PHOT 301: Quantum Photonics
LECTURE 06

Michaél Barbier, Summer (2024-2025)

Lecture 06: Dirac formalism



OVERVIEW

Week 1

Week 2

Week 3

Week 4

Week 5

Week 6

Introduction & Required Mathematical Methods.

Waves and Schrodinger's equation, Probability, Uncertainty and Time evolution.
Infinite square well.

The harmonic oscillator, Creation and annihilation operators.

Free particle, 1D Bound states & Scattering/Transmission, Finite well

Quantum mechanics formalism: Functions and operators, uncertainty.

Approximation methods.

Angular momentum and the Hydrogen atom, Spin
Magnetic fields, The Pauli equation, Minimal Coupling, Aharonov Bohm

Perturbation: Fine Structure of Hydrogen, The Zeeman Effect

Identical particles, Periodic table, Molecular bonds, Periodic structures, Band
structure, Bloch functions
Time-dependent perturbation: Absorption, spontaneous emission, and stimulated

emission

Final exam

Ch.3

Lecture 06: Dirac formalism



FOR NEXT WEEK

o Textbook Chapter 2:2.31,2.34,2.41,2.53
Textbook Chapter 3: 2.31, 2.34,2.41, 2.53

Homework documents:

= phot301_homework_braket.pdf
e Reading (by Thursday 7 August 2025): Chapter 4 of Griffiths
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INTRODUCTION TO DIFFERENT
APPROXIMATIONS



APPROXIMATIONS

Method Approximates?
1  Transfer matrix method piece-wise constant V (x)
2  Finite basis method limited v,,, E,,: Matrix-formalism
3  Finite difference method discretizes wave function
4 Perturbation theory (stat.) small perturbation known solutions
5 Time-dependent perturbation small perturbation known solutions
6 Tight-binding approx. electrons strongly bound (covalent)
7  Variational method finding energy minima

Usage of simple examples to compare over approximations

e Infinite square well with E-field (David Miller’s book)
e Harmonic oscilator

e Transmission: Smoothed finite barrier
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TRANSFER MATRIX METHOD IN
1D



INTRO: TRANSFER MATRIX METHOD

e For 1D potential energy functions V(z) (here assume 1D systems)
e Approximation of potential energy V() by piece-wise constant V;

e Transmission or bound states

T V) V()]

\ 4
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INTRO: TRANSFER MATRIX METHOD

e For 1D potential energy functions V(z) (here assume 1D systems)
e Approximation of potential energy V() by piece-wise constant V;

e Transmission or bound states

T V) V(x)]

\ 4
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INTRO: TRANSFER MATRIX METHOD

e For 1D potential energy functions V(z) (here assume 1D systems)
e Approximation of potential energy V() by piece-wise constant V;

e Transmission or bound states

T V) V(x)]
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INTRO: TRANSFER MATRIX METHOD

e For 1D potential energy functions V(z) (here assume 1D systems)

Approximation of potential energy V(z) by piece-wise constant V;

Schrodinger equation for constant V(z) =

d?vy(z) 2m

dx? h?2

Solution dependsonvalueof £ — V:

If energy is larger than the potential energy E > V, then we have propagating waves

zp(x) _ Ae’ika} _|_B6—ika: k2

Lecture 06: Dirac formalism

2m

= —— (E=V)y(z)

— (E=V)
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INTRO: TRANSFER MATRIX METHOD

e For 1D potential energy functions V(z) (here assume 1D systems)
e Approximation of potential energy V(z) by piece-wise constant V;

e Schrodinger equation for constant V(z) =

d?vy(z) 2m

== (B V)Y(a)

e Solution depends onvalueof E — V'

e If energy is less than the potential E < V, then we have evanescent waves:

2
Y(x) = Ae ™" + Be™ o hm (V- E)

Lecture 06: Dirac formalism
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INTRO: TRANSFER MATRIX METHOD

e For 1D potential energy functions V(z) (here assume 1D systems)
e Approximation of potential energy V(z) by piece-wise constant V;

e Schrodinger equation for constant V(z) =

d?vy(z) 2m

== (B V)Y(a)

e Solution depends onvalueof E — V'

o If energy is the same as the potential energy £ = V, then:

Y(x) = A+ Bz

Lecture 06: Dirac formalism
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INTRO: TRANSFER MATRIX METHOD

e For 1D potential energy functions V(z) (here assume 1D systems)

e Approximation of potential energy V(z) by piece-wise constant V;

e Schrodinger equation for constant V(z) =

d?vy(z) . 2m
P = 2B V)

e Solution depends onvalueof E — V'

case solutions eigenvalue of p parameter
E>V etike +hk k2 =2 (E—-V)
K
E=V 1, 0, no e.v. E=V
E<V et +ihk k2= 2"(V - E)
K

Lecture 06: Dirac formalism
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BOUNDARY CONDITIONS ACROSS A STEP IN V(X)

e Suppose there is a step in the potential in z = a.

e Boundary conditions: Continuity of wave function ¢(x) and derivative %?:
wl(a’) — ?,b[[ (a) Aeikla _'_ Be—ikla — Ce’ik2a _|_ De—ikza
dyr(a d a . . . .
w;( ) = ¢;I( ) ’iklAezkla — ilee_zkla - ikQCGZkW — ’l:kizDe_ka
x x
Ve e
A elklx + Be—lklx Celkzx + De—lkzx

\ 4
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BOUNDARY CONDITIONS ACROSS A STEP IN V(X)

’Qb[(a,) — ¢II(G) Aeik1a T Be—ik1a — Oeikga + De—ikza
dir(a d a , . | |
'Qb;a(: ) — ¢Zl;( ) iklAGZkla . ilee—zkm _ ikzcezkza o ikzDe_ka
(i) (o o) (3) = (i) (0 o) (5)
ik —tky 0 e‘ikla B N ko  —1ko 0 e—ikza D
V(x) £
A elk1x 4 pe—ikix Celk2x 4 pe—ikzx
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BOUNDARY CONDITIONS ACROSS A STEP IN V(X)

(i) (o o) (3) = (i) (5 ) (5)
ik —iky 0 eha)\B) \iky —iks 0 etkae/\ D
Express coefficient A, Bin C, D:
(3)=(% %) ()
B) \ 0 eiha ik, —iky
(i) (0 ) (5)
X .
1ky  —1ko 0 e tha D

Rename the matrices as function of V and a:

(4) - Bk KaE ()



TRANSFER MATRIX FOR A SINGLE STEP

eikja O 1
E: = , : K
] (a) ( 0 o ikja ) ] (ikj

(gi ) — E7Y(a) K Ky Es(a) (

Ay

2

We can define the transfer matrix for a single step:
T12 = El_l (a)Kl_leE2(a)

Connection between coefficient before/after step:

Lecture 06: Dirac formalism
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MULTIPLE POTENTIAL STEPS

Extending the relation over multiple steps:

Ay A, A3)
(Bl) . (Bz) 2o (33

In general, after N steps we obtain:

A A A
( O)ZT( N+1):T01T12---TN,N+1( NH)
By Bni1 Bn1

Or renaming the indices on the left and right:

(AL) _ (tll t12) (AR)
By, to1  to2 Br

Lecture 06: Dirac formalism
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SCATTERING AND BOUND STATES

Therefore the transmission and reflection coefficients become;

Transmission T(FE) = \AR/AL|2 =1/t (E)‘2
Reflection R(E) = |BL/Ar|> = [ta1(E)|* / |t (E)|?

V(x) V(x)
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SCATTERING AND BOUND STATES

Bound states: A;, =0, Br =0
( 0 ) B (tll tlz) (AR) Ap =t (E) Ag
— —
By, tor  tao 0 Br =t21(F) Ag
e Bound states are given by zeros of t1;

e The total wave function is defined upon the coefficients By, and Agr. We can obtain
these unknowns by

= first using the second equation: By, = t9;(F) Ag to obtain By, and then

= applying normalization to the whole wave function to fix Ag.

