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Lecture 09: The Pauli-equation



SUMMARY

e What can quantum mechanics describe?

= Nanostructures - quantumdots, quantum wells, nanowire, nanotubes, low-
dimensional materials, thin films, surfaces, ...

= Materials - electronic structure (periodic structures)
= Atoms and Molecules - Hydrogen atom
e The Schrodinger equation in 3D:
= Momentum operator: p,, — [;’ = iRV
= Potential V(7) and position operator: 7
e Extra quantum numbers |n,l, m;, my):

= Principal, Azimuthal, Magnetic, Spin quantum numbers

Spin leads to Pauli “Schrodinger” equation

e Multiple electrons/particles: bosons & fermions
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RECAP OF HYDROGEN ATOM



SUMMARY ANGULAR MOMENTUM

Common basis of eigenstates of angular momentum:

L2)1,m) = 1(1 + 1)R2|1, m) £\l m) = mh|l,m)

e landm = —1,...,—1,0,1,..., [ integers to get single-valued

Y(0,9) = ©(0)2(¢) = ©(0)e™?

e The solutions are the spherical harmonics Y (6, ¢):

20+1 (I—|m|)]">

1/lm(ea ¢) — (_1)m+|m| AT (l n ‘m’)|

Pl|m| (cos 0)e'™?

with the associated Legendre polynomials

1 — Z2)m/2 dm+l
2ll| dzm—l—l
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SUMMARY ANGULAR MOMENTUM

20+1 (I— |m|)]"?

Yim (0, ¢) = (—=1)™m! P™ (cos f)e™

47 (14 |m|)!
. B (1 _ Z2)m/2 dm+! ) l
P"(2) = S]] dzm+ (2° = 1)
Lower order P (z) polynomials:

[ m = —2 m = —1 m =0 m =1 m = 2
0 1
1 —%(1—.’132)1/2 T (1—:132)1/2
2 $(1-2%) —3z(1- z?)2 2322 —1) 3z(1—=z*)V2 3(1— 2?)
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VISUAL REPRESENTATION

e The m = +£1 eigenstates have a torus (donut) shape
e Specific basis connected to z-axis via f}z,
e Other choices f}w or f}y possible, correspond to other bases

e The magnetic quantum numbers m; are eigenvalues of L,
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SPHERICAL HARMONICS: REAL BASIS

e Rotating the basis using spherical symmetry

A

e Superposition of eigenstates (L), start from the solutions:

z L— m)Y2 .
¥in(6,8) = (-1 | 2L SR cosgperne

Use the identities cos(m¢) = eim¢_;e—im¢ and sin(me) = eim;f_im(b :

y

— |m|)1 2
pa(6,6) = {¥in} = (-1 | 2L LR cos) cos(mo)

— |m|)1 7?2
pu(6,6) = 3{¥in} = (2 2L 2T R (cos6) sin(mo)

\
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DIFFERENT BASIS P-STATES

o Different eigenstate basis: Symmetric dumbells vs. donuts in xy-plane

e Superposition of a p, and a p,-orbital gives a torus(donut)-orbital and vice versa.
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SPHERICAL HARMONICS WAVE FUNCTION

e Appropriate real-valued orthonormal basis, superposition of orbitals

®
® 3 @
¥ X 4 3 =
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SPHERICAL HARMONICS PROBABILITY

e Appropriate real-valued orthonormal basis, superposition of orbitals

+
o ¢ @
% X {1 $

Lecture 09: The Pauli-equation

10



SUPERPOSITION

e Electrons can bein a superposition of orbital states.
e We used a specific basis, other bases are possible

e The electron magnetic quantum number m; is an eigenvalue of the donut basis of
eigenstates
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EVOLUTION IN TIME

im¢+iEat/h oertime

e Phase factor e
= po-orbital: Phase changes in time, phase difference of 7

= p;-orbital: Phase rotates
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RADIAL SOLUTIONS

Solutions are given by Laguerre polynomials

R 0° . (1 +1)h?
[— 20 O + VB(T)] x(r) = Ex(r) with V.(r) = T V(r)
_ 2r Ry
41 2141 s/2 o o
x(s) =L ()e, s = ey Bu= -

Normalization factor for R(7) = x(s)/r:

00 o0 l l i H
1=/0 R2('r)"°2d"°:/0 s (Lyhy(s)) e* % ds = (n—1—1)!

The normalized radial solutions:

Ri(s) = { (Znn_(f,i T ;))!! ( nio ) |

Lecture 09: The Pai ||i-pq||
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RADIAL SOLUTIONS

(n—I1—-1)!/ 2 \° V2
n—1uL{L— .
Rn _ lL2l—|—1 —5/2
1(8) [2n(n+l)! (nao) } ° "_l_l(s)e
2 dmegh?
5= — ap = 2 —0.529A
na e L
Ry h? 7! e’ ?
E,=—"  Ry= S —13.6eV
n? Y 2uai 2 (47raoh °
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RADIAL PART: WAVE FUNCTION

e Radial wave function R(r) has n — [ — 1 zeros

0.5

0.0 -

0.2 -

0.0 -

0.1-

0.0 1
-0.1+

\

|
L

0 20
r(in ap)

