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OVERVIEW
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FOR NEXT WEEK

• Textbook Chapter 2: 2.31, 2.34, 2.41, 2.53

• Textbook Chapter 3: 2.31, 2.34, 2.41, 2.53

• Homework documents:

▪ phot301_homework_braket.pdf

• Reading (by Thursday 7 August 2025): Chapter 4 of Griffiths
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SUMMARY OF WHAT WE KNOW

• Time-independent Schrodinger equation

• Find eigenstates and eigenenergies:

▪ complete basis: Solution is superposition of eigenstates

▪ orthonormal: Solution is superposition of eigenstates

• Special case(?) of free particles:

▪ Propagating waves 

▪ All energies can be reached

▪ Real solutions are given by wave packets

▪ Uncertainty between position and momentum

Ψ(x, t) ∝ ei(kx−ωt)
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SUMMARY OF WHAT WE KNOW

• Evolution in time

▪ Phase factor depending on energy: 

▪ Higher energies change faster

▪ Superposition of bound states deform

▪ Free particles: wave packets have faster and slower components (dispersion)

ei t/ℏEn
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MATHEMATICS OF WAVE FUNCTIONS &
OBSERVABLES?
Wave functions

• Complete basis of orthonormal eigenstates

• Superposition is solution of linear Schrodinger equation

Observables

• Observables are linear operators

• Applying an operator to a wave function gives another wave function

–> Quantum mechanics can be described with linear algebra
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LINEAR ALGEBRA
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FIELD OF COMPLEX NUMBERS

• The sets of rational ( ), real ( ), and complex numbers ( ) are fields:

▪ 2 operations: addition and multiplication

▪ identity elements: addition (0), multiplication (1)

▪ Inverse elements: addition (-x), multiplication ( )

▪ Commutativity, associativity, distributivity

Complex numbers :

• Imaginary identity 

• Complex conjugate : 

Q R C

x−1

z ∈ C

i = , = −1−1−−−√ i2

z∗ z = x + i y ⟶ = x− i yz∗
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FIELD OF COMPLEX NUMBERS: PROPERTIES
Assume :

Operations:

z = x + iy ∈ C

Representation
Complex conjugate

Magnitude
Phase

Trigoniometry

z = x + i y = r = r (cos θ + i sin θ)eiθ

= x− i y = r = r (cos θ− i sin θ)z∗ e−iθ

|z = z = + = R{z + I{z|2 z∗ x2 y2 }2 }2

θ = −i ln(z/|z|) = arctan(y/x)

cos θ = , sin θ =
+eiθ e−iθ

2
−eiθ e−iθ

2i

Addition

Multiplication

+ = ( + ) + i ( + )z1 z2 x1 x2 y1 y2

=z1 z2 r1r2ei( + )θ1 θ2
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VECTOR SPACES
A vector space  over field :

• Addition of vectors 

• Scalar multiplication 

Property name rule

(Addition) Commutative

(Addition) Associative

(Addition) Identity  for all 

(Addition) Inverse element for all , exists 

(Scalar) Compatible product

(Scalar) Identity

(Scalar) Distributivity

(Scalar) Distributivity

V = {|α⟩, |β⟩, |γ⟩, …} F = C

|α⟩+ |β⟩ ∈ V

c|α⟩ ∈ V

|α⟩+ |β⟩ = |β⟩+ |α⟩

|α⟩+ (|β⟩+ |γ⟩) = (|α⟩+ |β⟩) + |γ⟩

0 + |β⟩ = |β⟩ |β⟩

|β⟩ −|β⟩ : −|β⟩+ |β⟩ = 0

c (d |α⟩) = (c d) |α⟩

1 |α⟩ = |α⟩

c(|α⟩+ |β⟩) = c |β⟩+ c |α⟩

(c + d)|α⟩ = c |α⟩+ d |α⟩
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BASIS VECTORS
Linear independence

A vector  is linearly independent of  

 no linear combination: 

|ξ⟩ {|α⟩, |β⟩, |γ⟩, …}

⇔ |ξ⟩ = a|α⟩+ b|β⟩+ c|γ⟩+ …

Example: in 3D vector space:

• Vector  is linearly independent from 

• BUT ..  is dependent to 

(x, y, z) = (0, 1, 1) {(1, 1, 0), (1, 0, 0)}

(0, 1, 1) {(−1, 1, 0), (1, 0, 1)}

Basis vectors:

• A vector set is linear independent if each of them is independent from the others.