V(x) V(x)
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APPROXIMATIONS

Method Approximates?
1  Transfer matrix method piece-wise constant V (x)
2  Finite basis method limited v,,, E,,: Matrix-formalism
3  Finite difference method discretizes wave function
4 Perturbation theory (stat.) small perturbation known solutions
5 Time-dependent perturbation small perturbation known solutions
6 Tight-binding approx. electrons strongly bound (covalent)
7  Variational method finding energy minima

Usage of simple examples to compare over approximations

e Infinite square well with E-field (David Miller’s book section 2.11)
e More on approximation methods: see Chapter 6 of David Miller’s book

e Analytic solution vs. perturbation vs. finite basis method vs. Finite difference

Lecture 06: Dirac formalism o1
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A CONSTANT ELECTRIC FIELD

e The potential for a constant electric field: V(z) = eF z

e The time-independent Schrodinger equation:

h? d*(z) -
“om agz T eETY(@) = Ey(z)
+00 +00 +00 o
2  Mmnx . :
\/; Sin (T) C Al(Zn) + D Bl(Zn)
V(x) = 0 V0 = ebx |
0 L 0 L
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A CONSTANT ELECTRIC FIELD

h2 d*y(z)

C2m dx?

+ eExip(z) = Ey(x)

Rewrite the equation to clarify its form:

d*¢(z)  2meE E
de2 K2 (z — G—E)%b(w)
= c(z — d)yY()

Wherec = 2™£ andd = £,
h el

This looks very much like the (solvable) Airy equation:

d* f (=)
dz?

= 2f(2)

— we need to find a suitable substitution for 2

Lecture 06: Dirac formalism
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SUITABLE SUBSTITUTION FOR Z(X)

Assume a linear form for z = ax + B and rewrite the Airy equation

d?y(z) B d? f(z) (dz

dx2  dz? dzx

) = o?2f(2) = (a’z + fa?) ()

But we have also:

~

1/3
2mekl E
:»z=aw+ﬂ=c1/3(m—d>=(me ) (—)

h2

Lecture 06: Dirac formalism
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AIRY EQUATION SOLUTIONS

d” f(2)
dz?

1 [ t
Ai(z) = / cos( + zt) dt
™ Jo 3
1 [ t? t?
Bi(z) = 7T/0 [exp (—3 + zt) + sin(3 + zt)] dt

=z f(2), b(z) = f(2) = C Ai(z) + D Bi(z)

— Ai(2)
11 — Bi2)

~17.5 —-15.0 —-12.5 -10.0 -7.5 -50 -25 00 25
Z

Lecture 06: Dirac formalism



BOUNDARY CONDITIONS

2
I 2k, i) = £ = 0AiG) + DB
r=0— 2z =—c/3d C' Ai(zg) + DBi(z) =0
t=L— zp = (L —d) C Ai(zr) + DBi(zg) = 0

(hiey min) (0) = (o)

Inverse cannot exist — determinant is zero:

Ai(z) Bi(z)
det (

Ai(zz) Bi(zL>) = Ai(z0) Bi(21) — Ai(zz) Bi(20) = 0

— Numerically solutions zy (F), 21 (F)

Lecture 06: Dirac formalism o7
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DIMENSIONLESS UNITS

Simplify formula and units +oo 400
f omeB\ " B
20 — —Cl/3d = — me S
h* el
< Y\ . I E
2z, = 3L —d) = me (L— ~)
\ h? el
In units of E7° = 52—7;2,
E V.,  eEL
E—e=—— Ve — v = o =
€ B L VL Ex Ex
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CHOICE OF UNITS

For comparison with the infinite well: energy unit E°

2 2
T\ 3 T\ 3
zo=——1] ¢, 2z =|—) (vp—¢)
VL, vy,

Alternative: energy unit vg,

2
20 — —7'('58,

ZL:ﬂ'% (1—5)

eigenenergies: Solve determinant equation

eigenstates: Fill in eigenenergies in boundary conditions

(constants C', D)