0 20
r(in ap)
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RADIAL PART:. PROBABILITY

e Electron localization:
= S-orbitals large probability in zero

= P-orbital zero probability in zero

0.11

FIIIIIl

0.0+

0.02 -

0.00-

0.01 - '

4 _A_
0.00 1, , , , ; ,
0 20 0 20 0 20
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ORBITALS: RADIAL + ANGULAR PARTS
The wave function ¥(7) = Ry (7)Y (0, @)

2l +1 (I — |m])! 1/2 Im| :
Y, (6 — (-1 m-+|m| pim 0)eime
! ( 7¢) ( ) [ 47'(' (l—l— ‘m‘)| l (COS )6
1/2
(n—i-1! /7 2 : 20+1 —5/2
Ru(s) = st L2 s/
Z(S) [2n(n+l)' n ag n—I— 1(8)6
with s = ,3;0 , associated Legendre and associated Laguerre polynomials
Pm(z)_ (1_Z2)m/2 dm—H (22_1)l Ek: k+ o
l o zll| dzm—l—l ’ pary _] ]'

Lecture 09: The Pauli-equation 17



COMPARISON OF S-P-D-F ORBITALS

e QOverview of all orbitals:

4fx(x2-3y2) 4f(x2-y2)z
From Wikipedia

Lecture 09: The Pauli-equation



ORBITALS OF THE HYDROGEN ATOM

e Orbital eigenstates are |n,l, m;, my)
e Electron eigenstates in the Hydrogen atom are structured in:
= Shells: Different principal quantum number n
= Sub-shells: Different azimuthal quantum number [
o Nameds, p, d, f orbitals

o Historical names: Sharp, Principal, Diffuse, and Fundamental coming from
appearance of atomic spectral lines

» Specific orbitals: magnetic quantum number m (also called m;)

= Spin of the electron: spin quantum number m, (we will see spin afterwards)
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ENERGY DIAGRAM OF 5-P-D-F ORBITALS

e Hydrogen has only 1 electron: energy depends on n only (shell)

e Other atoms: Multiple electrons and different sub-shells have different energies

m electron-electron interactions

» different sub-shell result in different electron distances (interaction-energies)

V. =
-0'33 2\/_\ ionisation ':‘=Z°
A -0.54 eV = “n=5 A
-0.85 eV n=4
-1.51 eV n=3
~-3.39 eV n=2
Energy (eV) quantum numbers

-13.6 eV ground level Lr?gc&!re 09: Th¢ Pauli-equation




THE PAULI EQUATION



MAGNETIC FIELD: SPIN INTERACTION

e Extension Schrodinger equation

e Includes the spin magnetic moment: ,L?e = gupo

e Energy of spin magnetic moment in magnetic field B

Eszz-ézgugﬁ-é

Quantum Mechanics: Corresponding Hamiltonian (convert to operators)

A gUB 5 = (]05;; 0 1 0 —2 1
o, = 985 . p- 9B g +B + B,
2 7 2 [ (1 0) y(z 0) (0

Factor 1/2 comes from & definition
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MAGNETIC FIELD: MOVING CHARGES

Classically: Lorentz force:

—

F = qE + q(¥ x B)
o Write the electric and magnetic fields (E and B) as potentials:

Electric field: E—=_—eVV — %—f

Magnetic field: B=VxA

e These potentials are derived from Maxwell’s equations

e The particle’s momentum p — p — eA
Quantum Mechanics: use corresponding momentum operator p — p — eA

Lecture 09: The Pauli-equation
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PAULI EQUATION

Add both spin g“B 945 3 . B and vector potentlalp — eA.

1 = GUB 5 3| = .y .p O
[—zmo(p—eA) 1+V1+ — 5 g-B \Il(r,t)—zhat\I!(

T (7, t

where U(7,t) = (\I! (7 1
T,

) ) IS a spinor

The part ( — eA) can be written as (operator precedence):

—

(ﬁ—eA) ‘ (ﬁ—eﬂ) = p’ —62'ﬁ+iﬁ6V-zz+e2A2
e Lastterm e?A? ~ 0 for most magnetic fields
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EXAMPLE: THE ZEEMAN EFFECT



LEEMAN EFFECT

e The Zeeman effect: splitting of spectral lines under magnetic field
e Energy level splitting of atomic orbital levels
o Level-splitting depends on spin and magnetic quantum number

e Additional selection rules for observed emission/spectral lines

Magnetic field B # 0 No magnetic field E o 13.6 eV
n n2
m=1 I =1,
I =1 { m=20
m=-—1
AE = hf
AE = h(f — 8f) AE = h(f + 6f)
\ 4 A 4 \ 4 A 4 l = 1
AE = hf n=3 n=4
Emission of light by electron
Spectral line falling back from excitated level
AE, ,; =13.6eV—-34eV=10.2¢eV
122 nm 122 nm = A=122nm
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ZEEMAN EFFECT FOR HYDROGEN

e Hydrogen as a model system (only 1 electron)

e Assume magnetic field B = (0,0, B,) along the z-direction (spherical symmetry)

e Start from the Pauli-equation

I - guB » 3 - L 0 _,
= (p—eA)?1+V1 G.-B| W — h— T
2m0 (p € ) _|_ V _|_ 2 (/r7 t) Zh 8t (r7 t)

