Transfer matrix method in 1D
Intro: transfer matrix method
- For 1D potential energy functions \(V(x)\) (here assume 1D systems)
- Approximation of potential energy \(V(x)\) by piece-wise constant \(V_i\)
- Transmission or bound states
Intro: transfer matrix method
- For 1D potential energy functions \(V(x)\) (here assume 1D systems)
- Approximation of potential energy \(V(x)\) by piece-wise constant \(V_i\)
- Transmission or bound states
Intro: transfer matrix method
- For 1D potential energy functions \(V(x)\) (here assume 1D systems)
- Approximation of potential energy \(V(x)\) by piece-wise constant \(V_i\)
- Transmission or bound states
Intro: transfer matrix method
- For 1D potential energy functions \(V(x)\) (here assume 1D systems)
- Approximation of potential energy \(V(x)\) by piece-wise constant \(V_i\)
- Schrodinger equation for constant \(V(x) = V\)
\[
\frac{d^2 \psi(x)}{dx^2} = -\frac{2m}{\hbar^2} (E - V) \psi(x)
\]
- Solution depends on value of \(E - V\):
- If energy is larger than the potential energy \(E > V\), then we have propagating waves
\[
\psi(x) = A e^{i k x} + B e^{-i k x} \qquad k^2 = \frac{2m}{\hbar ^2} (E - V)
\]
Intro: transfer matrix method
- For 1D potential energy functions \(V(x)\) (here assume 1D systems)
- Approximation of potential energy \(V(x)\) by piece-wise constant \(V_i\)
- Schrodinger equation for constant \(V(x) = V\)
\[
\frac{d^2 \psi(x)}{dx^2} = -\frac{2m}{\hbar^2} (E - V) \psi(x)
\]
- Solution depends on value of \(E - V\):
- If energy is less than the potential \(E < V\), then we have evanescent waves:
\[
\psi(x) = A e^{- \kappa x} + B e^{\kappa x} \qquad \kappa^2 = \frac{2m}{\hbar ^2} (V - E)
\]
Intro: transfer matrix method
- For 1D potential energy functions \(V(x)\) (here assume 1D systems)
- Approximation of potential energy \(V(x)\) by piece-wise constant \(V_i\)
- Schrodinger equation for constant \(V(x) = V\)
\[
\frac{d^2 \psi(x)}{dx^2} = -\frac{2m}{\hbar^2} (E - V) \psi(x)
\]
- Solution depends on value of \(E - V\):
- If energy is the same as the potential energy \(E = V\), then:
\[
\psi(x) = A + B \, x
\]
Intro: transfer matrix method
- For 1D potential energy functions \(V(x)\) (here assume 1D systems)
- Approximation of potential energy \(V(x)\) by piece-wise constant \(V_i\)
- Schrodinger equation for constant \(V(x) = V\)
\[
\frac{d^2 \psi(x)}{dx^2} = -\frac{2m}{\hbar^2} (E - V) \psi(x)
\]
- Solution depends on value of \(E - V\):
| \(E > V\) |
\(e^{\pm i k x}\) |
\(\pm \hbar k\) |
\(k^2 = \frac{2m}{\hbar ^2} (E - V)\) |
| \(E = V\) |
\(1\), \(x\) |
\(0\), no e.v. |
\(E = V\) |
| \(E < V\) |
\(e^{\mp \kappa x}\) |
\(\pm i \hbar \kappa\) |
\(\kappa^2 = \frac{2m}{\hbar ^2} (V - E)\) |
Boundary conditions across a step in V(x)
- Suppose there is a step in the potential in \(x = a\).
