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DIATOMIC MOLECULE: HAMILTONIAN

• Two atoms with rigid bond (approximation, ignore stretching)

• Center of mass:

• Hamiltonian contains linear momentum: center of mass moving

• and internal angular momentum with inertia 

= , = − , M = + , μ =R⃗  +m1 r1
→

m2r ⃗ 2
+m1 m2

r ⃗  r ⃗ 2 r ⃗ 1 m1 m2
m1m2

+m1 m2

I = μr2

= +Ĥ
P̂

2

2M

L̂
2

2I
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DIATOMIC MOLECULE: EIGENENERGIES

• Center of mass , and orientation  are independent

• Separation of variables: 

• Eigenenergies:

• (2l + 1) Degeneracy in magnetic quantum number 

= +Ĥ
P̂

2

2M

L̂
2

2I

R⃗  r ⃗ 

ψ( , ) = Y (θ, ϕ)R⃗  r ⃗  ei ⋅K⃗ R⃗ 

= + .E ,lK⃗ 
ℏK2

2m

l(l + 1)ℏ2

2I

m ≡ ms
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ANGULAR MOMENTUM
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ANGULAR MOMENTUM: COMMUTATORS

• Definition of angular momentum 

• position/momentum commutator relations in 3D: 

• Traditionally written using the Levi-Civita symbol :

▪  for odd permutations  = , , 

▪  for even permutations  = , , 

▪  for any same indices appearing  = , , , etc.

= ×L̂ r̂ p̂

[ , ] = −iℏp̂ i rj δij

[ , ] = iℏ , [ , ] = iℏ , [ , ] = iℏ ,L̂x L̂y L̂z L̂y L̂z L̂x L̂z L̂x L̂y

ϵijk

= −1ϵijk (1, 2, 3) 132 213 321

= 1ϵijk (1, 2, 3) 123 312 231

= 0ϵijk (1, 2, 3) 223 311 333

[ , ] = iℏL̂i L̂j ∑
k

ϵijkL̂k
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ANGULAR MOMENTUM: EIGENVALUES

•  is a vector with a magnitude  and direction,

• , ,  don’t commute: no common eigenstate basis,

• Magnitude (squared) of the momentum is 

• Magnitude does commute with each vector component

 Use eigenstates basis ( ) of  and one component .

= ( , , )L̂ Lx̂ Lŷ Lẑ ∥ ∥L̂

Lx̂ Lŷ Lẑ

L̂
2

⟶ |a, b⟩ L̂
2

Lẑ

|a, b⟩ = a|a, b⟩ |a, b⟩ = b|a, b⟩L̂
2

Lẑ
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ALGEBRAIC SOLUTION: LADDER OPERATORS

• Define ladder operators 

• Is  an eigenstate?

• Yes, since :

• So  is eigenstate of  (or the zero state) with eigenvalue .

• What about ?

|a, b⟩ = a |a, b⟩ |a, b⟩ = b |a, b⟩L̂
2

Lẑ

= ± iL±̂ L̂x L̂y

|a, b⟩L±̂

[ , ] = 0L̂
2

L̂i

( |a, b⟩) = |a, b⟩ = a ( |a, b⟩)L̂
2

L̂± L̂±L̂
2

L̂±

|a, b⟩L̂± L̂
2

a

L̂z
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ALGEBRAIC SOLUTION: LADDER OPERATORS

• The ladder operators  do not commute with :

• We use this relation to extract the impact on the eigenstates

• So  is eigenstate of  (or the zero state) with eigenvalue :

With  a normalization factor (still unknown)

L̂± L̂z

[ , ] = ±ℏL̂z L̂± L̂±

|a, b⟩ = |a, b⟩ + [ ] |a, b⟩ = (b ± ℏ) |a, b⟩L̂zL̂± L̂±L̂z L̂zL̂± L̂±

|a, b⟩L̂± L̂z b ± ℏ

|a, b⟩ = (a, b)|a, b ± ℏ⟩L̂± C±

(a, b)C±
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EIGENVALUE RANGES

• Procedure is similar to the one for finding the zeroth eigenstate of the harmonic
oscillator. An upper/lower bound leads to discrete ladder