Lecture 06: Dirac formalism
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EIGENENERGIES & EIGENSTATES

1. Numerically solve determinant equation for eigenenergies F,,,

2. Use E, in boundary conditions to obtain ¢, ()

3. Normalize by fOL [h(z)|*dz = 1

Eigenenergies F,, :

Ai(z9) Bi(zr) — Ai(z1) Bi(z9) =0

Eigenstates 1, (z) = C Ai(z) + D Bi(z) :

Remember that z scales with energy

z=c(x—d) =

Lecture 06: Dirac formalism
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FINAL SOLUTION

3.0
12.5-
2.5-
2.0- 10.0-
S _
c  1.57 S 7.5
€ =
s L0 w 5.0
O 05
2.5-
0.0-
o 0.0
0 5 10 15 0.00 0.25 0.50 0.75 1.00
g (in v) x (in L)

e Eigenenergies ¢, have zero determinant: find roots

e Filline, to get eigenstates ¥, () Lecture 06: Dirac formalism



FINITE BASIS APPROXIMATION



FINITE BASIS APPROXIMATION

Steps to reach to the solutions:

1. Expand the solution in a known basis

2. Limit the amount of energy levels — matrix algebra

3. Solve the eigenvalue equations for eigenenergies & eigenstates

+ oo

L

+ oo + oo

C Ai(z,) + D Bi(z,)

Superposition
known basis

eigenstates
— ->

Lecture 06: Dirac formalism
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DIMENSIONLESS HAMILTONIAN

The dimensionless Hamiltonian for infinite well is obtained by:

e 2=z/L,E — E/EX*

o electric field vz, in units of Vg, /E°

1 d? - 1 d?
————+4v(2—1/2) with Hy=-———

H
w2 dz? w2 dz?

Compute the elements of the Hamiltonian (matrix)

_ 1 / e @% Dz + / vp (2 — 1/2)8m (2)0n (2)dz

With 1, (2) = v/2sin(nmz)

Lecture 06: Dirac formalism 34



HAMILTONIAN: OVERLAP INTEGRALS

mn - <¢m‘H‘¢n — _/wm @wn( )dZ + /VL (Z— ;)¢m(z)¢n(z)dz

With the eigenstates 1, (z) = /2 sin(nnz)
1
= —/ Ym (2 z)dz + /0 vr (2 — 1/2) (2)Yn(2)dz
= n%6mn + I/L/ (z — 1/2) sin(mnrz) sin(nnz)dz,
0

The second integral can be calculated:

( 4
nm if m+n is odd

a2 (m2 _ n2)2

/0 (z — 1/2) sin(mmz) sin(nnz)dz = <

\ 0 if m+n iseven
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HAMILTONIAN: OVERLAP INTEGRALS

We see that the integral has two different contributions:

Diagonal elements H,,, are defined by ﬁo with E,, = n? ET°
Other elements H,, ,,, determined by perturbing potential ﬁp — H— ﬁo

if n=m=E1m=%3,...
Hnn:n2 \

. H,,=0 if n=m=E2,m=+4,...

The Hamiltonian gives contributions of eigenstates ,,(z) = +/2sin(nnz)

K22

Eigenenergies E,, and potential v, arein units of E° = -
m

Lecture 06: Dirac formalism
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SOLVING THE EIGENVALUE EQUATION

The eigenvalue equation is:

I_:r¢n (Z) = Ep¢, (Z)

If we numerically calculate the overlap integrals:

1 —0.54 0
H,,= 1| —-0.54 4 —0.584
0 —0.584 9

When comparing resulting eigenvalues:

Eigenvalues Fq FE, E5

Finite basis approx. 0.90437 4.0279 9.068

Analytical solution  0.90419 4.0275 9.017

Lecture 06: Dirac formalism
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COMPARING EIGENSTATES