- Boundary conditions: Continuity of wave function \(\psi(x)\) and derivative \(\frac{d\psi(x)}{dx}\):
\[
\begin{aligned}
\psi_I(a) &= \psi_{II}(a) \qquad & A e^{i k_1 a} + B e^{-i k_1 a} &= C e^{i k_2 a} + D e^{-i k_2 a}\\
\frac{d\psi_I(a)}{dx} &= \frac{d\psi_{II}(a)}{dx} \qquad & i k_1 A e^{i k_1 a} -i k_1 B e^{-i k_1 a} &= i k_2 C e^{i k_2 a} -i k_2 D e^{-i k_2 a}\\
\end{aligned}
\]
Boundary conditions across a step in V(x)
\[
\begin{aligned}
\psi_I(a) &= \psi_{II}(a) \qquad & A e^{i k_1 a} + B e^{-i k_1 a} &= C e^{i k_2 a} + D e^{-i k_2 a}\\
\frac{d\psi_I(a)}{dx} &= \frac{d\psi_{II}(a)}{dx} \qquad & i k_1 A e^{i k_1 a} -i k_1 B e^{-i k_1 a} &= i k_2 C e^{i k_2 a} -i k_2 D e^{-i k_2 a}\\
\end{aligned}
\]
\[
\pmatrix{1 & 1 \\ i k_1 & - i k_1}
\pmatrix{e^{i k_1 a} & 0 \\ 0 & e^{-i k_1 a}}
\pmatrix{A\\ B}
=
\pmatrix{1 & 1 \\ i k_2 & - i k_2}
\pmatrix{e^{i k_2 a} & 0 \\ 0 & e^{-i k_2 a}}
\pmatrix{C\\ D}
\]
Boundary conditions across a step in V(x)
\[
\pmatrix{1 & 1 \\ i k_1 & - i k_1}
\pmatrix{e^{i k_1 a} & 0 \\ 0 & e^{-i k_1 a}}
\pmatrix{A\\ B}
=
\pmatrix{1 & 1 \\ i k_2 & - i k_2}
\pmatrix{e^{i k_2 a} & 0 \\ 0 & e^{-i k_2 a}}
\pmatrix{C\\ D}
\]
Express coefficient \(A\), \(B\) in \(C\), \(D\):
\[
\pmatrix{A\\ B}
=
\pmatrix{e^{i k_1 a} & 0 \\ 0 & e^{-i k_1 a}}^{-1}
\pmatrix{1 & 1 \\ i k_1 & - i k_1}^{-1} \\
\qquad \qquad \qquad \qquad \qquad \qquad \times\pmatrix{1 & 1 \\ i k_2 & - i k_2}
\pmatrix{e^{i k_2 a} & 0 \\ 0 & e^{-i k_2 a}}
\pmatrix{C\\ D}
\]
Rename the matrices as function of \(V\) and \(a\):
\[
\pmatrix{A\\ B}
=
E_1^{-1}(a)
K_1^{-1}
K_2
E_2(a)
\pmatrix{C\\ D}
\]
Transfer matrix for a single step
\[
E_j(a) = \pmatrix{e^{i k_j a} & 0 \\ 0 & e^{-i k_j a}}
, \qquad
K_j \pmatrix{1 & 1 \\ i k_j & - i k_j}
\]
\[
\pmatrix{A_1\\ B_1}
=
E_1^{-1}(a)
K_1^{-1}
K_2
E_2(a)
\pmatrix{A_2\\ B_2}
\]
We can define the transfer matrix for a single step:
\[
T_{12} = E_1^{-1}(a)
K_1^{-1}
K_2
E_2(a)
\]
Connection between coefficient before/after step:
\[
\pmatrix{A_1\\ B_1}
= T_{12} \,
\pmatrix{A_2\\ B_2}
\]
Multiple potential steps
Extending the relation over multiple steps:
\[
\pmatrix{A_1\\ B_1}
= T_{12} \,
\pmatrix{A_2\\ B_2} = T_{12} \,
T_{23} \,
\pmatrix{A_3\\ B_3}
\]
In general, after N steps we obtain:
\[
\pmatrix{A_0\\ B_0}
= T \pmatrix{A_{N+1}\\ B_{N+1}} = T_{01} \, T_{12} \, \dots \, T_{N,N+1}
\pmatrix{A_{N+1}\\ B_{N+1}}
\]
Or renaming the indices on the left and right:
\[
\pmatrix{A_L\\ B_L}
= \pmatrix{t_{11} & t_{12}\\ t_{21} & t_{22}}
\pmatrix{A_R\\ B_R}
\]
Scattering and Bound states
Scattering: \(B_R = 0\)
\[
\pmatrix{A_L\\ B_L}
= \pmatrix{t_{11} & t_{12}\\ t_{21} & t_{22}}
\pmatrix{A_R\\ 0}
\]
Therefore the transmission and reflection coefficients become:
\[
\begin{aligned}
\textrm{Transmission}\quad & T(E) = |A_R/A_L|^2 = 1\,/\,|t_{11}(E)|^2\\
\textrm{Reflection}\quad & R(E) = |B_L/A_L|^2 = |t_{21}(E)|^2\,/\,|t_{11}(E)|^2\\
\end{aligned}
\]
Scattering and Bound states
Bound states: \(A_L = 0, \quad B_R = 0\)
\[
\pmatrix{0\\ B_L}
= \pmatrix{t_{11} & t_{12}\\ t_{21} & t_{22}}
\pmatrix{A_R\\ 0}
\Longrightarrow
\begin{aligned}
A_L = t_{11}(E) \,A_R\\
B_L = t_{21}(E) \,A_R\\
\end{aligned}
\]
- Bound states are given by zeros of \(t_{11}\)
- The total wave function is defined upon the coefficients \(B_L\) and \(A_R\). We can obtain these unknowns by
- first using the second equation: \(B_L = t_{21}(E) \,A_R\) to obtain \(B_L\), and then
- applying normalization to the whole wave function to fix \(A_R\).
