
PHOT 301: Quantum Photonics
LECTURE 07

Michaël Barbier, Summer (2024-2025)



OVERVIEW OF THE COURSE

7.08.2025 2

week Topic Reading

Week 1 

Introduction & Required Mathematical Methods. 

Waves and Schrödinger's equation, Probability, Uncertainty and Time evolution.

Infinite square well.

Week 2 
The harmonic oscillator, Creation and annihilation operators.

Free particle, 1D Bound states & Scattering/Transmission, Finite well

Week 3 
Quantum mechanics formalism: Functions and operators, uncertainty.

Approximation methods.

Week 4 

Angular momentum and the Hydrogen atom, Spin

Magnetic fields, The Pauli equation, Minimal Coupling, Aharonov Bohm

Perturbation: Fine Structure of Hydrogen, The Zeeman Effect

Ch. 4, Pert. Ch. 7

Week 5 

Identical particles, Periodic table, Molecular bonds, Periodic structures, Band 

structure, Bloch functions

Time-dependent perturbation: Absorption, spontaneous emission, and stimulated 

emission

Week 6 Final exam



3D SCHRODINGER EQUATION

• Remember: time-independent Schrodinger equation in 1D:

−
ℏ2

2𝑚

𝜕2 𝜓 

𝜕x2
+ 𝑈(𝑥) 𝜓 = 𝐸 𝜓

• First term corresponds to the kinetic energy 𝐾 of the particle

• Kinetic energy 𝐾 in 3D:

𝐾 =
𝑝2

2𝑚
=

ℏ2𝑘2

2𝑚
 →  

𝑝𝑥
2

2𝑚
+

𝑝𝑦
2

2𝑚
+

𝑝𝑧
2

2𝑚
=

ℏ2𝑘𝑥
2

2𝑚
+

ℏ2𝑘𝑦
2

2𝑚
+

ℏ2𝑘𝑧
2

2𝑚

• 3D time-independent Schrodinger equation:

−
ℏ2

2𝑚

𝜕2 𝜓 

𝜕x2
+

𝜕2 𝜓 

𝜕𝑦2
+

𝜕2 𝜓 

𝜕𝑧2
+ 𝑈(𝑥, 𝑦, 𝑧) 𝜓 = 𝐸 𝜓
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3D Particle in a Box
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3D PARTICLE IN A BOX

• Schrodinger equation:

−
ℏ2

2𝑚

𝜕2 𝜓 

𝜕x2
+

𝜕2 𝜓 

𝜕𝑦2
+

𝜕2 𝜓 

𝜕𝑧2
+ 𝑈(𝑥, 𝑦, 𝑧) 𝜓 = 𝐸 𝜓

• Separation of the variables to find 𝜓 𝑥, 𝑦, 𝑧 : 

𝜓 𝑥, 𝑦, 𝑧 = 𝑋 𝑥  𝑌 𝑦  𝑍(𝑧)

⇒  −
ℏ2

2𝑚

𝜕2𝑋 𝑌 𝑍

𝜕x2
+

𝜕2𝑋 𝑌 𝑍

𝜕𝑦2
+

𝜕2𝑋 𝑌 𝑍

𝜕𝑧2
= 𝐸 𝜓
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𝐿𝑥

𝐿𝑧

𝐿𝑦

Inside the box:

𝑈 𝑥, 𝑦, 𝑧 = 0

 0 < 𝑥 < 𝐿𝑥

 0 < 𝑦 < 𝐿𝑦

 0 < 𝑧 < 𝐿𝑧



3D PARTICLE IN A BOX: SEPARATION OF THE VARIABLES

• Separation of the variables to find 𝜓 𝑥, 𝑦, 𝑧 : 

𝜓 𝑥, 𝑦, 𝑧 = 𝑋 𝑥  𝑌 𝑦  𝑍(𝑧)

