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TOWARDS SPHERICAL
SYMMETRIC SYSTEMS



DIATOMIC MOLECULE: HAMILTONIAN

e Two atoms with rigid bond (approximation, ignore stretching)

e Center of mass:

— .
mir1y + Mara

R = ; ¥ =79 —T1, M = mq + my,

mi + Mo

e Hamiltonian contains linear momentum: center of mass moving

e and internal angular momentum with inertia I = pr?

A2 ~ 2
. P I
A=+
oM 21
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DIATOMIC MOLECULE: EIGENENERGIES

~2 A2
. P L
H=_—4+ —
2M+2I

Center of mass é, and orientation 7 are independent
e Separation of variables: (R, 7) = e’X R Y (6, ¢)

e Eigenenergies:

hK? hzl(l -+ 1)
E- = :
Kl 2m + 21

(2l + 1) Degeneracy in magnetic quantum number m = my,
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ANGULAR MOMENTUM



ANGULAR MOMENTUM: COMMUTATORS

e Definition of angular momentum L=#x P

e position/momentum commutator relations in 3D: |p;, 7| = —ihd;;

A

L,,L,] =ikLl,,  [L,,L,]=ikl,, [L,, L,]=ihL,,

e Traditionally written using the Levi-Civita symbol €;
= ¢z = —1forodd permutations (1, 2,3)=132,213, 321
= ¢, = 1foreven permutations (1,2, 3) =123, 312,231
= ¢, = 0forany sameindices appearing (1, 2, 3) =223, 311, 333, etc.

[zi, Ej] — th Gijki?k
k
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ANGULAR MOMENTUM: EIGENVALUES

e L =(L,,L,,L.)isavector with a magnitude || L|| and direction,

e L,,L,, L,don’t commute: no common eigenstate basis,

A 2
e Magnitude (squared) of the momentum is L

e Magnitude does commute with each vector component

~ 9 A
— Use eigenstates basis (|a, b)) of L and one component L,.

i’|a,b) = ala,b)  L,|a,b) = bla,b)
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ALGEBRAIC SOLUTION: LADDER OPERATORS

i’ 0a, ) =ala, )  L.la, b) =bla, b)

A

e Define ladder operators LAi — f}x + 1L,
e Is L|a, b) an eigenstate?

e Yes, since [ﬁ2, L] =0
A2 [ & A a2 A
i (Li a, b>) — i1 a, b)) =a (Li a, b>)

. A2
e So L |a, b) is eigenstate of L (or the zero state) with eigenvalue a.

e What about f}z?
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ALGEBRAIC SOLUTION: LADDER OPERATORS

e The ladder operators fLi do not commute with f/z:
[L,,L.] = +hL.
e We use this relation to extract the impact on the eigenstates
L.Lila,b) =LiL,|a,b)+[L.Li]]a,b) = (b+h)L. |a, b)
o Sol. la, b) is eigenstate of f}z (or the zero state) with eigenvalue b & h:

Ly |a, b) = Cyi(a,b)|a, b+ h)

With C (a, b) a normalization factor (still unknown)
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10



EIGENVALUE RANGES

e Procedure is similar to the one for finding the zeroth eigenstate of the harmonic
oscillator. An upper/lower bound leads to discrete ladder

e Weuse (a, bla,b) = 1 and express that the norm

|£4]a,b)|* = (a,b|L} Ls|a,b) > 0
We can rewrite f}li}i = i}qgi}i as:
Loby = (B 7ily) (Lo +ily) = Lo + L, +i[L,, L)) = 1" — L. T AL,
This lead to a relation between the eigenvalues

a, bl I Lola,b) = (a,b]L.° — L T hi.|a,b) = (a — b T Kb)(a,bla,b) >0
+ z

We willusea > 0 and b € R to find b and a values
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EIGENVALUE RANGE: M

e ag>0andbc R

e Smallest eigenvalue a = 0 gives limits on b:

<CL, bmax‘i—/+i—/+‘a’7 bmax> — a — b12nax — hbmax =0
<CL, bmin|j-/Jf_lA-/— |CL, bmin> =a— b’ + hbmin =0

min
This both determines a:

a = b?nax + hbmax
@ =02 — Fbmin

min

e Resulting in bpin = —bmax

e Forany a: starting from |a, by, ) and move up the ladder with f}+ until |a, buyax):

bmin7 bmin —Hehtyre: Tﬁﬁﬂhdr&fenz\hm,smn,-and Magneticbiﬁﬂa + nh — bmax

12
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EIGENVALUE RANGE: L AND M

e Since also byax = —bmin, the eigenvalue range —(n — 1)h/2,...,(n — 1)h/2 or
—nh/2,...,nh/2

e Eigenvalues of f}z areb = mhwith mpaxy = —Mpin = [

~ 2
e Eigenvalues a of L are given by

a = Muax A(Mmaxh + B) = 1(1 + 1)k?

e |Insummary:

L2(1,m) = 11 + 1)R2|l,m) B\l m) = mA|l, m)

e [ and m either even integer or odd half-integers with integer steps

Lecture: The Hydrogen Atom, Spin, and Magnetic Fields
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NORMALIZATION

L)1, m) = 1(1 + 1)A2|l,m), B\l m) = mA|l, m)

Using the previous definition of the ladder operator

— (,m|L Bl m) = (1, m|L — L7 + hi,|l,m)

Taking the square root of the norm results in:

Lo, \/ll+1 m(m + 1)k|l,m + 1)

L_|l,m) :\/ll—i—l —m(m — 1)h|l,m — 1)
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CORRESPONDING EIGENFUNCTIONS

e Constructing the eigenstate functions: Spherical harmonics Y}, (0, ¢) = (0, ¢|l, m)

A9 A A A
Expressing the operators: L , L,,and L. withL =r X p = —thr x V

The gradient V in spherical coordinates:

o 10 _, 1 0

=g T 50 T s 8¢
A 8 A y 8 8
L,=—ih—, L,="he™ |+— +i —
Zh(‘?gb’ + = he [ 89+ZCOt08¢]

snf 90 | sin?g 042

Azhz[ 1 8sin9% 1 82}
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THE - COMPONENT

. 0 R . 0 0
L,=—ih=—, Li=he™ |+ +icotf——
() 3¢7 + e 30 + 1 co 9%
e Apply L to proposed solution Y, (6, ¢)
. 9
L.Y, (07 Qb) — _Zh8_¢Y2m (97 ¢) = mhY, (07 ¢)

Separation of the variables:
Yim (0, 9) = F(0) €™, with—1<m <l

m(¢+2m)

e If [is an integer, the requirement em? — ¢t is satisfied

Lecture: The Hydrogen Atom, Spin, and Magnetic Fields
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THE 8- COMPONENT

. 0 . . 0 0
L,=—ih=—, Li=he™ |+ +icotf——
( 96’ 4 e [ 8«9+ZCO 8¢]
e Apply L, to proposed solution F(6)
e Use the fact that mupax is I: L |I,1) = 0:
0=(0,9|L.|l,]) = he' 9 + i cot 99 e’ F(0)
Y + Y 89 8¢

_ hei(l+1)¢ [3

50 [ cot 9] F(0)

=S %F(@) = lcotOF(6) = F(#) = Csin'()

Lecture: The Hydrogen Atom, Spin, and Magnetic Fields
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SPHERICAL HARMONICS

The lower states with m < [ are generated by applying L

- (1-m - G, 9 |
Yim (6,6) = CLU ™ sin’ 6e'?] = C [% + 4 cot 9075] [sin' 0]
The solutions are the spherical harmonics:
20+ 1 (I— |m|)!