Approximations
| 1 |
Transfer matrix method |
piece-wise constant \(V(x)\) |
| 2 |
Finite basis method |
limited \(\psi_n\), \(E_n\): Matrix-formalism |
| 3 |
Finite difference method |
discretizes wave function |
| 4 |
Perturbation theory (stat.) |
small perturbation known solutions |
| 5 |
Time-dependent perturbation |
small perturbation known solutions |
| 6 |
Tight-binding approx. |
electrons strongly bound (covalent) |
| 7 |
Variational method |
finding energy minima |
Usage of simple examples to compare over approximations
- Infinite square well with E-field (David Miller’s book section 2.11)
- More on approximation methods: see Chapter 6 of David Miller’s book
- Analytic solution vs. perturbation vs. finite basis method vs. Finite difference
Infinite well with E-field
A constant electric field
- The potential for a constant electric field: \(V(x) = e \tilde{E} \, x\)
- The time-independent Schrodinger equation:
\[
-\frac{\hbar^2}{2m} \frac{d^2 \psi(x)}{dx^2} + e\tilde{E}x \psi(x) = E \psi(x)
\]
A constant electric field
\[
-\frac{\hbar^2}{2m} \frac{d^2 \psi(x)}{dx^2} + e\tilde{E}x \psi(x) = E \psi(x)
\]
Rewrite the equation to clarify its form:
\[
\begin{aligned}
\frac{d^2 \psi(x)}{dx^2} &= \frac{2m e\tilde{E}}{\hbar^2} (x-\frac{E}{e\tilde{E}}) \psi(x)\\
&= c\,(x - d) \psi(x)
\end{aligned}
\]
Where \(c = \frac{2m e\tilde{E}}{\hbar^2}\) and \(d = \frac{E}{e\tilde{E}}\).
This looks very much like the (solvable) Airy equation:
\[
\frac{d^2 f(z)}{dz^2} = z f(z)
\]
\(\longrightarrow\) we need to find a suitable substitution for \(z\)
Suitable substitution for z(x)
Assume a linear form for \(z = \alpha x + \beta\) and rewrite the Airy equation
\[
\frac{d^2 \psi(x)}{dx^2} = \frac{d^2 f(z)}{dz^2} \left( \frac{dz}{dx} \right)^2 = \alpha^2 z f(z) = (\alpha^3 x + \beta \alpha^2) f(z)
\]
But we have also:
\[
\frac{d^2 \psi(x)}{dx^2} = -\frac{2m}{\hbar^2} (E - e\tilde{E}x) \psi(x) = c (x - d)
\]
\[
\Longrightarrow c (x - d) = (\alpha^3 x + \beta \alpha^2)\\
\Longrightarrow \alpha = c^{1/3} \qquad \beta = - c^{1/3} d\\
\]
\[
\Longrightarrow z = \alpha x + \beta = c^{1/3}(x - d) = \left( \frac{2 m e\tilde{E}}{\hbar^2} \right)^{1/3} \left(x - \frac{E}{e\tilde{E}}\right)
\]
Airy equation solutions
\[
\frac{d^2 f(z)}{dz^2} = z \, f(z), \qquad \quad \psi(x) = f(z) = C \, \mathrm{Ai}(z) + D \, \mathrm{Bi}(z)
\]
\[
\begin{aligned}
\mathrm{Ai}(z) &= \frac{1}{\pi} \int_0^\infty \cos\left(\frac{t^3}{3} + zt\right) dt\\
\mathrm{Bi}(z) &= \frac{1}{\pi} \int_0^\infty \left[\exp\left(-\frac{t^3}{3} + zt\right) + \sin\left(\frac{t^3}{3} + zt\right)\right] dt\\
\end{aligned}
\]
Boundary conditions
\[
\frac{d^2 f(z)}{dz^2} = z \, f(z), \qquad \quad \psi(x) = f(z) = C \, \mathrm{Ai}(z) + D \, \mathrm{Bi}(z)
\]
\[
\begin{aligned}
&x = 0 \longrightarrow z_0 = -c^{1/3} d &\qquad C \, \mathrm{Ai}(z_0) + D \, \mathrm{Bi}(z_0) = 0\\
&x = L \longrightarrow z_L = c^{1/3}(L-d) &\qquad C \, \mathrm{Ai}(z_L) + D \, \mathrm{Bi}(z_L) = 0\\
\end{aligned}
\]
\[
\begin{pmatrix}
\mathrm{Ai}(z_0) & \mathrm{Bi}(z_0)\\
\mathrm{Ai}(z_L) & \mathrm{Bi}(z_L)\\
\end{pmatrix}
\pmatrix{C \\ D}
=
\pmatrix{0 \\ 0}
\]
Inverse cannot exist \(\longrightarrow\) determinant is zero:
\[
\det
\begin{pmatrix}
\mathrm{Ai}(z_0) & \mathrm{Bi}(z_0)\\
\mathrm{Ai}(z_L) & \mathrm{Bi}(z_L)\\
\end{pmatrix}
= \mathrm{Ai}(z_0) \, \mathrm{Bi}(z_L) - \mathrm{Ai}(z_L) \, \mathrm{Bi}(z_0) = 0\\
\]
\(\longrightarrow\) Numerically solutions \(z_0(E)\), \(z_L(E)\)
Dimensionless units
Simplify formula and units
\[
\left\{
\begin{aligned}
z_0 &= -c^{1/3} d = - \left(\frac{2m e \tilde{E}}{\hbar^2}\right)^{1/3} \, \frac{E}{e\tilde{E}} \\
z_L &= c^{1/3}(L-d) = \left(\frac{2m e \tilde{E}}{\hbar^2}\right)^{1/3} \, \left(L - \frac{E}{e\tilde{E}}\right)\\
\end{aligned}
\right.