⇒  −
ℏ2

2𝑚

𝜕2𝑋𝑌𝑍

𝜕x2
+

𝜕2𝑋𝑌𝑍

𝜕𝑦2
+

𝜕2𝑋𝑌𝑍

𝜕𝑧2
= 𝐸 𝜓

⇒  −
ℏ2

2𝑚
𝑌𝑍

𝜕2𝑋

𝜕x2
+ 𝑋𝑍

𝜕2𝑌

𝜕𝑦2
+ 𝑋𝑌

𝜕2𝑍

𝜕𝑧2
= 𝐸 𝜓

⇒  −
ℏ2

2𝑚

1

𝑋

𝜕2𝑋

𝜕x2
+

1

𝑌

𝜕2𝑌

𝜕𝑦2
+

1

𝑍

𝜕2𝑍

𝜕𝑧2
= 𝐸
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𝐿𝑥

𝐿𝑧

𝐿𝑦

Inside the box:

𝑈 𝑥, 𝑦, 𝑧 = 0

 0 < 𝑥 < 𝐿𝑥

 0 < 𝑦 < 𝐿𝑦

 0 < 𝑧 < 𝐿𝑧



3D PARTICLE IN A BOX: SEPARATION OF THE VARIABLES

𝜓 𝑥, 𝑦, 𝑧 = 𝑋 𝑥  𝑌 𝑦  𝑍(𝑧)

⇒  −
ℏ2

2𝑚

1

𝑋

𝜕2𝑋

𝜕x2
+

1

𝑌

𝜕2𝑌

𝜕𝑦2
+

1

𝑍

𝜕2𝑍

𝜕𝑧2
= 𝐸

System of equations:

 ⇒  

−
ℏ2

2𝑚

𝑑2𝑋

𝑑x2 = 𝐸𝑥 𝑋

−
ℏ2

2𝑚

𝑑2𝑌

𝑑𝑦2 = 𝐸𝑦 𝑌

−
ℏ2

2𝑚

𝑑2𝑍

𝑑𝑧2 = 𝐸𝑧 𝑍

   ,    𝐸 = 𝐸𝑥 + 𝐸𝑦 + 𝐸𝑧
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𝐿𝑥

𝐿𝑧

𝐿𝑦

Inside the box:

𝑈 𝑥, 𝑦, 𝑧 = 0

 0 < 𝑥 < 𝐿𝑥

 0 < 𝑦 < 𝐿𝑦

 0 < 𝑧 < 𝐿𝑧



3D PARTICLE IN A BOX: SOLUTIONS

• Each equation is similar to the 1D particle in a box

−
ℏ2

2𝑚

𝜕2𝑋

𝜕x2 = 𝐸𝑥 𝑋,      𝑋 𝑥 =
2

Lx
 sin

𝑛𝑥𝜋𝑥

𝐿𝑥
,       𝐸𝑥 =

ℏ2𝜋2𝑛𝑥
2

2𝑚𝐿𝑥
2

• Total wave function the product:

𝜓 𝑥, 𝑦, 𝑧 = 𝑋 𝑌 𝑍 =
8

LxL𝑦L𝑧
 sin

𝑛𝑥𝜋𝑥

𝐿𝑥
 sin

𝑛𝑦𝜋𝑦

𝐿𝑦
 sin

𝑛𝑧𝜋𝑧

𝐿𝑧

• With energy the sum:

𝐸 = 𝐸𝑥 + 𝐸𝑦 + 𝐸𝑧 =
ℏ2𝜋2

2𝑚

𝑛𝑥
2

𝐿𝑥
2 +

𝑛𝑦
2

𝐿𝑦
2 +

𝑛𝑧
2

𝐿𝑧
2
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𝐿𝑥

𝐿𝑧

𝐿𝑦

Inside the box:

𝑈 𝑥, 𝑦, 𝑧 = 0

 0 < 𝑥 < 𝐿𝑥

 0 < 𝑦 < 𝐿𝑦

 0 < 𝑧 < 𝐿𝑧



3D PARTICLE IN A BOX: NORMALIZATION

• Normalization constant in 3D?