—

where a we choose vector potential A = % B(—y,z,0)

(p—ed)? =p> —eA-p+iheV- A

where we approximated e? A% ~ 0

Lecture 09: The Pauli-equation

27



DERIVATION ZEEMAN EFFECT

(5—62)2 Zﬁz +ihej-V+ihev.A’
2 theB iheB

:ﬁ + 9 (_y7m70)°(ﬁx7ﬁyaﬁz)+ 9 (ﬁxaﬁyaf}z

where the z-component of angular momentum: f}z = —ih(w(?w — y@w)

Filling this in the Pauli equation:

2m0 4m0 2 ot
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DERIVATION ZEEMAN EFFECT CTU'D

Approximating g/2 ~ 1 and using the Bohr magneton up = 2%

52
D up B /4 .
P Ly (Lz Bz)

(£ ov) 222000

The first term is just the Hydrogen Hamiltonian I—:TO

A up B (4 . NP O
[HO + £2 (Lz + a)] (7, t) = iho U (F, 1)

o iBt/h

For stationary solutions we assume W (7, t) = ¥(7)

[ﬂo + “;hB (f;z + 0)] D7) = Ey(7)

Lecture 09: The Pauli-equation
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DERIVATION ZEEMAN EFFECT CTU'D

ZT ) and we have a matrix equation:
I

ot (e (o %)) (o) 0= 2 (i)

This corresponds to two uncoupled equations for spin-up and spin-down:

Remember that ¢(7) = (

=SE SSU

. 5 _
Hy + ‘“; (Lz +h)_ P1(F) = E4(F)

. B
o+ = (L —h)_ $,(F) = By (7)

Fill in solutions of the Hydrogen atom (eigenstates of ﬁo)z

|n,l,m,T> — ¢T7 |n,l,m, i/> — %

Lecture 09: The Pauli-equation

30



Lecture 09: The Pauli-equation



EIGENENERGIES AND EIGENSTATES

Hoyy (7) + & %B (fiz + h) 1 (7) = By (7)

A B /.
Hoy(7) + 222 (L. = h) y(7) = By, (7)

The solutions are eigenstates of the Hydrogen atom, and f}z

[Math Processing Error]

Fill in solutions of the Hydrogen atom (eigenstates of I-:To):

Enth1(F) + pp B(m + 1)p4(F) = E 4 (7)
Enﬂ,bT(F) + UB B(m — 1)¢T(F) = E?ﬁT(F)
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EIGENENERGIES AND EIGENSTATES

Fill in solutions of the Hydrogen atom (eigenstates of I-:TO):

En1(F) + pup B(m + 1) (7) = E 1 (7)
Enﬂ,bT(F) + UB B(m — 1)¢T(F) = E?ﬁT(’F)

The eigenenergies I = Ey,;,,+ depend now also on the magnetic quantum number m
and the spin 1 ({):

EnlmT = F, + up B(m -+ 1) with ¢T
Enlm¢ = F, + up B(m — 1) with ’l,bi

e The splitting of energy levels depends on magnetic field strength B

o Selection rules determine between which energy levels emission is allowed
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ENERGY-LEVEL SPLITTING

e The splitting of energy levels depends on magnetic field strength B

EnlmT = By + UB B(m =+ 1)
Enlm¢ = By + HUB B(m — ]-)

with
with

o Magnetic field for p-orbital level splitting (right plot) B = 15T

E (in eV)
&

~3.398 -
1 210 12
- ~3.399 -
>
)
c —3.400 -
w
~3.401 -
~3.402 -
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ENERGY-LEVEL SPLITTING

e Bohr magneton ug ~ 5.8 x 1072 eV/T — splitting small for normal magnetic field
strengths B. Record laboratory magnetic fields are e.g.:

= Stable magnetic field of 45.5 T
» Peak, i.e. only a few s, magnetic fields as a pulsed magnetic field: 1200 T

o Selection rules determine between which energy levels emission is allowed

0_ —3398' l’mzl
101 210 12
_2-
B T —3.399 1 i,m=0
-4 -
S S
_6 sy = =
2 .2_3.400_T l, m=0 l,m 1 T, m=1
o 8 =
T.m=0
—10 ~3.401 -
—12 T,.,m=-1
-1441 =~ —3.402 -
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ENERGY-LEVEL SPLITTING

e Bohr magneton ug ~ 5.8 x 1072 eV/T — splitting small for normal magnetic field
strengths B. Record laboratory magnetic fields are e.g.:

= Stable magnetic field of 45.5 T
» Peak, i.e. only a few s, magnetic fields as a pulsed magnetic field: 1200 T
e The wavelength or frequency differences in spectral lines is given by:
27 Aw

A\ ! 27 /h

e The Hydrogen emission spectral line at 122 nm will splitin three lines.

e Selection rules: Spin is preserved, | — [ — £1 while different polarizations of light,
therefore
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