• We use  and express that the norm

We can rewrite  as:

This lead to a relation between the eigenvalues

We will use  and  to find  and  values

⟨a, b|a, b⟩ = 1

∥ |a, b⟩ = ⟨a, b| |a, b⟩ ≥ 0L̂± ∥2 L̂
†
±L̂±

=L̂
†
±L̂± L̂∓L̂±

= ( ∓ i )( ± i ) = + ± i[ , ] = − ∓ ℏL̂∓L̂± L̂x L̂y L̂x L̂y L̂
2
x L̂

2
y L̂x L̂y L̂

2
L̂

2
z L̂z

⟨a, b| |a, b⟩ = ⟨a, b| − ∓ ℏ |a, b⟩ = (a − ∓ ℏb)⟨a, b|a, b⟩ ≥ 0L̂
†
±L̂± L̂

2
L̂

2
z L̂z b2

a ≥ 0 b ∈ R b a
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EIGENVALUE RANGE: M

•  and 

• Smallest eigenvalue  gives limits on :

This both determines :

• Resulting in 

• For any : starting from  and move up the ladder with  until :

a ≥ 0 b ∈ R

a = 0 b

⟨a, | |a, ⟩bmax L̂
†
+L̂+ bmax

⟨a, | |a, ⟩bmin L̂
†
−L̂− bmin

= a − − ℏ = 0b2
max bmax

= a − + ℏ = 0b2
min bmin

a

a

a

= + ℏb2
max bmax

= − ℏb2
min bmin

= −bmin bmax

a |a, ⟩bmin L̂+ |a, ⟩bmax

, + ℏ, + 2ℏ, … , + nℏ =bmin bmin bmin bmin bmax 12Lecture: The Hydrogen Atom, Spin, and Magnetic Fields
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EIGENVALUE RANGE: L AND M

• Since also , the eigenvalue range  or

• Eigenvalues of  are  with 

• Eigenvalues  of  are given by

• In summary:

•  and  either even integer or odd half-integers with integer steps

= −bmax bmin −(n − 1)ℏ/2, … , (n − 1)ℏ/2
−nℏ/2, … , nℏ/2

L̂z b = mℏ = − = lmmax mmin

a L̂
2

a = ℏ( ℏ + ℏ) = l(l + 1)mmax mmax ℏ2

|l, m⟩ = l(l + 1) |l, m⟩L̂
2

ℏ2 |l, m⟩ = mℏ|l, m⟩L̂z

l m
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NORMALIZATION

Using the previous definition of the ladder operator

Taking the square root of the norm results in:

|l, m⟩ = l(l + 1) |l, m⟩, |l, m⟩ = mℏ|l, m⟩L̂
2

ℏ2 L̂z

1 = ⟨l, m| |l, m⟩L̂
†
±L̂± = ⟨l, m| − ± ℏ |l, m⟩L̂

2
L̂

2
z L̂z

|l, m⟩L̂+

|l, m⟩L̂−

= ℏ|l, m + 1⟩l(l + 1) − m(m + 1)
− −−−−−−−−−−−−−−−√

= ℏ|l, m − 1⟩l(l + 1) − m(m − 1)
− −−−−−−−−−−−−−−−√
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CORRESPONDING EIGENFUNCTIONS

• Constructing the eigenstate functions: Spherical harmonics 

Expressing the operators: , , and  with 

The gradient  in spherical coordinates:

(θ, ϕ) = ⟨θ, ϕ|l, m⟩Ylm

L̂
2

L̂z L̂± = r × = −iℏr × ∇L̂ p̂

∇

∇ = + +e ⃗ r
∂
∂r

e ⃗ θ
1
r

∂
∂θ

e ⃗ ϕ
1

r sin θ

∂
∂ϕ

⟹

L̂z

L̂
2

= −iℏ , = ℏ [± + i cot θ ]∂
∂ϕ

L̂± e±iϕ ∂
∂θ

∂
∂ϕ

= − [ + ]ℏ2 1
sin θ

∂ sin θ ∂
∂θ

∂θ

1
θsin2

∂2

∂ϕ2
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THE  - COMPONENT

• Apply  to proposed solution 

Separation of the variables:

• If  is an integer, the requirement  is satisfied

ϕ

L̂z = −iℏ , = ℏ [± + i cot θ ]∂
∂ϕ

L̂± e±iϕ ∂
∂θ

∂
∂ϕ

L̂z (θ, ϕ)Ylm

(θ, ϕ) = −iℏ (θ, ϕ) = mℏ (θ, ϕ)L̂zYlm
∂

∂ϕ
Ylm Ylm

(θ, ϕ) = F(θ) , with − l ≤ m ≤ lYlm eimϕ

l =eimϕ eim(ϕ+2π)
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THE  - COMPONENT

• Apply  to proposed solution 

• Use the fact that  is : :

θ

L̂z = −iℏ , = ℏ [± + i cot θ ]∂
∂ϕ

L̂± e±iϕ ∂
∂θ

∂
∂ϕ

L̂± F(θ)

mmax l |l, l⟩ = 0L̂+

0 = ⟨θ, ϕ| |l, l⟩L̂+ = ℏ [ + i cot θ ] F(θ)eiϕ ∂
∂θ

∂
∂ϕ

eilϕ

= ℏ [ − l cot θ] F(θ)ei(l+1)ϕ ∂
∂θ

⇒ F(θ) = l cot θF(θ) ⇒ F(θ) = C (θ)
∂
∂θ

sinl
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SPHERICAL HARMONICS
The lower states with  are generated by applying 

The solutions are the spherical harmonics:

with the associated Legendre polynomials

m < l L̂−

(θ, ϕ) = C [ θ ] = C [ + i cot θ ] [ θ ]Ylm L̂
(l−m)
− sinl eilϕ ∂

∂θ

∂
∂ϕ

sinl eilϕ

(θ, ϕ) = (−1 (cos θ)Ylm )m+|m|[ ]2l + 1
4π

(l − |m|)!
(l + |m|)!

1/2

P
|m|

l eimϕ

(x) = ( − 1P m
l

(1 − /2x2)m

l!2l

dm+l

dxm+l
x2 )l
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SUMMARY ANGULAR MOMENTUM
Common basis of eigenstates of angular momentum:

•  and  integers to get single-valued

• The solutions are the spherical harmonics :

with the associated Legendre polynomials

|l, m⟩ = l(l + 1) |l, m⟩L̂
2

ℏ2 |l, m⟩ = mℏ|l, m⟩L̂z

l m = −l, … , −1, 0, 1, … , l

Y (θ, ϕ) = Θ(θ)Φ(ϕ) = Θ(θ)eimϕ

Y (θ, ϕ)

(θ, ϕ) = (−1 (cos θ)Ylm )m+|m|[ ]2l + 1
4π

(l − |m|)!
(l + |m|)!

1/2

P
|m|

l eimϕ

(x) = ( − 1P m
l

(1 − /2x2)m

l!2l

dm+l

dxm+l
x2 )l
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SUMMARY ANGULAR MOMENTUM

Lower order  polynomials:

0

1

2

(θ, ϕ) = (−1 (cos θ)Ylm )m+|m|[ ]2l + 1
4π

(l − |m|)!
(l + |m|)!

1/2

P
|m|

l eimϕ

(x) = ( − 1P m
l

(1 − /2x2)m

l!2l

dm+l

dxm+l
x2 )l

(z)P m
l

l m = −2 m = −1 m = 0 m = 1 m = 2

1

− (1 −1
2 x2)1/2 x (1 − x2)1/2

(1 − )1
8 x2 − x(1 −1

2 x2)1/2 (3 − 1)1
2 x2 3x(1 − x2)1/2 3(1 − )x2
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LOWER ORDER EIGENFUNCTIONS

Angular momentum eigenfunction in spherical and carthesian coordinates

(θ, ϕ) = (−1 (cos θ)Ylm )m+|m|[ ]2l + 1
4π

(l − |m|)!
(l + |m|)!