• The span of a vector set is the subset of vectors formed by linear combinations

• A linear independent vector set is a basis if it spans the whole space
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BASIS VECTORS
Suppose a finite set of  basis vectors:

Each vector  can be written as superposition:

In component notation for specific basis:

n

{| ⟩, | ⟩, … , | ⟩ }e1 e2 en

|α⟩

|α⟩ = | ⟩+ | ⟩+⋯+ | ⟩a1 e1 a2 e2 an en

|α⟩ = ( , , … , )a1 a2 an

 Simplifies understanding the properties:⟶

|0⟩+ |α⟩ = |α⟩
|α⟩+ |− α⟩ = |0⟩

|α⟩+ c|β⟩

⟹ |0⟩ = (0, 0, … , 0)
⟹ |− α⟩ = (− ,− , … ,− )a1 a2 an

⟹ |α⟩+ c|β⟩ = ( + c , + c , … , + c )a1 b1 a2 b2 an bn
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NORMED VECTOR SPACE

• There exists a norm or length of a vector  given by 

Property name rule

Non-negative

Positive definite

Absolute homogeneity

Triangle inequality

• Distance corresponding to norm:

• Example distance: 

• Example norm: 

|β⟩ ∥β∥ ≡ ∥ |β⟩∥

∥β∥ ≥ 0

∥β∥ = 0 ⇔ |β⟩ = |0⟩

∥c β∥ = |c| ∥β∥

∥|α⟩+ |β⟩∥ ≤ ∥α∥+ ∥β∥

d(|β⟩, |α⟩) = ∥|α⟩ − |β⟩∥

d (( , ), ( , )) =x1 y1 x2 y2 ( − + ( −x2 x1)2 y2 y1)2− −−−−−−−−−−−−−−−−−√

∥(3, 4)∥ = = = 5+32 42− −−−−−√ 25−−√
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INNER PRODUCT VECTOR SPACE

• An inner product of a vector space:

Property name rule

conjugate symmetry

linearity 2nd argument

 conjugate linear 1st

positive definite

• The norm is defined by

⟨ ⟨α| , |β⟩ ⟩ = ⟨α|β⟩⟶ c ∈ C

= ⟨α|β⟩⟨β|α⟩∗

⟨α | ( c |β⟩ + d |γ⟩)⟩ = c ⟨α|β⟩ + d ⟨α|γ⟩

⇒ ⟨ (c |α⟩ + d |β⟩ ) | γ⟩ = ⟨α|γ⟩ + ⟨β|γ⟩c∗ d∗

⟨β|β⟩ > 0

∥β∥ = ⟨β|β⟩
− −−−√
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ORTHONORMAL BASIS VECTORS

• A vector  is normalized 

• A vector 

• Orthonormal set of vectors: 

• Always possible to find an orthonormal basis!

 In component notation: 

The norm is given by:

In  the angle between two vectors is :

|β⟩ ⇔ ∥β∥ = 1

|β⟩ ⊥ |α⟩ ⇔ ⟨α|β⟩ = 0

⟨ | ⟩ =αi αj δij

⟶ ⟨α|β⟩ = +⋯+ with = ⟨ |α⟩a∗
1b1 a∗

nbn ai ei

∥α = ⟨α|α⟩ = +⋯+ with = | +⋯+ |∥2 a∗
1b1 a∗

nbn ai a1|2 an|2

Rn a ⋅ b = ∥a∥∥b∥ cos(θ)

cos θ =
⟨α|β⟩ ⟨β|α⟩− −−−−−−−−√

∥α∥∥β∥

15Lecture 05: Dirac formalism



IMPORTANT THEOREMS

• The dimension  (= number of basis vectors) is constant for a vector space.