 1 = න
−∞

∞

න
−∞

∞

න
−∞

∞

𝜓 𝑥, 𝑦, 𝑧 2 𝑑𝑧 𝑑𝑦 𝑑𝑧

⇒  1 = න
−∞

∞

න
−∞

∞

න
−∞

∞

𝑋 2 𝑌 2 𝑍 2𝑑𝑧 𝑑𝑦 𝑑𝑧 

⇒  1 = න
−∞

∞

𝑋 2𝑑𝑥  × න
−∞

∞

𝑌 2𝑑𝑦  ×  න
−∞

∞

𝑍 2𝑑𝑧

• Separation of variables: if all parts normalized then total wave 
function normalized

𝜓 𝑥, 𝑦, 𝑧 = 𝑋 𝑌 𝑍 =
8

LxL𝑦L𝑧
 sin

𝑛𝑥𝜋𝑥

𝐿𝑥
 sin

𝑛𝑦𝜋𝑦

𝐿𝑦
 sin

𝑛𝑧𝜋𝑧

𝐿𝑧
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𝐿𝑥

𝐿𝑧

𝐿𝑦

Inside the box:

𝑈 𝑥, 𝑦, 𝑧 = 0

 0 < 𝑥 < 𝐿𝑥

 0 < 𝑦 < 𝐿𝑦

 0 < 𝑧 < 𝐿𝑧



3D PARTICLE IN A BOX: QUANTUM NUMBERS

• In 1D we had quantum number  𝑛 ∶

• Solutions for the wave function:

𝜓𝑛 𝑥 =
2

𝐿
 sin

𝑛𝜋𝑥

𝐿
 

• Corresponding energies:

𝐸𝑛 =
ℏ2𝜋2𝑛2

2𝑚𝐿2
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𝜓1 𝑥

𝜓2 𝑥

𝜓3 𝑥

0 𝐿

𝐸3 = 9𝐸1

𝐸2 = 4𝐸1

𝐸1



3D PARTICLE IN A BOX: QUANTUM NUMBERS

• In 1D we had quantum number  𝑛 ∶

• Solutions for the wave function:

𝜓𝑛 𝑥 =
2

𝐿
 sin

𝑛𝜋𝑥

𝐿
 

• Corresponding energies:

𝐸𝑛 =
ℏ2𝜋2𝑛2

2𝑚𝐿2
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𝜓2 𝑥 2

𝜓1 𝑥 2

0 𝐿

𝜓3 𝑥 2

Particles “position” depending
  on 𝑛: 𝜓𝑛(𝑥), 𝐸𝑛



3D PARTICLE IN A BOX: STATIONARY SOLUTIONS

• Stationary solutions :  𝜓𝑛 𝑥 𝑒
𝑖𝐸𝑛𝑡

ℏ

• Probability density does not change in time

𝜓𝑛 𝑥 =
2

𝐿
 sin

𝑛𝜋𝑥

𝐿
, 

𝐸𝑛 =
ℏ2𝜋2𝑛2

2𝑚𝐿2

• But superpositions not stationary:

𝜓(𝑥) = 𝜓1 𝑥 𝑒
𝑖𝐸1𝑡

ℏ + 𝜓2 𝑥 𝑒
𝑖𝐸2𝑡

ℏ
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𝜓2 𝑥 2

𝜓1 𝑥 2

0 𝐿

𝜓3 𝑥 2

Particles “position” depending
  on 𝑛: 𝜓𝑛(𝑥), 𝐸𝑛



3D PARTICLE IN A BOX: STATIONARY SOLUTIONS

• Stationary solutions :  𝜓𝑛 𝑥 𝑒
𝑖𝐸𝑛𝑡

ℏ

• Probability density does not change in time

𝜓𝑛 𝑥 =
2

𝐿
 sin

𝑛𝜋𝑥

𝐿
, 

𝐸𝑛 =
ℏ2𝜋2𝑛2

2𝑚𝐿2

• But superpositions not stationary:

𝜓(𝑥) = 𝜓1 𝑥 𝑒
−𝑖𝐸1𝑡

ℏ + 𝜓2 𝑥 𝑒
−𝑖𝐸2𝑡

ℏ
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3D PARTICLE IN A BOX: QUANTUM NUMBERS