1/2
¥in6,) = (-1 " | | pimcospens

4 (14 |m|)!
with the associated Legendre polynomials

(1 . x2)m/2 dm+l
2ll| diﬁm—H

P (z) = (e — 1)

Lecture: The Hydrogen Atom, Spin, and Magnetic Fields
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SUMMARY ANGULAR MOMENTUM

Common basis of eigenstates of angular momentum:

L2)1,m) = 1(1 + 1)R2|1, m) £\l m) = mh|l,m)

e landm = —1,...,—1,0,1,..., [ integers to get single-valued

Y(0,9) = ©(0)2(¢) = ©(0)e™?

e The solutions are the spherical harmonics Y (6, ¢):

20+1 (I—|m|)]">

1/lm(ea ¢) — (_1)m+|m| AT (l n ‘m’)|

Pl|m| (cos 0)e'™?

with the associated Legendre polynomials

(1 . w2)m/2 dm+l
2ll| d$m+l

Lecture: The Hydrogen Atom, Spin, and Magnetic Fields
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SUMMARY ANGULAR MOMENTUM

l/lm(ea ¢) — (_1)m+|m|

20+1 (I— |m|)]"?

Pl|m| (cos 0)e'™?

47 (14 |m|)!
. B (1 _ m2)m/2 dm+! ) l
P (z) = S]] A+ (z = 1)
Lower order P (z) polynomials:

[ m = —2 m = —1 m =0 m =1 m = 2
0 1
1 —%(1—.’132)1/2 T (1—:132)1/2
2 $(1-2%) —3z(1- z?)2 2322 —1) 3z(1—=z*)V2 3(1— 2?)

Lecture: The Hydrogen Atom, Spin, and Magnetic Fields
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LOWER ORDER EIGENFUNCTIONS

l/lm(ea ¢) — (_1)m+|m|

Angular momentum eigenfunction in spherical and carthesian coordinates

20+1 (I— |m|)]"?
47 (14 |m|)!

Y, (0, $) Yim(z,y, 2)
1

Van

e

_ 3 —1y
~ sinfe
87 Sve 87 r
p 1 =z
COS —_—
A VA r
3 sin 6 e’ _ 2w
87 87 r
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VISUAL REPRESENTATION

Lecture: The Hydrogen Atom, Spin, and Magnetic Fields

22



Thel = 1and m = 41 eigenstates have a torus (donut) shape
Specific basis connected to z-axis via i)z,
Other choices f)w or f}y possible, correspond to other bases

The magnetic quantum numbers m; are eigenvalues of L,
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SPHERICAL HARMONICS: REAL BASIS

e Rotating the basis using spherical symmetry

A

e Superposition of eigenstates (L), start from the solutions:

z L— m)Y2 .
¥in(6,8) = (-1 | 2L SR cosgperne

. oy ime —img . imo _ ,—imeo
Use the identities cos(m¢) = <5 and sin(m¢) = —5—:

y

PY 1/2
Y, (6, $) = R{Y;,} = (—1)™FIm [2l4j; 1 8 — }m;;:] Pl‘m‘ (cos 0) cos(ma)
— m|)! 1/2
Y, (6, ¢) = 3{Yi,} = (—1)™"m™ [2:; 1 g - 1m=§:] Pl‘m‘ (cos ) sin(me)

\
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SPHERICAL HARMONICS: REAL BASIS

e Rotating the basis using spherical symmetry

A

e Superposition of eigenstates (L), start from the solutions

e Forl = 1 the carthesian formula shows this very clear:

Y, (6, ¢) Yim(z,y,2)
1

Var

e

— sinfe S T
S gt 7T

P 1 =z

COS — —

v A VAam r

\/isinﬁew oSt
8 Tt T

Lecture: The Hydrogen Atom, Spin, and Magnetic Fields
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DIFFERENT BASIS FOR'Y

e Different eigenstate basis: Symmetric dumbells vs. donuts in xy-plane

e Superposition of aY; and a Y, (p-orbitals) gives a torus(donut) and vice versa.