\]
In units of \(E_1^\infty = \frac{\hbar^2 \pi^2}{2 m L^2}\),
\[
\boxed{E \longrightarrow \varepsilon = \frac{E}{E_1^{\infty}}}
\qquad\boxed{V_L \longrightarrow \nu_L = \frac{V_L}{E_1^{\infty}} = \frac{e\tilde{E}L}{E_1^{\infty}}}
\]
\[
\Rightarrow
\boxed{z_0 = - \left(\frac{\pi}{\nu_L}\right)^{\frac{2}{3}} \varepsilon, \qquad
z_L = \left(\frac{\pi}{\nu_L}\right)^{\frac{2}{3}} \left(\nu_L - \varepsilon\right)}
\]
Choice of units
For comparison with the infinite well: energy unit \(\,\,E_1^\infty\)
\[
z_0 = - \left(\frac{\pi}{\nu_L}\right)^{\frac{2}{3}} \varepsilon, \qquad
z_L = \left(\frac{\pi}{\nu_L}\right)^{\frac{2}{3}} \left(\nu_L - \varepsilon\right)
\]
Alternative: energy unit \(\,\,\nu_L\)
\[
z_0 = - \pi^\frac{2}{3} \tilde{\varepsilon}, \qquad z_L = \pi^\frac{2}{3} \left(1 - \tilde{\varepsilon}\right)
\]
eigenenergies: Solve determinant equation
eigenstates: Fill in eigenenergies in boundary conditions (constants \(C\), \(D\))
Eigenenergies & eigenstates
- Numerically solve determinant equation for eigenenergies \(E_n\),
- Use \(E_n\) in boundary conditions to obtain \(\psi_n(x)\)
- Normalize by \(\int_0^L |\psi(x)|^2 dx = 1\)
\[
\begin{aligned}
&\textrm{Eigenenergies} \, \,E_n: \qquad \qquad\qquad\mathrm{Ai}(z_0) \, \mathrm{Bi}(z_L) - \mathrm{Ai}(z_L) \, \mathrm{Bi}(z_0) = 0\\
&\\
&\textrm{Eigenstates} \, \,\psi_n(x) = C \,\mathrm{Ai}(z) + D \,\mathrm{Bi}(z): \qquad\frac{D}{C} = -\frac{\mathrm{Bi(z_0)}}{\mathrm{Ai(z_0)}}
\end{aligned}
\]
Remember that \(z\) scales with energy
\[
z = c^{1/3}(x - d) = \left( \frac{2 m e\tilde{E}}{\hbar^2} \right)^{1/3} \left(x - \frac{E}{e\tilde{E}}\right) = \left(\frac{\pi}{\nu_L}\right)^{\frac{2}{3}} \left(\frac{x}{L}\nu_L - \varepsilon\right)
\]
Final solution
![]()
- Eigenenergies \(\varepsilon_n\) have zero determinant: find roots
- Fill in \(\varepsilon_n\) to get eigenstates \(\psi_n(x)\)
Finite basis approximation
Finite basis approximation
Steps to reach to the solutions:
- Expand the solution in a known basis
- Limit the amount of energy levels \(\longrightarrow\) matrix algebra
- Solve the eigenvalue equations for eigenenergies & eigenstates
Dimensionless Hamiltonian
The dimensionless Hamiltonian for infinite well is obtained by:
- \(z = x/L\), \(E \longrightarrow E/E^\infty_1\),
- electric field \(\nu_L\) in units of \(V_L/E^\infty_1\)
\[
\hat{H} = -\frac{1}{\pi^2}\frac{d^2}{dz^2} + \nu_L \, (z - 1/2) \quad \textrm{ with } \quad \hat{H}_0 = -\frac{1}{\pi^2}\frac{d^2}{dz^2}
\]
Compute the elements of the Hamiltonian (matrix)
\[
H_{mn} =
-\frac{1}{\pi^2} \int \psi_m(z) \frac{d^2}{dz^2} \psi_n(z) dz \,\, + \,\,\int \nu_L \, (z - 1/2) \psi_m(z) \psi_n(z) dz,
\]
With \(\,\psi_n(z) = \sqrt{2} \sin(n \pi z)\)
Hamiltonian: overlap integrals
\[
H_{mn} = \langle \psi_m | \hat{H} | \psi_n \rangle =
-\frac{1}{\pi^2} \int \psi_m(z) \frac{d^2}{dz^2} \psi_n(z) dz \,\, + \,\,\int \nu_L \, (z - \frac{1}{2}) \psi_m(z) \psi_n(z) dz,
\]
With the eigenstates \(\psi_n(z) = \sqrt{2}\sin(n\pi z)\)
\[
\begin{aligned}
H_{mn} &=
-\frac{1}{\pi^2} \int_0^1 \psi_m(z) \frac{d^2}{dz^2} \psi_n(z) dz \,\, + \,\,\int_0^1 \nu_L \, (z - 1/2) \psi_m(z) \psi_n(z) dz,\\
&=
n^2\delta_{mn} \,\, + \,\,\nu_L \int_0^1 \, (z-1/2) \sin(m\pi z) \sin(n\pi z) dz,\\
\end{aligned}
\]
The second integral can be calculated:
\[
\int_0^1 \, (z-1/2) \sin(m\pi z) \sin(n\pi z) dz =
\left\{\,\,\begin{aligned}
\frac{4nm}{\pi^2(m^2-n^2)^2} & \qquad \textrm{if }\,\, m+n \,\,\textrm{ is odd} \\
& \\
0 & \qquad \textrm{if } \,\,m+n\,\, \textrm{ is even}
\end{aligned}\right.