• In 1D we had quantum number  𝑛 ∶

𝜓𝑛 𝑥 =
2

𝐿
 sin

𝑛𝜋𝑥

𝐿
,  𝐸𝑛 =

ℏ2𝜋2𝑛2

2𝑚𝐿2

• In 3D we have quantum numbers: 𝑛𝑥, 𝑛𝑦, 𝑛𝑧 ∶

 𝜓𝑛𝑥,𝑛𝑦,𝑛𝑧
𝑥, 𝑦, 𝑧 =

8

LxL𝑦L𝑧
 sin

𝑛𝑥𝜋𝑥

𝐿𝑥
 sin

𝑛𝑦𝜋𝑦

𝐿𝑦
 sin

𝑛𝑧𝜋𝑧

𝐿𝑧

𝐸𝑛𝑥,𝑛𝑦,𝑛𝑧
=

ℏ2𝜋2

2𝑚

𝑛𝑥
2

𝐿𝑥
2 +

𝑛𝑦
2

𝐿𝑦
2 +

𝑛𝑧
2

𝐿𝑧
2

⇒  𝜓2,1,1 𝑥, 𝑦, 𝑧 =
8

LxL𝑦L𝑧
 sin

2𝜋𝑥

𝐿𝑥
 sin

1𝜋𝑦

𝐿𝑦
 sin

1𝜋𝑧

𝐿𝑧
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𝜓1,2,1

𝜓2,3,1

𝑦 𝑥

𝑧

𝑦 𝑥

𝑧 0

𝜓



3D PARTICLE IN A BOX: DEGENERACY

• Assume a cubic box   𝐿 = 𝐿𝑥 = 𝐿𝑦 = 𝐿𝑧

   𝜓 𝑥, 𝑦, 𝑧 =
8

𝐿3  sin
𝑛𝑥𝜋𝑥

𝐿
 sin

𝑛𝑦𝜋𝑦

𝐿
 sin

𝑛𝑧𝜋𝑧

𝐿

• Different wave function solutions have same energy 

  𝐸𝑛𝑥,𝑛𝑦,𝑛𝑧
=

ℏ2𝜋2

2𝑚𝐿2 𝑛𝑥
2 + 𝑛𝑦

2 + 𝑛𝑧
2

• If such same energies occur we call this degeneracy

• Wave functions: degenerate quantum states

• Energies: degenerate energy levels

• Example: the energy level 3𝐸1,1,1 is 3-fold degenerate 

 with  𝜓2,2,1, 𝜓2,1,2, and 𝜓1,2,2 having same energy
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𝐸1,1,1

2𝐸1,1,1

3𝐸1,1,1

11

3
𝐸1,1,1

4𝐸1,1,1

14

3
𝐸1,1,1

0

(1,1,1)

2,1,1 , 
1,2,1 , (1,1,2)

2,2,1 , 
2,1,2 , (1,2,2)

3,1,1 , 
1,3,1 , (1,1,3)

3,2,1 , 3,1,2 , 
2,3,1 , 1,3,2 , 

(2,1,3),(1,2,3)

2,2,2



3D PARTICLE IN A BOX: SYMMETRY → DEGENERACY

• Assume a cubic box   𝐿 = 𝐿𝑥 = 𝐿𝑦 = 𝐿𝑧

   𝜓 𝑥, 𝑦, 𝑧 =
8

𝐿3  sin
𝑛𝑥𝜋𝑥

𝐿
 sin

𝑛𝑦𝜋𝑦

𝐿
 sin

𝑛𝑧𝜋𝑧

𝐿

• Different wave function solutions have same energy 

  𝐸𝑛𝑥,𝑛𝑦,𝑛𝑧
=

ℏ2𝜋2

2𝑚𝐿2 𝑛𝑥
2 + 𝑛𝑦

2 + 𝑛𝑧
2

 

• Symmetry of a cubic box results in same situation if box is 
rotated over 90 degrees

• Introducing asymmetry lifts the degeneracy

 𝐸𝑛𝑥,𝑛𝑦,𝑛𝑧
=

ℏ2𝜋2

2𝑚

𝑛𝑥
2

𝐿𝑥
2 +

𝑛𝑦
2

𝐿𝑦
2 +

𝑛𝑧
2

𝐿𝑧
2
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𝐿𝑥

𝐿𝑧

𝐿𝑦

𝐿

𝐿
𝐿



3D PARTICLE IN A BOX: SYMMETRY → DEGENERACY

• Assume a cubic box   𝐿 = 𝐿𝑥 = 𝐿𝑦 = 𝐿𝑧

   𝜓 𝑥, 𝑦, 𝑧 =
8

𝐿3  sin
𝑛𝑥𝜋𝑥

𝐿
 sin

𝑛𝑦𝜋𝑦

𝐿
 sin

𝑛𝑧𝜋𝑧

𝐿

• Different wave function solutions have same energy 

  𝐸𝑛𝑥,𝑛𝑦,𝑛𝑧
=

ℏ2𝜋2

2𝑚𝐿2 𝑛𝑥
2 + 𝑛𝑦

2 + 𝑛𝑧
2

 