Lecture: The Hydrogen Atom, Spin, and Magnetic Fields
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SPHERICAL HARMONICS WAVE FUNCTION

e Appropriate real-valued orthonormal basis, superposition of orbitals

®
® 3 @
¥ X 4 3 =

Lecture: The Hydrogen Atom, Spin, and Magnetic Fields
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SPHERICAL HARMONICS PROBABILITY

e Appropriate real-valued orthonormal basis, superposition of orbitals

-
* ¢ @
“ X 1

Lecture: The Hydrogen Atom, Spin, and Maghetic Fields
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SUPERPOSITION

e Electrons can bein a superposition of orbital states.
e We used a specific basis, other bases are possible

e The electron magnetic quantum number m; is an eigenvalue of the donut basis of
eigenstates

Lecture: The Hydrogen Atom, Spin, and Magnetic Fields
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EVOLUTION IN TIME

im¢+iEat/h oertime

e Phase factor e
= Y10 (po-orbital): Phase changes in time, phase difference of

= Y71 (p1-orbital): Phase rotates

Lecture: The Hydrogen Atom, Spin, and Magnetic Fields
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HAMILTONIANS OF 3D SYSTEMS



DIATOMIC MOLECULE: HAMILTONIAN

e Two atoms with rigid bond (approximation, ignore stretching)

e Center of mass:

— .
mir1y + Mara

R = ; ¥ =79 —T1, M = mq + my,

mi + Mo

e Hamiltonian contains linear momentum: center of mass moving

e and internal angular momentum with inertia I = pr?

A2 ~ 2
. P I
A=+
oM 21

Lecture: The Hydrogen Atom, Spin, and Magnetic Fields
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DIATOMIC MOLECULE: EIGENENERGIES

~2 A2
. P L
H=_—4+ —
2M+2I

Center of mass é, and orientation 7 are independent
e Separation of variables: (R, 7) = e’X R Y (6, ¢)

e Eigenenergies:

hK? hzl(l -+ 1)
E- = :
Kl 2m + 21

(2l + 1) Degeneracy in magnetic quantum number m = my,

Lecture: The Hydrogen Atom, Spin, and Magnetic Fields

32



CENTRAL POTENTIAL: HAMILTONIAN

A2
H=2_1v()

2m

e Central potential —> go to spherical coordinates

e We need p° = —h2V?2 in spherical coordinates with:

V = 63—1—613 € L J
o T 90 T % rsing 00

V2_16‘r26’+1 1 0 sm@z N 1 &?
- r20r Or r?|sinf 06 00 sin? 0 0¢?

10,0 I

r2 8rr or r2h?2

V? =

Lecture: The Hydrogen Atom, Spin, and Magnetic Fields
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CENTRAL POTENTIAL: HAMILTONIAN

~2

A D
H=—
o + V(r)

e Central potential —> go to spherical coordinates

e We need p° = —h2V?2 in spherical coordinates with:

. K2 (92 20 i
H = [Zm(ﬁfrz —I_;E) + 2mir? +V(r)

»(F) = Ep(7)

Lecture: The Hydrogen Atom, Spin, and Magnetic Fields



CENTRAL POTENTIAL: SOLUTIONS

B2 (9 20 i
[ 2m, (37“2 i ;E) T oz T i)

Separation of variables ¥(7) = R(r)Y (0, ¢)

|: 2hm (88742 T %%) - 2717-;742 T V(’P) R(’I")Y(H, ¢) — ER(T)Y(Ha ¢)
T e

Simplifying by substituting R(7) = x/(r)/r and defining a new effective potential V, (7):
[ h? 0?

" 29m Or?

(1 + 1)R?
2mr?