1/2

P
|m|

l eimϕ

Yl,m

Y0,0

Y1,−1

Y1,0

Y1,1

(θ, ϕ)Yl,m

1
4π
−−√

sin θ
3

8π

−−−√ e−iϕ

cos θ
1
4π
−−√

sin θ
3

8π

−−−√ eiϕ

(x, y, z)Yl,m

1
4π
−−√

3
8π

−−−√ x − iy

r

1
4π
−−√

z

r

−
3

8π

−−−√ x + iy

r
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VISUAL REPRESENTATION
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• The  and  eigenstates have a torus (donut) shape

• Specific basis connected to z-axis via ,

• Other choices  or  possible, correspond to other bases

• The magnetic quantum numbers  are eigenvalues of 

l = 1 m = ±1

L̂z

L̂x L̂y

ml L̂z
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SPHERICAL HARMONICS: REAL BASIS

• Rotating the basis using spherical symmetry

• Superposition of eigenstates ( ), start from the solutions:

Use the identities  and :

L̂z

(θ, ϕ) = (−1 (cos θ)Ylm )m+|m|[ ]2l + 1
4π

(l − |m|)!
(l + |m|)!

1/2

P
|m|

l eimϕ

cos(mϕ) = +eimϕ e−imϕ

2 sin(mϕ) = −eimϕ e−imϕ

2i

⎧

⎩
⎨
⎪⎪⎪⎪
⎪⎪⎪⎪

(θ, ϕ)Yx

(θ, ϕ)Yy

= R{ } = (−1 (cos θ) cos(mϕ)Ylm )m+|m|[ ]2l + 1
4π

(l − |m|)!
(l + |m|)!

1/2

P
|m|

l

= I{ } = (−1 (cos θ) sin(mϕ)Ylm )m+|m|[ ]2l + 1
4π

(l − |m|)!
(l + |m|)!

1/2

P
|m|

l
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SPHERICAL HARMONICS: REAL BASIS

• Rotating the basis using spherical symmetry

• Superposition of eigenstates ( ), start from the solutions

• For  the carthesian formula shows this very clear:

L̂z

l = 1

Yl,m

Y0,0

Y1,−1

Y1,0

Y1,1

(θ, ϕ)Yl,m

1
4π
−−√

sin θ
3

8π

−−−√ e−iϕ

cos θ
1
4π
−−√

sin θ
3

8π

−−−√ eiϕ

(x, y, z)Yl,m

1
4π
−−√

3
8π

−−−√ x − iy

r

1
4π
−−√

z

r

−
3

8π

−−−√ x + iy

r
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DIFFERENT BASIS FOR Y

• Different eigenstate basis: Symmetric dumbells vs. donuts in xy-plane

• Superposition of a  and a  (p-orbitals) gives a torus(donut) and vice versa.Yx Yy
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SPHERICAL HARMONICS WAVE FUNCTION

• Appropriate real-valued orthonormal basis, superposition of orbitals
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SPHERICAL HARMONICS PROBABILITY

• Appropriate real-valued orthonormal basis, superposition of orbitals
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SUPERPOSITION

• Electrons can be in a superposition of orbital states.