• Symmetry of a cubic box results in same situation if box is 
rotated over 90 degrees

• Introducing asymmetry lifts the degeneracy

 𝐸𝑛𝑥,𝑛𝑦,𝑛𝑧
=

ℏ2𝜋2

2𝑚

𝑛𝑥
2

𝐿𝑥
2 +

𝑛𝑦
2

𝐿𝑦
2 +

𝑛𝑧
2

𝐿𝑧
2
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𝐿𝑥

𝐿𝑧

𝐿𝑦

𝐿

𝐿
𝐿



Quantum model of the Hydrogen 
atom
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QUANTUM MODEL OF THE HYDROGEN ATOM

• 3D time-independent Schrodinger equation:

−
ℏ2

2𝑚

𝜕2 𝜓 

𝜕x2
+

𝜕2 𝜓 

𝜕𝑦2
+

𝜕2 𝜓 

𝜕𝑧2
+ 𝑈 𝜓 = 𝐸 𝜓

• Use the Coulomb interaction between proton 
and electron:

𝑈 𝑟 = −
1

4𝜋𝜖0

𝑒2

𝑟
• Spherical symmetry, 
• convert to spherical coordinates:

𝜓 𝑥, 𝑦, 𝑧  →  𝜓 𝑟, 𝜃, 𝜙

197.08.2025 Lecture 04: Schrodinger’s equation

𝑈(𝑟)

Nucleus
        𝑒+

Electron
𝑒−



QUANTUM MODEL OF THE HYDROGEN ATOM

• 3D time-independent Schrodinger equation:

−
ℏ2

2𝑚

𝜕2 𝜓 

𝜕x2
+

𝜕2 𝜓 

𝜕𝑦2
+

𝜕2 𝜓 

𝜕𝑧2
+ 𝑈 𝜓 = 𝐸 𝜓

• Use the Coulomb interaction between proton 
and electron:

𝑈 𝑟 = −
1

4𝜋𝜖0

𝑒2

𝑟
• Spherical symmetry, 
• convert to spherical coordinates:

𝜓 𝑥, 𝑦, 𝑧  →  𝜓 𝑟, 𝜃, 𝜙

207.08.2025 Lecture 04: Schrodinger’s equation

Reduced mass 𝜇 =
𝑚𝑒𝑚𝑛

𝑚𝑒+𝑚𝑛
≈ 𝑚𝑒

Nucleus
        𝑒+

Electron
𝑒−

𝑧

𝑦

𝑥

𝜙

𝜃
𝑟

Center of mass

𝑟



HYDROGEN ATOM: SEPARATION OF VARIABLES

• 3D time-independent Schrodinger equation:

−
ℏ2

2𝑚

𝜕2 𝜓 

𝜕x2
+

𝜕2 𝜓 

𝜕𝑦2
+

𝜕2 𝜓 

𝜕𝑧2
+ 𝑈 𝜓 = 𝐸 𝜓

• Separation of the variables (spherical coordinates):

𝜓 𝑟, 𝜃, 𝜙 = 𝑅 𝑟 Θ 𝜃 Φ 𝜙

⇒  

−
ℏ2

2𝜇 𝑟2

𝑑

𝑑𝑟
𝑟2

𝑑𝑅

𝑑𝑟
+

ℏ2𝑙 𝑙 + 1

2𝜇𝑟2
+ 𝑈 𝑟 𝑅(𝑟) = 𝐸 𝑅(𝑟)