\]
Hamiltonian: overlap integrals
We see that the integral has two different contributions:
- Diagonal elements \(\,H_{nn}\,\) are defined by \(\,\hat{H}_0\,\) with \(\,\,E_n = n^2\, E_1^\infty\)
- Other elements \(\,H_{n, m \neq n}\,\) determined by perturbing potential \(\,\,\hat{H}_p = \hat{H} - \hat{H}_0\)
\[
H_{nn} = n^2 \qquad
\left\{\,\,
\begin{aligned}
H_{mn} &= - \nu_L \, \frac{4nm}{\pi^2(m^2-n^2)^2} & \quad \textrm{if }\,\,n = m \pm 1, m \pm 3, \dots \\
& & \\
H_{mn} &= 0 & \quad \textrm{if }\,\, n = m \pm 2, m \pm 4, \dots\\
\end{aligned}
\right.
\]
- The Hamiltonian gives contributions of eigenstates \(\,\,\psi_n(z) = \sqrt{2}\sin(n\pi z)\)
- Eigenenergies \(\,E_n\) and potential \(\,\nu_L\) are in units of \(\,\,E_1^\infty = \frac{\hbar^2\pi^2}{2mL^2}\)
Solving the eigenvalue equation
The eigenvalue equation is:
\[
\hat{H} \psi_n(z) = E_n \psi_n(z)
\]
If we numerically calculate the overlap integrals:
\[
H_{mn} = \pmatrix{
1 & -0.54 & 0\\
-0.54 & 4 & -0.584\\
0 & -0.584 & 9\\
}
\]
When comparing resulting eigenvalues:
| Finite basis approx. |
\(0.90437\) |
\(4.0279\) |
\(9.068\) |
| Analytical solution |
\(0.90419\) |
\(4.0275\) |
\(9.017\) |
Comparing Eigenstates
![]()
Finite basis method gives good results for lower eigenenergies/eigenstates
Finite difference approximation
Finite difference approximation
Steps to reach to the solutions:
- Discretize the wave function (finite basis)
- Finite Difference Method to discretize the Schr"odinger equation
- Limited discrete points \(\longrightarrow\) matrix algebra (Requires finite box)
- Solve the eigenvalue equations for eigenenergies & eigenstates
Discretizing a function
- A function on a computer as a vector:
\[
f(x) = \pmatrix{f(x_1) \\ f(x_2) \\ \vdots \\ f(x_N)} \longrightarrow \pmatrix{f_1 \\ f_2 \\ \vdots \\ f_N}
\]
A normalized state
- A normalized state requires: \(\langle f |f \rangle = 1\)
- If we define the normalized state as ket and bra:
\[
|f \rangle = |f(x_j) \sqrt{\delta x}\rangle = \pmatrix{f(x_1) \\ f(x_2) \\ \vdots \\ f(x_N)} \longrightarrow \pmatrix{f_1 \\ f_2 \\ \vdots \\ f_N}
\]
\[
\langle f | = \langle f^*(x_j) \sqrt{\delta x}| \longrightarrow \pmatrix{f_1^* \sqrt{\delta x} & f_2^* \sqrt{\delta x} & \cdots & f_N^* \sqrt{\delta x}}
\]
And the inner product is:
\[
\langle f | f \rangle = \langle f(x) | f(x)\rangle \delta x = \sum_{j=1}^N |f_j|^2 \delta x \quad\longleftrightarrow\quad
\int_a^b |f(x)|^2 dx
\]
Finite differences
- Hamiltonian contains second derivative
- Derivative of a discrete function?
\[
\textrm{Central difference scheme: } \quad \frac{df(x)}{dx} \longrightarrow
\frac{\delta f(x)}{\delta x} = \frac{f_{i+1} - f(i-1)}{2\delta x}
\]
Second derivative
- Hamiltonian contains second derivative
- Derivative of a discrete function?