• Gram-Schmidt procedure: any basis orthonormal basis.

• Schwartz inequality:

• Triangle inequality:

n

⟶

|⟨α|β⟩ ≤ ⟨α|α⟩ ⟨β|β⟩|2

∥ |α⟩+ |β⟩ ∥ ≤ ∥α + ∥β∥2 ∥2
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OPERATORS: LINEAR TRANSFORMATIONS

• linear transformations :

• If we know the basis vectors :

T̂

| ⟩ = |α⟩ linearity:  (c|α⟩+ d|β⟩) = a |α⟩+ b |β⟩α′ T̂ T̂ T̂ T̂

| ⟩, … , | ⟩e1 en

| ⟩α′ = |α⟩T̂

= ( | ⟩+⋯+ | ⟩)T̂ a1 e1 an en

= | ⟩+⋯+ | ⟩T̂ a1 e1 T̂ an en

= | ⟩+⋯+ | ⟩a1 T̂ e1 an T̂ en

= | ⟩∑
i=1

n

ai T̂ ei

17Lecture 05: Dirac formalism



OPERATORS: MATRIX NOTATION

• If we know the basis vectors :

The  can be written as superposition:

| ⟩, … , | ⟩e1 en

|α⟩ = | ⟩T̂ ∑
j=1

n

aj T̂ ej

| ⟩T̂ ei

| ⟩T̂ e1

| ⟩T̂ e2

| ⟩T̂ en

= | ⟩+ | ⟩+⋯+ | ⟩T11 e1 T21 e2 Tn1 en

= | ⟩+ | ⟩+⋯+ | ⟩T12 e1 T22 e2 Tn2 en

…

= | ⟩+ | ⟩+⋯+ | ⟩T1n e1 T2n e2 Tnn en

⇒ |α⟩ = | ⟩ = | ⟩ = ( ) | ⟩T̂ ∑
j=1

n

aj T̂ ej ∑
j=1

n

∑
i=1

n

ajTij ei ∑
i=1

n

∑
j=1

n

Tijaj ei
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OPERATORS: MATRIX NOTATION

Operator  as a matrix  for basis 

And the matrix:

⇒ |α⟩ = | ⟩ = | ⟩ = ( ) | ⟩T̂ ∑
j=1

n

aj T̂ ej ∑
j=1

n

∑
i=1

n

ajTij ei ∑
i=1

n

∑
j=1

n

Tijaj ei

T̂ Tij {| ⟩ , … , | ⟩}e1 en

=a′
i ∑

j=1

n

Tijaj

= with  = ⟨ | | ⟩Tij

⎛

⎝
⎜⎜⎜⎜⎜

T11

T21

⋮
Tn1

T12

T22

⋮
Tn2

⋯
⋯

⋱
⋯

T1n

T2n

⋮
Tnn

⎞

⎠
⎟⎟⎟⎟⎟ Tij ei T̂ ej
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MATRICES AND VECTORS
If we have a basis basis 

An operator acting on a vector :

{| ⟩ , … , | ⟩}e1 en

|α⟩ =

⎛

⎝
⎜⎜⎜⎜

a1

a2

⋮
an

⎞

⎠
⎟⎟⎟⎟

|α⟩

|α⟩⟶ =T̂ ∑
j=1

n

Tijaj

⎛

⎝
⎜⎜⎜⎜⎜

T11

T21

⋮
Tn1

T12

T22

⋮
Tn2

⋯
⋯

⋱
⋯

T1n

T2n

⋮
Tnn

⎞

⎠
⎟⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜⎜

a1

a2

⋮
an

⎞

⎠
⎟⎟⎟⎟
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OPERATORS AND MATRIX PROPERTIES

• Adding two operators:

• Performing multiple operators :

= + ⟶ = +Û Ŝ T̂ Uij Sij Tij

=Û ŜT̂

|α⟩ = |α⟩⟶ =Û ŜT̂ Uij ∑
k

SikTkj
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INTERMEZZO: MATRIX PRODUCTS
The matrix product between matrices  and  is defined as

• Rows of  are multiplied by columns of .