−
1

sin𝜃
sin 𝜃

dΘ 𝜃

𝑑𝜃
+ 𝑙 𝑙 + 1 −

𝑚𝑙
2

sin2 𝜃
Θ 𝜃 = 0

 
d2Φ 𝜙

𝑑𝜙2
+ 𝑚𝑙

2Φ 𝜙 = 0
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Nucleus
        𝑒+

Electron
𝑒−

𝑧

𝑦

𝑥

𝜙

𝜃

𝑟



HYDROGEN ATOM: SEPARATION OF VARIABLES

• Separation of the variables (spherical coordinates):

𝜓 𝑟, 𝜃, 𝜙 = 𝑅 𝑟 Θ 𝜃 Φ 𝜙

 −
ℏ2

2𝜇 𝑟2

𝑑

𝑑𝑟
𝑟2

𝑑𝑅

𝑑𝑟
+

ℏ2𝑙 𝑙 + 1

2𝜇𝑟2
+ 𝑈 𝑟 𝑅(𝑟) = 𝐸 𝑅(𝑟)

−
1

sin𝜃
sin 𝜃

dΘ 𝜃

𝑑𝜃
+ 𝑙 𝑙 + 1 −

𝑚𝑙
2

sin2 𝜃
Θ 𝜃 = 0

 
d2Φ 𝜙

𝑑𝜙2
+ 𝑚𝑙

2Φ 𝜙 = 0

• Solutions? 

• Let’s first look at the conditions 

227.08.2025 Lecture 04: Schrodinger’s equation

Nucleus
        𝑒+

Electron
𝑒−

𝑧

𝑦

𝑥

𝜙

𝜃

𝑟

𝑅 𝑟 → ∞ → 0
 Φ 𝜙  and Θ 𝜃  finite everywhere
 Φ 𝜙 + 2𝜋 = Φ 𝜙



HYDROGEN ATOM: RADIAL EQUATION

𝜓 𝑟, 𝜃, 𝜙 = 𝑅 𝑟 Θ 𝜃 Φ 𝜙

Solution of the radial part:

−
ℏ2

2𝜇 𝑟2

𝑑

𝑑𝑟
𝑟2

𝑑𝑅

𝑑𝑟
+

ℏ2𝑙 𝑙 + 1

2𝜇𝑟2
+ 𝑈 𝑟 𝑅(𝑟) = 𝐸 𝑅(𝑟)

 

• Condition:  𝑅 𝑟 → ∞ → 0

• Solutions

𝑅𝑛,𝑙 𝑟 ∝
2𝑟

𝑛𝑎0

𝑙

 𝐿𝑛−𝑙−1
2𝑙+1 2𝑟

𝑛𝑎0
× 𝑒

−
𝑟

𝑛𝑎0

237.08.2025 Lecture 04: Schrodinger’s equation



     

 

   

 

 
  
 

     

 

   

 

 
  
 

     

 

   

 

     

   
 

 

   

 

 
  

 

     

   
 

 

   

 

       

   
 

 

   

 

HYDROGEN ATOM: RADIAL EQUATION

247.08.2025 Lecture 04: Schrodinger’s equation

     

 

   

 

 
  
 

     

 

   

 

 
  
 

     

 

   

 

     

   
 

 

   

 

 
  

 

     

   
 

 

   

 

       

   
 

 

   

 

𝑅𝑛,𝑙 𝑟 ∝
2𝑟

𝑛𝑎0

𝑙

 𝐿𝑛−𝑙−1
2𝑙+1 2𝑟

𝑛𝑎0
× 𝑒

−
𝑟

𝑛𝑎0

𝑅1,0 

𝑅2,0 

𝑅3,0 

𝑅2,1 

𝑅3,1 𝑅3,2 

𝑅𝑛,𝑙 𝑟
𝑅𝑛,𝑙 𝑟

2

𝑛 –  𝑙 − 1  zeros



HYDROGEN ATOM: RADIAL EQUATION

257.08.2025 Lecture 04: Schrodinger’s equation

𝑅𝑛,𝑙 𝑟 ∝
2𝑟

𝑛𝑎0

𝑙

 𝐿𝑛−𝑙−1
2𝑙+1 2𝑟

𝑛𝑎0
× 𝑒

−
𝑟

𝑛𝑎0

• Principal quantum number:  𝒏 =  1, 2, 3, … , ∞ 

• Orbital quantum number:  𝒍 =  0, 1, 2, … , 𝑛 − 1

• Radial part has 𝑛 –  𝑙 − 1  zeros in probability

• Energy is defined by the radial part:

𝐸𝑛 = −
1

4𝜋𝜖0
2

𝜇𝑒4

2𝑛2ℏ2
= −

13.6 eV

𝑛2

     

 

   

 

 
  
 

     

 

   

 

 
  
 

     

 

   

 

     

   
 

 

   

 

 
  

 

     

   
 

 

   

 

       

   
 

 

   

 

𝑅1,0 

𝑅2,0 

𝑅3,0 

|𝑅𝑛,𝑙 𝑟 |𝑅𝑛,𝑙 𝑟
2



HYDROGEN ATOM: RADIAL EQUATION

267.08.2025 Lecture 04: Schrodinger’s equation

• Principal quantum number:  𝒏 =  1, 2, 3, … , ∞ 

• Energy is defined by the radial part:

𝐸𝑛 = −
1

4𝜋𝜖0
2

𝜇𝑒4

2𝑛2ℏ2
= −

13.6 eV

𝑛2



HYDROGEN ATOM: RADIUS OF S-ORBITAL

277.08.2025 Lecture 04: Schrodinger’s equation

• Is the electron likely to be at the nucleus?

• Expected radius of the electron?

• Consider the ground state:

𝜓1,0,0 𝑟 ∝
1

𝜋𝑎0
3  𝑒

−
𝑟

1𝑎0

• Probability to have radius 𝑟 :

𝑃 𝑟  𝑑𝑉 = 𝜓1,0,0 𝑟
2

𝑑𝑉

• Volume infinitesimal thin shell radius 𝑟 :
𝑉shell  =  4𝜋 𝑟2𝑑𝑟

𝑟 𝑑𝑟

𝑃 𝑟  𝑑𝑉 = 𝜓1,0,0 𝑟
2

4𝜋𝑟2𝑑𝑟



HYDROGEN ATOM: RADIUS OF S-ORBITAL

287.08.2025 Lecture 04: Schrodinger’s equation

𝑟 𝑑𝑟

𝑃 𝑟  𝑑𝑉 = 𝜓1,0,0 𝑟
2

4𝜋𝑟2𝑑𝑟

𝑟 =
3

2
 𝑎0

𝑟max = 𝑎0



HYDROGEN ATOM: RADIUS OF S-ORBITAL

297.08.2025 Lecture 04: Schrodinger’s equation

𝑟 = න
0

∞

𝑟 𝜓1,0,0 𝑟
2

 4𝜋 𝑟2𝑑𝑟

 =  
1

𝜋𝑎0
3 4𝜋 න

0

∞

𝑟3𝑒
−

2𝑟
𝑎0𝑑𝑟

=
4

𝑎0
3

3!

2
𝑎0

4 =
3

2
𝑎0 

𝑟 =
3

2
 𝑎0

𝑟max = 𝑎0 • Expectation value for radius 𝑟



HYDROGEN ATOM: RADIUS OF S-ORBITAL

307.08.2025 Lecture 04: Schrodinger’s equation

0 =
𝑑

𝑑𝑟
𝜓1,0,0 𝑟

2
 4𝜋 𝑟2

 =
𝑑

𝑑𝑟

4

𝑎0
3  𝑟2 𝑒

−
2𝑟
𝑎0

=
4

𝑎0
3 2 −

2𝑟

𝑎0
𝑟𝑒

−
2𝑟
𝑎0

⇒  2 =
2𝑟

𝑎0
 ⇒  rmax = a0

𝑟 =
3

2
 𝑎0

𝑟max = 𝑎0

• Most likely radius 𝑟



HYDROGEN ATOM: ANGULAR MOMENTUM

• Quantization of angular momentum 

    𝐿 = 𝑙 𝑙 + 1  ℏ     with    𝑙 =  0, 1, … , 𝑛 − 1

• Different from Bohr’s:   𝑙 =  0 ⇒  𝐿 = 0

• Condition Φ(𝜙)  = Φ(𝜙 + 2𝜋) gives:

   

    𝐿𝑧 = 𝑚𝑙ℏ   with  𝑚𝑙 = 0, ±1, … , ±𝑙

Quantum numbers so far: 