• We used a specific basis, other bases are possible

• The electron magnetic quantum number  is an eigenvalue of the donut basis of
eigenstates

ml
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EVOLUTION IN TIME

• Phase factor  over time

▪  ( -orbital): Phase changes in time, phase difference of 

▪  ( -orbital): Phase rotates

eimϕ+i t/ℏEnl

Y10 p0 π

Y11 p1
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HAMILTONIANS OF 3D SYSTEMS
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DIATOMIC MOLECULE: HAMILTONIAN

• Two atoms with rigid bond (approximation, ignore stretching)

• Center of mass:

• Hamiltonian contains linear momentum: center of mass moving

• and internal angular momentum with inertia 

= , = − , M = + , μ =R⃗  +m1 r1
→

m2r ⃗ 2
+m1 m2

r ⃗  r ⃗ 2 r ⃗ 1 m1 m2
m1m2

+m1 m2

I = μr2

= +Ĥ
P̂

2

2M

L̂
2

2I
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DIATOMIC MOLECULE: EIGENENERGIES

• Center of mass , and orientation  are independent

• Separation of variables: 

• Eigenenergies:

• (2l + 1) Degeneracy in magnetic quantum number 

= +Ĥ
P̂

2

2M

L̂
2

2I

R⃗  r ⃗ 

ψ( , ) = Y (θ, ϕ)R⃗  r ⃗  ei ⋅K⃗ R⃗ 

= + .E ,lK⃗ 
ℏK2

2m

l(l + 1)ℏ2

2I

m ≡ ms
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CENTRAL POTENTIAL: HAMILTONIAN

• Central potential  go to spherical coordinates

• We need  in spherical coordinates with:

= + V (r)Ĥ
p̂2

2m

⟶

= −p̂2 ℏ2∇2

∇ = + +e ⃗ r
∂
∂r

e ⃗ θ
1
r

∂
∂θ

e ⃗ ϕ
1

r sin θ

∂
∂ϕ

= + [ (sin θ ) + ]∇2 1
r2

∂
∂r

r2 ∂
∂r

1
r2

1
sin θ

∂
∂θ

∂
∂θ

1
θsin2

∂2

∂ϕ2

= −∇2 1
r2

∂
∂r

r2 ∂
∂r

L̂
2

r2ℏ2

33Lecture: The Hydrogen Atom, Spin, and Magnetic Fields



CENTRAL POTENTIAL: HAMILTONIAN

• Central potential  go to spherical coordinates

• We need  in spherical coordinates with:

= + V (r)Ĥ
p̂2

2m

⟶

= −p̂2 ℏ2∇2

= [− ( + ) + + V (r)] ψ( ) = Eψ( )Ĥ
ℏ2

2m

∂2

∂r2

2
r

∂
∂r

L̂
2

2mr2 r ⃗  r ⃗ 
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CENTRAL POTENTIAL: SOLUTIONS

Separation of variables 

Simplifying by substituting  and defining a new effective potential :

[− ( + ) + + V (r)] ψ( ) = Eψ( )
ℏ2

2m

∂2

∂r2

2
r

∂
∂r

L̂
2

2mr2 r ⃗  r ⃗ 

ψ( ) = R(r)Y (θ, ϕ)r ⃗ 

[− ( + ) + + V (r)] R(r)Y (θ, ϕ) = ER(r)Y (θ, ϕ)
ℏ2

2m

∂2

∂r2

2
r

∂
∂r

L̂
2

2mr2

⟹ [− ( + ) + + V (r)] R(r) = ER(r)
ℏ2

2m

∂2

∂r2

2
r

∂
∂r

l(l + 1)ℏ2

2mr2

R(r) = χ(r)/r (r)Ve

[− + (r)] χ(r) = Eχ(r)  with (r) = + V (r)
ℏ2

2m

∂2

∂r2 Ve Ve
l(l + 1)ℏ2

2mr2
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BOUNDARY CONDITIONS

• To find  we need to find 

• Because  we require 

• Normalization

A valid bound state requires  to decrease fast enough: 

For a solution we need to know the potential 

[− + (r)] χ(r) = Eχ(r)  with (r) = + V (r)
ℏ2

2m

∂2

∂r2 Ve Ve
l(l + 1)ℏ2

2mr2

ψ( ) = χ(r)/rY (θ, ϕ)r ⃗  χ(r)