•  No. columns of  must equal No. rows of 

A B

A ⋅B = ( )a11

a21

a12

a22

a13

a23

⎛
⎝⎜

b11

b21

b31

b12

b22

b32

b13

b23

b33

⎞
⎠⎟

= ∑
j

aijbjk

A B

⋅ ←AMN BNK A B

22Lecture 05: Dirac formalism



OPERATORS AND MATRIX PROPERTIES

• Transpose of a matrix 

▪ symmetric: 

▪ antisymmetric: 

• Complex conjugate of a matrix 

▪ real: 

▪ imaginary: 

• Hermitian conjugate of a square matrix 

▪ Hermitian: 

▪ skew hermitian: 

=T
~

Tji

= TT
~

= −TT
~

=T ∗ T ∗
ij

= TT ∗

= −TT ∗

= =T † T
~∗

T ∗
ji

= TT †

= −TT †
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BRA-KET NOTATION AND INNER PRODUCTS

• The inner product for orthonormal basis 

• ket  is a column vector

• bra  is a complex conjugate row vector

In vector notation:

{| ⟩ , … , | ⟩}e1 en

⟨α|β⟩ = + +⋯+ = ba∗
1b1 a∗

2b2 a∗
nbn a†

|β⟩

⟨α|

⟨α| ⟶ = ( ) |β⟩⟶ =a⃗  a∗
1 a∗

2 … a∗
N b ⃗ 

⎛

⎝
⎜⎜⎜⎜

b1

b2

⋮
bN

⎞

⎠
⎟⎟⎟⎟
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OPERATORS AND MATRIX PROPERTIES

• Transpose of a matrix product 

• Hermitian of a matrix product 

• Inverse matrix

• Inverse of a matrix product 

• Unitary matrix

• Unitary operators preserve inner product:

=S T
~

T
~

S
~

=(S T )†
T †S†

T = T = 1 =T −1 T −1 δij

=(S T )−1
T −1S−1

=U † U −1

⟨ | ⟩ = = (Ua (Ub) = Ub = b = ⟨α|β⟩α′ β ′ a′†b′ )† a†U † a†
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CHANGE OF BASIS

• Unitary matrices  preserve inner product

▪ Norm doesn’t change

▪ Angles between vectors don’t change

 Apply unitary transformation to orthonormal basis is again orthonormal basis

If  transforms a basis:  to another orthonormal one:  is
unitary:

U(⟵ = )U † U −1

⟶

{| ⟩, | ⟩, … , | ⟩} | ⟩ = U | ⟩  is orthonormale1 e2 en e′
i ei

T ⟩ = T | ⟩ai ei ⟨ | ⟩ =aj ai δij ⟹ T

⇒ T = 1 ⇒ =
δij = ⟨ | ⟩aj ai

= ⟨ |T | ⟩aj ei

= ⟨ | T | ⟩ej T † ei

T † T † T −1
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COMMUTATORS

• Matrix-multiplication not commutative  Order of operators!