1.5
1.0
x
5. 0.5
n
Q
© 0.0
@ ——- Analytic
-
> —0.51 —— Finite basis: y;
- —1.01 — Finite basis:
Finite basis: s
-1.51 | | 1 | |
0.0 0.5 1.0 0.0 0.5 1.0
x (in L) x (in L)
(i) From the plot

Finite basis method gives good results for lower eigenenergies/eigenstates

Lecture 06: Dirac formalism

-
'\ ,,'
I I‘
I/ \
/ \ \
I \ \
| \ \
[ ! " \
11 1 I \
| I
! I
\ I
\ I
L
W\
\
\/
0.0 0.5 1.0
X (in L)
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APPROXIMATION



FINITE DIFFERENCE APPROXIMATION

Steps to reach to the solutions:

1. Discretize the wave function (finite basis)

2. Finite Difference Method to discretize the Schr"odinger equation

3. Limited discrete points — matrix algebra (Requires finite box)

4, Solve the eigenvalue equations for eigenenergies & eigenstates

+ oo

V(ix) =0

+ oo

+ oo + oo

C Ai(z,) + D Bi(z,)

V(x) =eEx

|
|
|
|
|
|
|
|
|
1
|
Lecture 06: Dirac formahﬁn L 40



DISCRETIZING A FUNCTION

e Afunction on a computer as a vector:

[ f(z1) (1)
f(z2) [

\f@/ \f;v/

Lecture 06: Dirac formalism
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A NORMALIZED STATE

e Anormalized state requires: (f|f) =1

e |f we define the normalized state as ket and bra:

/f(wl)\ (fl\

f(z2) f2
0 =1f@ve = | |
\fen))  \fn/
()= (F @)Wzl — (fiVaz f;\am - F;v/6D)

And the inner product is:

N b
(F15) = (F@\f(@)be =Y |fP6e / f(2)2da

j=1

Lecture 06: Dirac formalism
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FINITE DIFFERENCES

e Hamiltonian contains second derivative

e Derivative of a discrete function?

Central difference scheme:

Backward difference

@
2K

; 5

df(z)

0f() _ fin - fG— 1)

dx

Forward difference

/5"

Xi—1 Xi Xi+1

 f(x) >\

20x

Central difference

y f (%)

0x

Xi—1 X

Lecture 06: Dirac formalism
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SECOND DERIVATIVE

e Hamiltonian contains second derivative

e Derivative of a discrete function?

df(z)  6f(e) _ fur— G- 1)

Central difference scheme:

dx ox 20x

e Second derivative by using central difference scheme with §/2

firi—1i fi—fia
d2f(513) +c?ac - ox _ fi—|—1 + fi—l — zfz

dx? ox dx?

g

e Discrete potential function V; = V(z;)

~ h2 d? h? fii1+ fii1 —2f
H _ 4 V(w) BN o f +1 f 1 f
2m de Lecture 06: Diracform%% 5%2
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MATRIX FORM

A h? d*

T om dx?

+ V(x)

—

B h? fiv1 + fio1 — 2f;

+ Vi

2m

e The Hamiltonian can be written as a matrix operator

£

0
—2
1

1
—2

1

—2
1

Lecture 06: Dirac formalism
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MATRIX FORM (DIMENSIONLESS)
2 1 d? 1 fi+ fia -2 (Z 1)
+ vp

N 2

H=—— " +V —
w2 dr? (2) 2 dx?

e The Hamiltonian can be written as a matrix operator (E, vz, in units of £°)

(1o \ (¥ \

1 Vs

2 §x? ’ ’ ‘
1 -2 1 V-1
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MATRIX FORM (DIMENSIONLESS)

2 1 d? 1 fiy1+ fic1 —2f; i1
Ay g V@ I ()

N 2

e The Hamiltonian can be written as a matrix operator (E, vz, in units of £°)

i V(N \

-2 1 —N + 2

2 d? 2N .
1 -2 1 N — 2

\ 0 1/ \ N

— Solve the eigenvalue equation: ﬁ\¢n> = E,|v,

Lecture 06: Dirac formalism
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SOLVING LARGE MATRIX EQUATIONS

import numpy as np
from scipy.sparse import diags array
from scipy.sparse.linalg import eigsh, LaplacianNd