Lecture: The Hydrogen Atom, Spin, and Magnetic Fields 35
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+Ve(7°)] x(r) = Ex(r) with V.(r) =
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BOUNDARY CONDITIONS

R2 52 , (I + 1)R2
~ 553 +Ve(r)| x(r) = Ex(r) with V. (r) =

+ V(r)

2mr?

e Tofindy(7) = x(r)/rY (0, ¢) we need to find x ()
e Because R(r) = x(r)/r we require x(0) =0

e Normalization

/Q (7)|* dF = /OOO IR(r)|*r2dr = /OOO x(r)2dr = 1

Avalid bound state requires x(r) to decrease fast enough: ~ lim, o x(r) < -

/ro

For a solution we need to know the potential V' (r)

Lecture: The Hydrogen Atom, Spin, and Magnetic Fields
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HYDROGEN ATOM

Lecture: The Hydrogen Atom, Spin, and Magnetic Fields
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THE HYDROGEN ATOM: HAMILTONIAN

e Hamiltonian for two particles, electron and proton

e Electron and proton interact via Coulomb potential

A h? h? e?

H= Ve — Vi + V([Fe = 7)), with V(r)=

2m, 2m, Amreq |7

e Schrodinger equation with ¥(7., 7, ) having 6 degrees of freedom:

h2 V2 B h2

- 2m, 2my,

Vz% + V("Fe - Fp’) w(Fean) — ¢('F677—;p)-

e Go over to relative coordinates and center of mass

Lecture: The Hydrogen Atom, Spin, and Magnetic Fields
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HYDROGEN ATOM: RELATIVE COORDINATES

e Two particles, electron and proton, use center of mass R and relative coordinates:

m.re + m, 7 m.m
- e’e P’ D — — — e P
R = : T =T¢— Tp, M = m, + my, =

Me + My, Me + My,

e The Schrodinger equation becomes:

h? h? R .
2 9 o R
[_ 2MVR — ﬂvr + V(T)] ’(P(R,’l“) — E’(ﬁ(R,r)
e Separation of variable — %V% leads to a factor e”h?z with Ep = Igj\’f

LV V()| W) = BB

Lecture: The Hydrogen Atom, Spin, and Magnetic Fields 39



HYDROGEN ATOM: TISE
H—Mv? " vm] (R, 7) = By(E,7)

Similar: Separation of variables ¥(7) = R(r)Y (0, ¢) and using Y};,, (0, ¢) as solutions
for the angular part:

K2 (02 20 i’
[ 21 (87’2 " ;E) i 272 +Vir)

R (d* 2 d (1 +1)R?
- =)+
2u \ dr?  rdr

R(r)Y(0,¢) = ER(r)Y (6, ¢)

. [ o +V(r)] R(r) = ER(r)

Simplifying by substituting R(7) = x/(r)/r and defining a new effective potential V, (7):

[—Z—M% + V;('r)] x(r) = Ex(r) with V.(r)=

(1 + 1)R?
212

Lecture: The Hydrogen Atom, Spin, and Magnetic Fields 40
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SOLUTION RADIAL EQUATION

h? d? , L1+ 1)75,2
g7 HVO)| XO) = Bx(r) with V() = N ()
Define energy E = —% with n € R and radial coordinate s = 73;0 , Where:
e Bohr radius: radius of Hydrogen atom: agy = 47;(;72 = 0.529.&
Ry = 2 = 4(<) —136
e Rydberg energy: Ry = o §(4moh) — 13.0eV
This simplifies the radial equation:
d?x(s) (l+1) n 1
— — — — — O
ds? 52 s i 4 x(s)

Lecture: The Hydrogen Atom, Spin, and Magnetic Fields 41



SOLUTION RADIAL EQUATION CTU'D

d?x(s) (l+1) n 1

- ——+ | x(s)=0

—
ds? s2 S 4

e Propose a solution x(s) o< exp(—s/2) to remove the + (and decaying)

[(1+1)

e To remove the ——— term we further require x(8) o< st

e We obtain proposed solution of the form (with f(s) unknown):

X(s) = f(s)s"" exp(—s/2)

e Substitution leads to a differential equation for f(s):

A6 gy MO

2 22— 1+ 1)] f(s) = 0

S

Lecture: The Hydrogen Atom, Spin, and Magnetic Fields
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SOLUTION RADIAL EQUATION CTU'D

d* f(s) df(s)
ds? ds

S

—s—2(+1)]

+n—U+1)f(s)=0

e Solve by expanding f(s) as a power series f(s) = > " a;s’
e Solution demands that the power series is finite:

= 1. must be an integer, and

sn>[41

e f(s)isthen given by the associated Laguerre polynomials:

(n+1)!
m—1—-1—g)! 20+ 1+ q)!