• Commutator of two operators/matrices

• Anti-commutator of two operators/matrices

⟷

[ , ] = − ⟷ [S, T ] = S T − T SŜ T̂ ŜT̂ T̂ Ŝ

{ , } = + ⟷ {S, T} = S T + T SŜ T̂ ŜT̂ T̂ Ŝ
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EIGENVALUE PROBLEMS
Eigenvector  and eigenvalues  of matrix :

Because  the inverse of  cannot exist, because if it would:

x ≠ 0 λ A

Ax = λx ⇔ (λ1−A)x = 0

x ≠ 0 λ1−A

(λ1−A)x
⟹ (λ1−A (λ1−A)x)−1

⟹ (λ1−A (λ1−A)x)−1

⟹ x

= 0
= (λ1−A 0)−1

= 0
= 0
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EIGENVALUE PROBLEMS

• Matrix  not invertible  the determinant has to be zero

• Solve characteristic equation:

• Determinant is a “characteristic” polynomial in 

• Highest order of  is the dimension  of the  matrix

• Solving it means finding  values

(λ1−A) ⟶

det(λ1−A) = 0

λ

λ N N × N

λ
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EXAMPLE EIGENVALUE PROBLEM

This gives for the characteristic equation: :

The determinant is:

A = ( )−5
−7

2
4

det(λ1−A) = 0

det [λ ( )− ( )] = 0
1
0

0
1

−5
−7

2
4

⟹ det [( )] = 0
λ + 5

7
−2

λ− 4

+ λ− 6 = 0 ⟶ (λ− 2)(λ + 3) = 0λ2
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EXAMPLE EIGENVALUE PROBLEM CTU’D

• Find eigenvalues 

• Eigenvectors by filling in a specific eigenvalue 

Eigenvector  for 

λi

λi

Ax = ( ) = 2, = −3
−5
−7

2
4

λ1 λ2

= (x, y)x1 = 2λ1

A = ( ) ( ) = ( ) ( ) = 0
+ 5λ1

7
−2
− 4λ1

x

y

7
7

−2
−2

x

y

⟹ x = c ( )2
7
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EIGENVALUE PROBLEMS: LARGE MATRICES

• Inverse exists  determinant is nonzero

• Determinants of  or higher order matrices :

Characteristic polynomial in  of order  for  matrix

⇔

3 × 3 A

det(A) = det
⎛
⎝⎜

a11

a21

a31

a12

a22

a32

a13

a23

a33

⎞
⎠⎟

= − +
∣
∣
∣
a22

a32

a23

a33

∣
∣
∣ a11

∣
∣
∣
a21

a31

a23

a33

∣
∣
∣ a12

∣
∣
∣
a21

a31

a22

a32

∣
∣
∣ a13

= ( − ) −…a22a33 a23a32 a11

λ N N × N
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EIGENVALUE PROBLEMS: SIMPLIFY

• Reduce matrix  to simpler matrix 

• Transform matrix  by invertible matrix :

• Characteristic equation of upper (or lower) triangle matrices :

• Derive eigenvalues and eigenvectors for :

A B

A T

B = AT ⟹ { } the sameT −1 λi

B

(λ− )(λ− ) … (λ− ) = 0b11 b22 bnn

B

⟹ { Eigenvalues =λi bii

Eigenvectors of B = Tx′
i xi
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QUANTUM MECHANICS &
HILBERT SPACE
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MATRIX-FORMALISM OF QUANTUM MECHANICS

• Works if only a finite sum of basis functions is used

• Approximations possible ?

! General case is PROBLEMATIC !

• O�en: infinite number of basis functions

• Inner products might not be finite  not normalizable

• Operators can have infinite expectation values ? Undefined ?

⟶
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GENERAL QUANTUM MECHANICAL FORMALISM
Mathematical correspondence:

• States: vectors in Hilbert space:  square integrable functions

• Observables: Hermitian operators: 

• Measurements: Orthogonal projections

• Symmetries of the system: unitary operators: 

Dirac “bra-ket” notation: 

• A convenient way of writing

• Implicitly expresses the mathematical properties.

L2

= TT †

=U † U −1

⟨bra|, |ket⟩

36Lecture 05: Dirac formalism



PRE-HILBERT SPACES OR BANACH SPACES
A Cauchy series:

• an (infinite) sequence of vectors 

• has property: for every small value  we can find a finite :

• A Cauchy series converges to a certain “vector”  that can be outside .