\[
\textrm{Central difference scheme: } \quad \frac{df(x)}{dx} \longrightarrow
\frac{\delta f(x)}{\delta x} = \frac{f_{i+1} - f(i-1)}{2\delta x}
\]
- Second derivative by using central difference scheme with \(\delta/2\)
\[
\frac{d^2 f(x)}{dx^2} \longrightarrow
\frac{\frac{f_{i+1} - f_{i}}{\delta x} - \frac{f_{i} - f_{i-1}}{\delta x}}{\delta x}
= \frac{f_{i+1} + f_{i-1} - 2 f_i}{\delta x^2}
\]
- Discrete potential function \(V_i = V(x_i)\)
\[
\hat{H} = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + V(x) \quad \longrightarrow \quad
-\frac{\hbar^2}{2m} \frac{f_{i+1} + f_{i-1} - 2 f_i}{\delta x^2} + V_i
\]
Solving Large matrix equations
import numpy as np
from scipy.sparse import diags_array
from scipy.sparse.linalg import eigsh, LaplacianNd
# Parameters
n = 500; L = 1.0; dx = L/(n-1)
x = np.linspace(0, L, n)
V = 5 * (x - L/2)
# Calculate E_n, Psi_n
lap = LaplacianNd(
grid_shape=(n, ), boundary_conditions='dirichlet'
).tosparse().astype(np.float64)
Vmat = diags_array([V], offsets=[0]).toarray()
E_n, Psi_n = eigsh(-lap/np.pi**2/dx**2 + Vmat, k=3, which="SM")
print("Eigenvalues E1, E2, E3:\n\t\t" + str(np.round(E_n, 3)))
Eigenvalues E1, E2, E3:
[0.729 4.038 8.976]
Infinite well with electric field
\[
\hat{H} = -\frac{1}{\pi^2}\frac{d^2}{dz^2} + \nu_L \, (z - 1/2) \quad \textrm{ with } \quad \hat{H}_0 = -\frac{1}{\pi^2}\frac{d^2}{dz^2}
\]
| Finite difference |
\(0.7293\) |
\(4.0382\) |
\(8.976\) |
| Finite basis approx. |
\(0.9044\) |
\(4.0279\) |
\(9.068\) |
| Analytical solution |
\(0.9042\) |
\(4.0275\) |
\(9.017\) |
- Choosing initial basis functions not necessary
- Accurate potential \(V(x)\) (\(\delta x\) dependent)
- BAD eigenenergies accuracy? Wave function accuracy GOOD?
Wave function comparison
Time-independent perturbation theory
Perturbation theory
Steps to reach to the solutions:
- \(\hat{H} = \hat{H}_0 + \gamma\hat{H}_p\) Assume the perturbation to be small
- Expand both the eigenenergies & eigenstates into power series in \(\gamma\)
- Recursive relations for eigenenergies & eigenstates
Example of standard perturbation
- Putting on a “small” electric field
- Approximating the effect of \(V(x) = e \tilde{E} (x - L/2) \equiv \varepsilon z\) by power series:
\[
E_m = E^{(0)}_m + \alpha_1 \varepsilon + \alpha_2 \varepsilon^2 + \dots
\]
- Eigenstates \(|\psi_m\rangle\) extracted from \(E_m\)
- \(\varepsilon \ll 1 \, \longrightarrow\) higher orders zero
- Can we generalize perturbations?
Perturbation part of Hamiltonian
- Independent of the actual perturbation form
- Known solutions for the unperturbed part \(\hat{H}_0\)
\[
\hat{H}_0 |\psi_n\rangle = E_n |\psi_n\rangle
\]
- Perturbation of \(\hat{H}_0\) by “small” perturbing part \(\hat{H}_p\):
\[
\hat{H} = \hat{H}_0 + \gamma\hat{H}_p
\]
- We can express the eigenenergies \(E\) and eigenstates \(|\phi\rangle\):
\[
\hat{H}|\phi\rangle = (\hat{H}_0 + \gamma\hat{H}_p) |\phi\rangle = E |\phi\rangle
\]
Power series expansion
\[
\hat{H}|\phi\rangle = (\hat{H}_0 + \gamma\hat{H}_p) |\phi\rangle = E |\phi\rangle
\]
Expand \(E\) and \(|\phi\rangle\) as power series in \(\gamma\):
\[
E = E^{(0)} + \gamma E^{(1)} + \gamma^2 E^{(2)} + \gamma^3 E^{(3)} + \gamma^4 E^{(4)} + \dots
\]
\[