 

 𝑛:    principal quantum number

 𝑙:     orbital quantum number 

 𝑚𝑙:  magnetic quantum number

317.08.2025 Lecture 04: Schrodinger’s equation

Graphical representation 
relation 𝐿𝑧  and  𝐿

𝐿𝑧



HYDROGEN ATOM: ANGULAR SOLUTIONS

• Quantization of angular momentum 

    𝐿 = 𝑙 𝑙 + 1  ℏ     with    𝑙 =  0, 1, … , 𝑛 − 1

• Different from Bohr’s:   𝑙 =  0 ⇒  𝐿 = 0

• Condition Φ(𝜙)  = Φ(𝜙 + 2𝜋) gives:

   

    𝐿𝑧 = 𝑚𝑙ℏ   with  𝑚𝑙 = 0, ±1, … , ±𝑙

Quantum numbers so far: 

 

 𝑛:    principal quantum number

 𝑙:     orbital quantum number 

 𝑚𝑙:  magnetic quantum number

327.08.2025 Lecture 04: Schrodinger’s equation

𝑅𝑛,𝑙 𝑟 Θ𝑙,m𝑙
𝜃 Φ𝑚𝑙

𝜙



HYDROGEN ATOM: ANGULAR EQUATIONS

𝜓 𝑟, 𝜃, 𝜙 = 𝑅 𝑟 Θ 𝜃 Φ 𝜙

Solving the  Φ 𝜙  part:

d2Φ 𝜙

𝑑𝜙2
+ 𝑚𝑙

2Φ 𝜙 = 0

• Conditions: 
 Φ 𝜙  finite everywhere, and 

 Φ 𝜙 + 2𝜋 = Φ 𝜙

• Solution: a complex phase factor

  Φml
𝜙  ∝ 𝑒  𝑖𝑚𝑙𝜙

337.08.2025 Lecture 04: Schrodinger’s equation



HYDROGEN ATOM: ANGULAR EQUATIONS

𝜓 𝑟, 𝜃, 𝜙 = 𝑅 𝑟 Θ 𝜃 Φ 𝜙

Solving the  Φ 𝜙  part:

d2Φ 𝜙

𝑑𝜙2
+ 𝑚𝑙

2Φ 𝜙 = 0

• Conditions: 
 Φ 𝜙  finite everywhere, and 

 Φ 𝜙 + 2𝜋 = Φ 𝜙

• Solution: a complex phase factor

  Φml
𝜙  ∝ 𝑒  𝑖𝑚𝑙𝜙

347.08.2025 Lecture 04: Schrodinger’s equation



HYDROGEN ATOM: SYMMETRY & SUPERPOSITION

𝜓 𝑟, 𝜃, 𝜙 = 𝑅 𝑟 Θ 𝜃 Φ 𝜙

• Solution: a complex phase factor

  Φml
𝜙  ∝ 𝑒  𝑖𝑚𝑙𝜙

• Solution with P0

357.08.2025 Lecture 04: Schrodinger’s equation

2Px − orbital

𝑅 𝑟 Θ 𝜃 × (𝑒  𝑖𝑚𝑙𝜙+ 𝑒  −𝑖𝑚𝑙𝜙) 



HYDROGEN ATOM: SUMMARY

• More real-valued representations

• Partially restore symmetry

• Superposition

• Lose quantum number: 𝑚𝑙

367.08.2025 Lecture 04: Schrodinger’s equation



HYDROGEN ATOM: QUANTIZATION AND NAMING

• Quantization of energy, linear momentum and radius

• Quantization of orbital/azimuthal momentum

• Energy 𝐸𝑛 is degenerate: 𝑙 and 𝑚𝑙 do not influence it

• Expected radius/energy close to Bohr’s model

• Labeling and naming conventions: 

377.08.2025 Lecture 04: Schrodinger’s equation

Azimuthal quantum 
number

Subshell name

𝑙 = 0 S states

𝑙 = 1 P states

𝑙 = 2 D states

𝑙 = 3 F states

Principal quantum 
number

Shell name

𝑛 = 1 K shell

𝑛 = 2 L shell

𝑛 = 3 M shell

𝑛 = 4 N shell
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