A Banach space:

• Is a normed vector space

• Every Cauchy series converges to an element  of the vector space: .

▪ Example: any Cauchy series of real numbers  converges in 

▪ Example: Cauchy series of rational numbers  doesn’t converge in 

∈ V : , , , …vn v1 v2 v3

ϵ N

∀ m, n > N : ∥ − ∥ < ε  with  , ∈ Vvn vm vn vm

v V

v v ∈ V

∈ Rxn R
= ∈ Qxn

1
2n Q
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HILBERT SPACES
A Hilbert space

• Has an inner product

• Has its norm derived from the inner product: 

• Is a Banach space

∥α∥ = ⟨α|α⟩− −−−−√

Vectors in Hilbert space are well-behaved

• Similar to vectors in 

• Existance of complete orthonormal basis

• Applying most linear operators gives again a vector in the same space

• Definition Hermitian conjugate of an operator:

RN

⟨ α|β⟩ = ⟨α| β⟩T̂
†

T̂
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SUMMARY OF VECTOR SPACES/PROPERTIES

• Vector space:

▪ Addition: 

▪ Scalar multiplication: c |

• Inner product: 

• Norm: 

• Banach space: Cauchy complete

• Hilbert space:

▪ Cauchy complete

▪ Inner product with norm

|α⟩+ |β⟩

⟨α|β⟩

∥α∥ = ⟨α|α⟩
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WAVE FUNCTIONS IN HILBERT SPACE
Quantum mechanics  specific Hilbert space: 

• functions  square integrable over interval 

⟶ (a, b)L2

f(x) [a, b]

∥f = |f(x) dx < ∞∥2 ∫ b

a

|2

⟹ f(x) normalizable

• Inner product  given by:

The last inequality requires normalized  and 

⟨f|g⟩

⟨f|g⟩ = f(x g(x)dx ≤ 1 norm: ∥f∥ =∫ b

a

)∗ ⟨f|f⟩
− −−−√

f(x) g(x)
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WAVE FUNCTIONS IN HILBERT SPACE

• Schwartz inequality  inner product is finite

• Orthonormal complete set of basis vectors 

 We will use sometimes ,  instead of , , etc. for (wave) functions

⟹

|⟨f|g⟩| ≤ ⟨f|f⟩⟨g|g⟩
− −−−−−−−√

{| ⟩}fn

⟨ | ⟩ = (x (x)dx =fm fn ∫ b

a

fm )∗fn δmn

|f⟩ = | ⟩, = ⟨ |f⟩ = (x f(x)dx∑
n

cn fn cn fn ∫ b

a

fn )∗

⟶ f g |ψ⟩ | ⟩ψn
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OBSERVABLES

• Observables are represented by measurement operators

Since measurements need to be real: 

 The operator  is Hermitian

• In a finite basis:  Hermitian operators  Hermitian matrices

⟨Q⟩ = ∫ Ψ dx = ⟨Ψ| Ψ⟩Ψ∗Q̂ Q̂

⟨Q⟩ = ⟨Q⟩∗

⟨Ψ| Ψ⟩ = ⟨ Ψ|Ψ⟩Q̂ Q̂

⟹ =Q̂ Q̂
†

⟺
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WHICH OPERATORS ARE HERMITIAN?

• Check this for :

 Important that  and  become zero at 

= −iℏp̂ d

dx

⟨f| g⟩p̂ = ⟨f|− iℏ g⟩
d

dx

= −iℏ ∫ f(x dx)∗ dg(x)
dx

= −f(x g(x) + iℏ ∫ g(x)dx)∗ ∣
∣
+∞

−∞

df(x)∗

dx

= iℏ ∫ g(x)dx
df(x)∗

dx

= ⟨−iℏ f|g⟩
d

dx
= ⟨ f|g⟩p̂

⟶ f g x = ±∞

43Lecture 05: Dirac formalism



Lecture 05: Dirac formalism



DETERMINATE STATES OF OBSERVABLES

• Perform independent measurements  different outcomes (probabilistic)