R(r) = χ(r)/r χ(0) = 0

|ψ( ) d = |R(r) dr = |χ(r) dr = 1∫
Ω

r ⃗  |2 r ⃗  ∫ ∞

0
|2r2 ∫ ∞

0
|2

χ(r) χ(r) ≤limr⟶∞
1
r√

V (r)
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HYDROGEN ATOM
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THE HYDROGEN ATOM: HAMILTONIAN

• Hamiltonian for two particles, electron and proton

• Electron and proton interact via Coulomb potential

• Schrodinger equation with  having 6 degrees of freedom:

• Go over to relative coordinates and center of mass

= − − + V (| − |),  with V (r) = − .Ĥ
ℏ2

2me

∇2
e

ℏ2

2mp

∇2
p r ⃗ e r ⃗ p

e2

4π | − |ε0 r ⃗ e r ⃗ p

ψ( , )r ⃗ e r ⃗ p

[− − + V (| − |)] ψ( , ) = ψ( , ).
ℏ2

2me

∇2
e

ℏ2

2mp

∇2
p r ⃗ e r ⃗ p r ⃗ e r ⃗ p r ⃗ e r ⃗ p
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HYDROGEN ATOM: RELATIVE COORDINATES

• Two particles, electron and proton, use center of mass  and relative coordinates:

• The Schrodinger equation becomes:

• Separation of variable  leads to a factor  with 

R⃗ 

= , = − , M = + , μ =R⃗  +me re
→

mpr ⃗ p
+me mp

r ⃗  r ⃗ e r ⃗ p me mp

memp

+me mp

[− − + V (r)] ψ( , ) = Eψ( , )
ℏ2

2M
∇2

R

ℏ2

2μ
∇2

r R⃗  r ⃗  R⃗  r ⃗ 

− ℏ2

2M
∇2

R ei ⋅K⃗ R⃗  =ER
K 2ℏ2

2M

[− + V (r)] ψ( , ) = Eψ( , )
ℏ2

2μ
∇2 R⃗  r ⃗  R⃗  r ⃗ 
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HYDROGEN ATOM: TISE

Similar: Separation of variables  and using  as solutions
for the angular part:

Simplifying by substituting  and defining a new effective potential :

[− + V (r)] ψ( , ) = Eψ( , )
ℏ2

2μ
∇2 R⃗  r ⃗  R⃗  r ⃗ 

ψ( ) = R(r)Y (θ, ϕ)r ⃗  (θ, ϕ)Ylm

[− ( + ) + + V (r)] R(r)Y (θ, ϕ) = ER(r)Y (θ, ϕ)
ℏ2

2μ

∂2

∂r2

2
r

∂
∂r

L̂
2

2μr2

⟹ [− ( + ) + + V (r)] R(r) = ER(r)
ℏ2

2μ

d2

dr2

2
r

d

dr

l(l + 1)ℏ2

2μr2

R(r) = χ(r)/r (r)Ve

[− + (r)] χ(r) = Eχ(r)  with (r) = + V (r)
ℏ2

2μ

d2

dr2 Ve Ve
l(l + 1)ℏ2

2μr2
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SOLUTION RADIAL EQUATION

Define energy  with  and radial coordinate , where:

• Bohr radius: radius of Hydrogen atom: 

• Rydberg energy:  eV

This simplifies the radial equation:

[− + (r)] χ(r) = Eχ(r)  with (r) = + V (r)
ℏ2

2μ

d2

dr2 Ve Ve
l(l + 1)ℏ2

2μr2

E = − Ry
n2 n ∈ R s = 2 r

n a0

= = 0.529a0
4πε0ℏ2

μe2 A
∘

Ry = = = 13.6ℏ2

2μa2
0

μ

2 ( )e2

4π ℏε0

2

⟹ − [ − + ] χ(s) = 0
χ(s)d2

ds2

l(l + 1)
s2

n

s

1
4
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SOLUTION RADIAL EQUATION CTU’D

• Propose a solution  to remove the  (and decaying)

• To remove the  term we further require 

• We obtain proposed solution of the form (with unknown):

• Substitution leads to a differential equation for :