# Parameters

n ="50; L =1.0; dx = L/(n-1)
X = np.linspace(@, L, n)
V=5%(x - L/2)

# Calculate E n, Psi n
lap = LaplacianNd(
grid shape=(n, ), boundary conditions='dirichlet'
) .tosparse().astype(np.float64)
Vmat = diags array([V], offsets=[0]).toarray()
E n, Psi n = eigsh(-lap/np.pi**2/dx**2 + Vmat, k=3, which="SM")
print("Eigenvalues E1, E2, E3:\n\t\t" + str(np.round(E_n, 3)))

Eigenvalues E1, E2, E3:
[0.729 4.038 8.976]

Lecture 06: Dirac formalism
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INFINITE WELL WITH ELECTRIC FIELD

A 1 d? , A 1 d?
Eigenvalues FEq FEs FE5

Finite difference 0.7293 4.0382 8.976
Finite basis approx. 0.9044 4.0279 9.068
Analytical solution  0.9042 4.0275 9.017

e Choosinginitial basis functions not necessary
e Accurate potential V(z) (6= dependent)

e BAD eigenenergies accuracy? Wave function accuracy GOOD?
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WAVE FUNCTION COMPARISON

Eigenstates y,(x)

1.5-

1.0+

Analytic
| —— FDM: y
| —— FDM: g,
FDM: s

0.5
X (in L)

0.0

1.0

0.5
X (in L)

0.0
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TIME-INDEPENDENT
PERTURBATION THEORY



PERTURBATION THEORY

Steps to reach to the solutions:

1.H = H, + ,Yﬁp Assume the perturbation to be small

2. Expand both the eigenenergies & eigenstates into power series in ~y

3. Recursive relations for eigenenergies & eigenstates

+ oo

V(ix) =0

+ oo + oo

L Lecture 06: Dirac formalism
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V(x) = eEx



EXAMPLE OF STANDARD PERTURBATION

Putting on a “small” electric field

e Approximating the effect of V() = eE(x — L/2) = ez by power series:

E. =EY L oje+age® + ...

Eigenstates |v,,) extracted from E,,

e < 1 — higher orders zero

e Can we generalize perturbations? ~
5 P Epm (E1)

E(O)4

m
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PERTURBATION PART OF HAMILTONIAN

Independent of the actual perturbation form

e Known solutions for the unperturbed part fIO

I_:T0|¢n> — En‘¢n>

e Perturbation of fIO by “small” perturbing part ﬁp:
H = Hy ++H,
e We can express the eigenenergies E and eigenstates |¢):

H|¢) = (Ho +~H,)|¢) = E|¢)

Lecture 06: Dirac formalism
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POWER SERIES EXPANSION
H|$) = (Ho +~H,)|¢) = E|¢)
Expand E and |¢) as power series in «y:
E=EO 4 yEW 4 42E®) 4 43EC) L A4EW 4
9) = [6'7) +71¢Y) +42P) +7°[6P) + 44! + ...

Schrodinger equation becomes:

(Ho +vHy) (16©) +116D) +7%¢®) +...) =
(E(O) +yED +42E® 4 | ) (|¢(0>> + WY + 2 ¢P) + .. )

—— Equate coefficients of same orderin

Lecture 06: Dirac formalism
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/EROTH ORDER PERTURBATION

(Ho+7H,) (169) +71¢0) +7216) +...) =

(E(O) +yED 4+ 42E® 4 | ) (|¢(0)> + WY + 42¢P) + .. )
e zeroth orderin~y:

Hol¢) = EOQ1pOy  —  |y,,) = [¢©), E, =EU

e These are the solutions of the unperturbed Hamiltonian
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MATCHING ORDERS

(Ho +vH,) (I¢m> +918) +4%16%)) + .. ) —

(Bm +¥ED +42BD 1) ([6m) +716) +1216@) + ...

