PHOT 301: Quantum Photonics
LECTURE 09
Michaël Barbier, Summer (2024-2025)
Common basis of eigenstates of angular momentum:
\[ \boxed{\hat{\bf L}^2|l, m\rangle = l(l+1)\hbar^2|l, m\rangle} \qquad \qquad \boxed{\hat{L}_z |l, m\rangle = m \hbar|l, m\rangle} \]
\[ \begin{aligned} Y_{lm}(\theta, \phi) = (-1)^{m+|m|} \left[ \frac{2l + 1}{4\pi} \,\frac{(l - |m|)!}{(l + |m|)!} \right]^{1/2} P^{|m|}_l(\cos\theta) e^{im\phi} \end{aligned} \]
with the associated Legendre polynomials
\[ P^{m}_l(z) = \frac{(1-z^2)^m/2}{2^l l!} \frac{d^{m+l}}{dz^{m+l}}(z^2 - 1)^l \]
\[ \begin{aligned} Y_{lm}(\theta, \phi) = (-1)^{m+|m|} \left[ \frac{2l + 1}{4\pi} \,\frac{(l - |m|)!}{(l + |m|)!} \right]^{1/2} P^{|m|}_l(\cos\theta) e^{im\phi} \end{aligned} \]
\[ P^{m}_l(z) = \frac{(1-z^2)^m/2}{2^l l!} \frac{d^{m+l}}{dz^{m+l}}(z^2 - 1)^l \]
Lower order \(P^{m}_l(z)\) polynomials:
| \(l\) | \(m=-2\) | \(m=-1\) | \(m=0\) | \(m=1\) | \(m=2\) |
|---|---|---|---|---|---|
| 0 | \(1\) | ||||
| 1 | \(-\frac{1}{2}(1-x^2)^{1/2}\) | \(x\) | \((1-x^2)^{1/2}\) | ||
| 2 | \(\frac{1}{8}(1 - x^2)\) | \(-\frac{1}{2}x(1 - x^2)^{1/2}\) | \(\frac{1}{2}(3x^2 - 1)\) | \(3x(1 - x^2)^{1/2}\) | \(3(1 - x^2)\) |
\[ \begin{aligned} Y_{lm}(\theta, \phi) = (-1)^{m+|m|} \left[ \frac{2l + 1}{4\pi} \,\frac{(l - |m|)!}{(l + |m|)!} \right]^{1/2} P^{|m|}_l(\cos\theta) e^{im\phi} \end{aligned} \]
Use the identities \(\,\,\cos(m\phi) = \frac{e^{im\phi} + e^{-im\phi}}{2}\,\,\) and \(\,\,\sin(m\phi) = \frac{e^{im\phi} - e^{-im\phi}}{2i}\,\):
\[ \left\{ \begin{aligned} p_x(\theta, \phi) &= \Re\{Y_{lm}\} = (-1)^{m+|m|} \left[ \frac{2l + 1}{4\pi} \,\frac{(l - |m|)!}{(l + |m|)!} \right]^{1/2} P^{|m|}_l(\cos\theta)\, \cos(m\phi)\\ p_y(\theta, \phi) &= \Im\{Y_{lm}\} = (-1)^{m+|m|} \left[ \frac{2l + 1}{4\pi} \,\frac{(l - |m|)!}{(l + |m|)!} \right]^{1/2} P^{|m|}_l(\cos\theta)\, \sin(m\phi) \end{aligned} \right. \]