Liljllq — (—1)q

g4
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SOLUTIONS

Total solutions together with the associated Laguerre polynomials

2r

_ G+l 241 —5/2 _
X(s) = s (e a=—

n—I[—1

Normalization factor for R(7) = x(s)/r:

00 00 , L :
1= [T Rerar= [ @) e s = 20

The normalized radial solutions:

(n—1—-1)/ 2 \° V2

n - - L]

Rn _ lLQH—l —s/2
1(8) [2n(n+l)! (nao) ] s L ra(s)e
And the eigenenergies are given by E,, = —% = —% eV

Lecture: The Hydrogen Atom, Spin, and Magnetic Fields
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RADIAL PART: WAVE FUNCTION

e Radial wave function R(r) has n — [ — 1 zeros

O.5'I

0.0 -

0.2-

0.0 L

0.1-

_0.1 T T T T T T
0 20 0 20 0 20

r(in ap) r(in ap) r(in ap)
Lecture: The Hydrogen Atom, Spin, and Magnetic Fields 45



RADIAL PART:. PROBABILITY

e Electron localization:
= S-orbitals large probability in zero

= P-orbital zero probability in zero

0.1
0.0
0.02 - '
0.00 -
0.01- |
- _A_
0.00 4, ; , : : :
0 20 0 20 0 20

r(in ag) Lecture: The HydogémABg) Spin, and Magnetic Fields 1 (in ag) 46



ORBITALS: RADIAL + ANGULAR PARTS
The wave function ¥(7) = Ry (7)Y (0, @)

2l +1 (I — |m])! 1/2 Im| :
Y, (6 — (-1 m-+|m| pim 0)eime
! ( 7¢) ( ) [ 47'(' (l—l— ‘m‘)| l (COS )6
1/2
(n—1-1) 2\’ [ 12l+1 —5/2
R, I s/
Z(S) |: 2n (n —+ l) n ay s n—l—l(s) €
with s = ,3;0 , associated Legendre and associated Laguerre polynomials
Pm(z)_ (1_Z2)m/2 dm—H (22_1)l Ek: k+ o
l o 2ll| dzm—l—l ’ pary _] ]'
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COMPARISON OF S-P-D-F ORBITALS

e QOverview of all orbitals:

4fx(x2-3y2) 4f (x2-y2)z 4fyz

Adapted from Wikipedia Lecture: The Hydrogen Atom, Spin, and Magnetic Fields
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ORBITALS OF THE HYDROGEN ATOM

e Orbital eigenstates are |n,l, m;, my)
e Electron eigenstates in the Hydrogen atom are structured in:
= Shells: Different principal quantum number n
= Sub-shells: Different azimuthal quantum number [
o Nameds, p, d, f orbitals

o Historical names: Sharp, Principal, Diffuse, and Fundamental coming from
appearance of atomic spectral lines

» Specific orbitals: magnetic quantum number m (also called m;)

= Spin of the electron: spin quantum number m, (we will see spin afterwards)

Lecture: The Hydrogen Atom, Spin, and Magnetic Fields
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ENERGY DIAGRAM OF 5-P-D-F ORBITALS

e Hydrogen has only 1 electron: energy depends on n only (shell): E,, = %

e Other atoms: Multiple electrons and different sub-shells have different energies

= electron-electron interactions
» different sub-shell result in different electron distances (interaction-energies)

0 eV,

-0.38 eV. ionisation :z:
A 0.54 eV - n=6

0.85 eV Lt A
1.51 eV n=3

~-3.39 eV n=2

Energy (eV) quantum numbers

13.6 eV ground level

i n=1
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