|\phi\rangle = |\phi^{(0)}\rangle + \gamma |\phi^{(1)}\rangle + \gamma^2 |\phi^{(2)}\rangle + \gamma^3 |\phi^{(3)}\rangle + \gamma^4 |\phi^{(4)}\rangle + \dots
\]
Schrodinger equation becomes:
\[
\begin{aligned}
&(\hat{H}_0 + \gamma\hat{H}_p) \left( |\phi^{(0)}\rangle + \gamma |\phi^{(1)}\rangle + \gamma^2 |\phi^{(2)}\rangle + \dots \right) = \\
& \qquad\left(E^{(0)} + \gamma E^{(1)} + \gamma^2 E^{(2)} + \dots \right) \left( |\phi^{(0)}\rangle + \gamma |\phi^{(1)}\rangle + \gamma^2 |\phi^{(2)}\rangle + \dots \right)
\end{aligned}
\]
\(\longrightarrow\) Equate coefficients of same order in \(\gamma\)
Zeroth order perturbation
\[
\begin{aligned}
&(\hat{H}_0 + \gamma\hat{H}_p) \left( |\phi^{(0)}\rangle + \gamma |\phi^{(1)}\rangle + \gamma^2 |\phi^{(2)}\rangle + \dots \right) = \\
& \qquad\left(E^{(0)} + \gamma E^{(1)} + \gamma^2 E^{(2)} + \dots \right) \left( |\phi^{(0)}\rangle + \gamma |\phi^{(1)}\rangle + \gamma^2 |\phi^{(2)}\rangle + \dots \right)
\end{aligned}
\]
- zeroth order in \(\gamma\):
\[
\hat{H}_0 |\phi^{(0)}\rangle = E^{(0)} |\phi^{(0)}\rangle \quad \longrightarrow \quad |\psi_m\rangle \equiv |\phi^{(0)}\rangle, \quad E_m \equiv E^{(0)}
\]
- These are the solutions of the unperturbed Hamiltonian
Matching orders
\[
\begin{aligned}
&(\hat{H}_0 + \gamma\hat{H}_p) \left( |\psi_m \rangle + \gamma |\phi^{(1)} \rangle + \gamma^2 |\phi^{(2)}\rangle + \dots \right) = \\
& \qquad\left(E_m + \gamma E^{(1)} + \gamma^2 E^{(2)} + \dots \right) \left( |\psi_m \rangle + \gamma |\phi^{(1)} \rangle + \gamma^2 |\phi^{(2)}\rangle + \dots \right)
\end{aligned}
\]
Matching orders in \(\gamma\)
\[
\begin{aligned}
\hat{H}_0 |\psi_m \rangle &= E_m |\psi_m \rangle\\
&\\
\hat{H}_0 |\phi^{(1)}\rangle + \hat{H}_p|\psi_m \rangle &= E_m |\phi^{(1)}\rangle + E^{(1)} |\psi_m \rangle\\
&\\
\hat{H}_0 |\phi^{(2)}\rangle + \hat{H}_p|\phi^{(1)}\rangle &= E_m |\phi^{(2)}\rangle + E^{(1)} |\phi^{(1)}\rangle + E^{(2)} |\psi_m\rangle\\
\end{aligned}
\]
Matching orders CTU’d
\[
\begin{aligned}
\hat{H}_0 |\psi_m \rangle &= E_m |\psi_m \rangle\\
\hat{H}_0 |\phi^{(1)}\rangle + \hat{H}_p|\psi_m \rangle &= E_m |\phi^{(1)}\rangle + E^{(1)} |\psi_m \rangle\\
\hat{H}_0 |\phi^{(2)}\rangle + \hat{H}_p|\phi^{(1)}\rangle &= E_m |\phi^{(2)}\rangle + E^{(1)} |\phi^{(1)}\rangle + E^{(2)} |\psi_m\rangle\\
\end{aligned}
\]
Rewrite highest order state to the left-hand-side:
\[
\begin{aligned}
(\hat{H}_0 - E_m) |\psi_m \rangle &= 0\\
(\hat{H}_0 - E_m)|\phi^{(1)}\rangle &= (E^{(1)} - \hat{H}_p)|\psi_m \rangle\\
(\hat{H}_0 - E_m)|\phi^{(2)}\rangle &= (E^{(1)} - \hat{H}_p) |\phi^{(1)}\rangle + E^{(2)} |\psi_m\rangle\\
\end{aligned}
\]
First order perturbation theory
\[
\begin{aligned}
(\hat{H}_0 - E_m) |\psi_m \rangle &= 0\\
(\hat{H}_0 - E_m)|\phi^{(1)}\rangle &= (E^{(1)} - \hat{H}_p)|\psi_m \rangle\\
(\hat{H}_0 - E_m)|\phi^{(2)}\rangle &= (E^{(1)} - \hat{H}_p) |\phi^{(1)}\rangle + E^{(2)} |\psi_m\rangle\\
\end{aligned}
\]
Left-multiply by the bra \(\langle \psi_m |\)
\[
\begin{aligned}
\textrm{left-hand-side:}\quad \langle \psi_m |(\hat{H}_0 - E_m)|\phi^{(1)}\rangle &= \langle \psi_m |(E_m - E_m)|\phi^{(1)}\rangle = 0\\