Matching orders in

ﬁ0‘¢m> — Em‘¢m>
Ho|¢W) + Hyltpm) = En|¢M) + EWp,,)

Ho|¢®) + Hy|pW) = B, |¢@) + EW D) + E@ )

Lecture 06: Dirac formalism
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MATCHING ORDERS CTU'D

Ep [ tm)
En|¢M) + EW|¢,,)
En|¢®) + EW oWy + E@|4p,,)

X I?O‘¢m>
Ho|¢W) + Hy|thm)
Ho|¢?) + H,|oV)

Rewrite highest order state to the left-hand-side:

(I::,O — Em)|¢m> =0
(o ~ Bn)l®) = (BY) — )
(Ho — En)|¢®) = (B — Hy)|¢M) + E®)|ypr)
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FIRST ORDER PERTURBATION THEORY

(I::’O — Em)|¢m> =0 )
(Ho — En)|¢W) = (B — Hp) i)
(Ho — Ep)|¢®) = (EW — H,)|¢W) + EP|y,,)

Left-multiply by the bra (1, |

left-hand-side: (4, |(Ho — )\qs )y = <¢m|(Em—Em)|gb(1)>:0

right-hand-side: (¢ [(EY — Hp)[¢h) = BV — (¢ | Hp |th1n)

—> BW = (| Hp |thm)

e First order correction to the eigenenergy: E,,, + E)

Lecture 06: Dirac formalism
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FIRST ORDER EIGENSTATE

e Expand first order correction eigenstate: |¢(1)) = > o aq(zl) %)
e Fillingin:

A

(Ho — En)|¢W) = (ED — H,)[thm)

left-hand-side: (| (Ho — Ep)|¢™M) = (B; — Ep)(hil¢V) = (B; — En)al”
right-hand-side: (4 |(BY) — Hy)|¢om) = BN (3ilthn) — (3s Hp|9om)

a (il Hyltpm)
~ %7 E,-F

n ﬁ m
— ey = Y

n#m

Lecture 06: Dirac formalism
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ELECTRIC FIELD AS PERTURBATION

Up to first order we have:

) — [+ 100) = ) + 3 20 p"“’” )

n#m

Em — Em + E(l) — E’m + <¢m|Hp|¢m>
The Hamiltonian in dimensionless units:

- 1 d? , - 1 d?

e The Hamiltonian gives contributions of eigenstates 1, (z) = v/2sin(nnz)

K22

e Eigenenergies FE,, and potential v, arein units of E* = -
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FIRST ORDER CORRECTION

The correction in the energies is zero (no change):
. .
E, + Eéz) = by, + <¢m‘Hp’¢m>
1
=m? + I/L/ (z — 1/2) sin®*(mnz)dz,
0

—m? + 0 =m?

n ‘HA- m
) + 80 = o) + 3 HnlBEolmd
n;ém m n
= |¢hm) — 7;1 mzzliLn2 /01 (z — 1/2) sin(mmnz) sin(nwz)dz |1y,)
B B 2ur, 4dnm
= ‘¢m> n_mj;lzg,“. mz . nz 772(m2 . n2)2 |¢’n>
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FIRST ORDER CORRECTION CTU'D

Where the second integral was obtained from:

, 4
nm if m+n isodd

a2 (m2 _ n2)2

/0 (z —1/2) sin(mnz) sin(nmz)dz = <

\ 0 if m+n iseven

So we have for eigenenergies and eigenstates:
En + EY = m?
Ym) + ) = vZsin(mrz) +

Z Snmuvr /2

2(m? — )’ sin(nmz)

n=m=+1,£3,...
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WAVE FUNCTION COMPARISON

Eigenstates y,(x)

1.5-

1.0+

0.51

- Analytic

Perturbed: g,
Perturbed: y;
Perturbed: w3

0.0

0.5
X (in L)

1.0

0.0

i/

728

0.5

X (in L)

1.0

For 2nd order perturbation theory: see Chapter 6 of David Miller’s book

Lecture 06: Dirac formalism

1.0

64



