed magnetic field:  T

• Selection rules determine between which energy levels emission is allowed

≈ 5.8 ×μB 10−5 ⟶
B

45.5

μs 1200
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ENERGY-LEVEL SPLITTING

• Bohr magneton  eV/T  splitting small for normal magnetic field
strengths . Record laboratory magnetic fields are e.g.:

▪ Stable magnetic field of  T

▪ Peak, i.e. only a few , magnetic fields as a pulsed magnetic field:  T

• The wavelength or frequency differences in spectral lines is given by:

• The Hydrogen emission spectral line at  nm will split in three lines.

• Selection rules: Spin is preserved,  while different polarizations of light,
therefore

≈ 5.8 ×μB 10−5 ⟶
B

45.5

μs 1200

= Δf = = ΔE/h
2π

Δλ

Δω

2π

122

l → l − ±1
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