\textrm{right-hand-side:}\quad \langle \psi_m |(E^{(1)} - \hat{H}_p)|\psi_m \rangle &= E^{(1)} - \langle\psi_m | \hat{H}_p|\psi_m\rangle\\
&\\
\Longrightarrow E^{(1)} = \langle\psi_m | \hat{H}_p|\psi_m\rangle
\end{aligned}
\]
- First order correction to the eigenenergy: \(E_m + E^{(1)}\)
First order eigenstate
\[
\begin{aligned}
(\hat{H}_0 - E_m) |\phi^{(1)}\rangle &= (E^{(1)} - \hat{H}_p)|\psi_m \rangle\\
\end{aligned}
\]
\[
\begin{aligned}
\textrm{left-hand-side:}\quad \langle \psi_i |(\hat{H}_0 - E_m)|\phi^{(1)}\rangle &= (E_i - E_m)\langle \psi_i | \phi^{(1)}\rangle = (E_i - E_m) a_i^{(1)}\\
\textrm{right-hand-side:}\quad \langle \psi_i |(E^{(1)} - \hat{H}_p)|\psi_m \rangle &= E^{(1)} \langle\psi_i | \psi_m \rangle - \langle \psi_i | \hat{H}_p |\psi_m \rangle\\
&\\
\Longrightarrow \qquad \,\,\,\,\, a_i^{(1)} &= \frac{\langle \psi_i | \hat{H}_p |\psi_m \rangle}{E_m - E_i}\\
&\\
\Longrightarrow \qquad |\phi^{(1)}\rangle &= \sum_{n \neq m} \frac{\langle \psi_n | \hat{H}_p |\psi_m \rangle}{E_m - E_n} |\psi_n \rangle
\end{aligned}
\]
Electric field as perturbation
Up to first order we have:
\[
\begin{aligned}
|\psi_m \rangle \longrightarrow |\psi_m \rangle + |\phi^{(1)}_m\rangle &= |\psi_m \rangle + \sum_{n \neq m} \frac{\langle \psi_n | \hat{H}_p |\psi_m \rangle}{E_m - E_n} |\psi_n \rangle\\
E_m \longrightarrow \quad\,\,\, E_m + E^{(1)} &= E_m + \langle\psi_m | \hat{H}_p|\psi_m\rangle
\end{aligned}
\]
The Hamiltonian in dimensionless units:
\[
\hat{H} = -\frac{1}{\pi^2}\frac{d^2}{dz^2} + \nu_L \, (z - 1/2) \quad \textrm{ with } \quad \hat{H}_0 = -\frac{1}{\pi^2}\frac{d^2}{dz^2}
\]
- The Hamiltonian gives contributions of eigenstates \(\,\,\psi_n(z) = \sqrt{2}\sin(n\pi z)\)
- Eigenenergies \(\,E_n\) and potential \(\,\nu_L\) are in units of \(\,\,E_1^\infty = \frac{\hbar^2\pi^2}{2mL^2}\)
First order correction
The correction in the energies is zero (no change):
\[
\begin{aligned}
E_m + E^{(1)}_m &= E_m + \langle\psi_m | \hat{H}_p|\psi_m\rangle\\
&= m^2 \,\, + \,\,\nu_L \int_0^1 \, (z-1/2) \sin^2(m\pi z) dz,\\
&= m^2 + 0 = m^2
\end{aligned}
\]
\[
\begin{aligned}
|\psi_m \rangle + |\phi^{(1)}_m \rangle &= |\psi_m \rangle + \sum_{n \neq m} \frac{\langle \psi_n | \hat{H}_p |\psi_m \rangle}{E_m - E_n} |\psi_n \rangle\\
&= |\psi_m \rangle \,\, - \sum_{n \neq m} \frac{2\nu_L}{m^2 - n^2} \,\, \int_0^1 \, (z-1/2) \sin(m\pi z) \sin(n\pi z) dz \,\, |\psi_n \rangle\\
&= |\psi_m \rangle \,\, - \sum_{n = m \pm 1, \pm 3, \dots} \frac{2\nu_L}{m^2 - n^2} \,\, \frac{4nm}{\pi^2(m^2-n^2)^2} \,\, |\psi_n \rangle\\
\end{aligned}
\]
First order correction CTU’d
Where the second integral was obtained from:
\[
\int_0^1 \, (z-1/2) \sin(m\pi z) \sin(n\pi z) dz =
\left\{\,\,\begin{aligned}
\frac{4nm}{\pi^2(m^2-n^2)^2} & \qquad \textrm{if }\,\, m+n \,\,\textrm{ is odd} \\
& \\
0 & \qquad \textrm{if } \,\,m+n\,\, \textrm{ is even}
\end{aligned}\right.
\]
So we have for eigenenergies and eigenstates:
\[
\begin{aligned}
E_m + E^{(1)}_m &= m^2\\
| \psi_m \rangle + | \psi^{(1)}_m \rangle &= \sqrt{2}\sin(m\pi z) \,\, + \sum_{n = m \pm 1, \pm 3, \dots} \frac{8nm \nu_L\sqrt{2}}{\pi^2(m^2-n^2)^3} \,\, \sin(n\pi z)\\
\end{aligned}
\]
Wave function comparison
![]()
For 2nd order perturbation theory: see Chapter 6 of David Miller’s book