⟹ − [ − + ] χ(s) = 0
χ(s)d2

ds2

l(l + 1)
s2

n

s

1
4

χ(s) ∝ exp(−s/2) 1
4

l(l+1)
s2 χ(s) ∝ sl+1

f(s)

χ(s) = f(s) exp(−s/2)sl+1

f(s)

s − [s − 2 (l + 1)] + [n − (l + 1)] f(s) = 0
f(s)d2

ds2

df(s)
ds
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SOLUTION RADIAL EQUATION CTU’D

• Solve by expanding  as a power series 

• Solution demands that the power series is finite:

▪  must be an integer, and

▪ 

•  is then given by the associated Laguerre polynomials:

s − [s − 2 (l + 1)] + [n − (l + 1)] f(s) = 0
f(s)d2

ds2

df(s)
ds

f(s) f(s) = ∑∞
j=0 ajsj

n

n > l + 1

f(s)

= (−1L2l+1
n−l−1 ∑

q=0

n−l−1

)q (n + l)!
(n − l − 1 − q)! (2l + 1 + q)!

sq
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SOLUTIONS
Total solutions together with the associated Laguerre polynomials

Normalization factor for :

The normalized radial solutions:

And the eigenenergies are given by  eV

χ(s) = (s) , s =sl+1L2l+1
n−l−1 e−s/2 2r

na0

R(r) = χ(s)/r

1 = (r) dr = ( (s)) ds =∫ ∞

0
R2 r2 ∫ ∞

0
s2l L2l+1

n−l−1 e−s s2 2 n (n + l)!
(n − l − 1)!

(s) = (s)Rnl [ ](n − l − 1)!
2 n (n + l)!

( )2
n a0

3 1/2

sl L2l+1
n−l−1 e−s/2

= − = −En
Ry
n2

13.6
n2
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RADIAL PART: WAVE FUNCTION

• Radial wave function  has  zerosR(r) n − l − 1
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RADIAL PART: PROBABILITY

• Electron localization:

▪ S-orbitals large probability in zero

▪ P-orbital zero probability in zero
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ORBITALS: RADIAL + ANGULAR PARTS
The wave function 

with , associated Legendre and associated Laguerre polynomials

ψ( ) = (r) (θ, ϕ)r ⃗  Rnl Ylm

(θ, ϕ)Ylm

(s)Rnl

= (−1 (cos θ))m+|m|[ ]2l + 1
4π

(l − |m|)!
(l + |m|)!

1/2

P
|m|

l eimϕ

= (s)[ ](n − l − 1)!
2 n (n + l)!

( )2
n a0

3 1/2

sl L2l+1
n−l−1 e−s/2

s = 2 r
n a0

(z) = ( − 1 , (z) = (−1 ( )P m
l

(1 − /2z2)m

l!2l

dm+l

dzm+l
z2 )l Lα

k ∑
j=0

k

)j k + α

k − j

xj

j!
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COMPARISON OF S-P-D-F ORBITALS

• Overview of all orbitals:

Adapted from Wikipedia
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ORBITALS OF THE HYDROGEN ATOM

• Orbital eigenstates are 

• Electron eigenstates in the Hydrogen atom are structured in:

▪ Shells: Different principal quantum number 

▪ Sub-shells: Different azimuthal quantum number 

◦ Named s, p, d, f orbitals

◦ Historical names: Sharp, Principal, Diffuse, and Fundamental coming from
appearance of atomic spectral lines

▪ Specific orbitals: magnetic quantum number  (also called )

▪ Spin of the electron: spin quantum number (we will see spin a�erwards)

|n, l, , ⟩ml ms

n

l

m ml

ms
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ENERGY DIAGRAM OF S-P-D-F ORBITALS

• Hydrogen has only 1 electron: energy depends on  only (shell): 

• Other atoms: Multiple electrons and different sub-shells have different energies

▪ electron-electron interactions

▪ different sub-shell result in different electron distances (interaction-energies)

n =En
Ry
n2
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