• A determinate state  every time the same outcome

• For a determinate state  for :  is a constant

⟶

⟶

|Ψ⟩ Q Q ⟶⟨Q⟩ = q

⟹ = ⟨(Q− ⟨Q⟩ ⟩ = ⟨Ψ|(Q− q Ψ⟩ = ⟨(Q− q)Ψ|(Q− q)Ψ⟩ = 0σ2 )2 )2

• Hermitian operator  has eigenvalue 

• The determinate state is an eigenstate of 

⟹ (Q− q)|Ψ⟩ = |0⟩ ⟹ Q|Ψ⟩ = q|Ψ⟩

Q̂ q

Q̂
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SPECTRUM: EIGENVALUES OF AN OPERATOR

• Spectrum of an operator: all eigenvalues

• Multiplicity or degeneracy: same eigenvalue for 2 or more eigenstates

• Hamiltonian operator is the standard example

• Two types of spectra:

▪ Discrete spectrum: spaced eigenvalues, normalizable eigenstates (e.g. infinite well)

▪ Continuous spectrum: Continuous range of eigenvalues, non-normalizable
eigenstates (e.g. free particle)

▪ Possible mixture of both (e.g. finite well)

|ψ⟩ = E|ψ⟩Ĥ
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SPECTRUM: EIGENVALUES OF AN OPERATOR
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DISCRETE SPECTRUM

1. Eigenvalues of operator  are real:Q̂

Assume eigenvalue q f = qfQ̂

⟹ q⟨f|f⟩ = ⟨f| f⟩ = ⟨ f|f⟩ = ⟨f|f⟩Q̂ Q̂ q∗

2. Eigenfunction of different eigenvalues are orthogonal

Assume:  f = qf g = gQ̂ Q̂ q ′

⟹ ⟨f|g⟩ = ⟨f| g⟩ = ⟨ f|g⟩ = ⟨f|g⟩q ′ Q̂ Q̂ q∗

⟹ = = qq ′ q∗
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DISCRETE SPECTRUM
Properties

1. Real eigenvalues

2. Eigenfunction of different eigenvalues are orthogonal: 

3. Degenerate eigenvalues can exist, but we can choose orthonormal basis of those
eigenfunctions

4. Finite dimensional spaces are complete

Axiom: Any observable operator in Hilbert space has a complete basis of eigenfunctions

⟨ | ⟩ =fm fn δmn

 Observable operators are Hermitian and have a complete basis of eigenfunctions

f(x) = (x), with = ⟨ |f⟩ = ∫ (x f(x)dx∑
n

cnfn cn fn fn )∗

⟹
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DISCRETE SPECTRUM: STATISTICAL INTERPRETATION

• wave function  and eigenfunctions 

• Wave function can be expanded in :

• Measure expectation with observable operator 

Ψ(x, t) : =fn Q̂fn qnfn

fn

Ψ(x, t) = (t) (x), with (t) = ⟨ |Ψ⟩ = ∫ (x Ψ(x, t)dx∑
n

cn fn cn fn fn )∗

: ⟨Ψ| Ψ⟩Q̂ Q̂

⟨ ⟩ = ⟨Ψ| Ψ⟩Q̂ Q̂ = ⟨ (t) (x)| (t) (x)⟩∑
m

cm fm Q̂ ∑
n

cn fn

= (t (t) ⟨ (x)| (x)⟩∑
m

∑
n

cm )∗cn qn fm fn

= (t (t) = | (t)∑
m

∑
n

cm )∗cn qnδmn ∑
n

cn |2qn
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SPECTRUM: EIGENVALUES OF AN OPERATOR
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INTERMEZZO: THE DIRAC DELTA FUNCTION

Dirac delta distribution:

Limit of series of functions:

• peaked such as sinc(x) or Gaussian

• limit to infinitely thin and high

• Area kept normalized

Filters out single point:

{ δ(x ≠ 0)
δ(x = 0)

= 0
= +∞

δ(x) = 1∫ +∞

−∞

f(a) = f(x) δ(x− a) dx∫ +∞
−∞
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CONTINUOUS SPECTRA

• Eigenfunctions/values continuous variable 

• Eigenfunctions are NOT normalizable

• Solution: Assume real eigenvalues

• New definitions:

z ⟶ fz

Orthonormality ⟨ | ⟩ = δ( − z)fz ′ fz z′

Completeness f(x) = ∫ c(z) dz with c(z) = ⟨ |f⟩fz fz

⟨ |f⟩ = ∫ c(z)⟨ | ⟩dz = ∫ c(z)δ( − z)dz = c( )fz ′ fz ′ fz z′ z′
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CONTINUOUS SPECTRA: EXAMPLE
Momentum operator for a free particle

Momentum eigenvalue equation:

• Filling in momentum operator :

This differential equation has solution:

|Ψ⟩ = p|Ψ⟩p̂

= −iℏp̂ d

dx

= (x)
d (x)ψp

dx

ip

ℏ
ψp

(x) = A =ψp eipx/ℏ 1

2π
−−√

eipx/ℏ
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CONTINUOUS SPECTRA: EXAMPLE
Momentum operator for a free particle

Eigenvalues and eigenfunctions:

If eigenvalues  then  is orthogonal:

−iℏ (x) = p (x) with (x) = A
d

dx
fp fp fp eipx/ℏ

p ∈ R { }fp

⟨ | ⟩ = ∫ dx = |A ∫ dx = |A 2πℏδ(p− )fp′ fp f ∗
p′ fp |2 ei(p− )x/ℏp′

|2 p′

Completeness follows from Fourier analysis:

f(x) = ∫ c(p) (x)dp = ∫ c(p) dpfp
1

2πℏ−−−√
eipx/ℏ
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CONTINUOUS SPECTRA: EXAMPLE
Momentum operator for a free particle

Completeness follows from Fourier analysis:

The coefficients  are as expected:

f(x) = ∫ c(p) (x)dp = ∫ c(p) dpfp
1

2πℏ−−−√
eipx/ℏ

c(p)

⟨ | ⟩ = ∫ c(p) dp = ∫ c(p)δ(p− )dp = c( )fp′ fp f ∗
p′ fp p′ p′

• Eigenfunctions  NOT normalizable  don’t exist

• BUT: Dirac orthonormal ( ) + complete

 Create normalized wave function from superposition

fp ⟶

⟨ | ⟩ = δ(p− )fp′ fp p′

⟶
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QUANTUM STATES
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WAVE FUNCTION VERSUS STATE
State of a system at  represented by vector in Hilbert space: 

• Represented by the wave function 

• Represented by the wave function in momentum space 

• Represented in the basis of stationary eigenstates 

We can write the state in any basis:

t |S(t)⟩

Ψ(x, t) = ⟨x|S(t)⟩

Φ(p, t) = ⟨p|S(t)⟩

(t) = ⟨n|S(t)⟩cn

|S(t)⟩ ⟶ ∫ Ψ(x, t)δ(x− ) dx′ x′

= ∫ Φ(p, t) d
1

2πℏ−−−√
eipx/ℏ p′

= (t) (x)∑
n=1

+∞

cn e−i t/ℏEn ψn
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EIGENSTATES AS BASIS IN HILBERT SPACE

• The wave function of a quantum state 

 are eigenvalues of position operator 

|Ψ(t)⟩

Ψ(x, t) = ⟨x|Ψ(t)⟩, |x⟩ = |x⟩x̂ x0

⟶ x0 x̂

⟨ |Ψ(t)⟩ = δ(x− x0)ψ(x)dx = ψ( )x0 ∫ ∞

−∞
x0
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MOMENTUM EIGENVECTORS?
Momentum eigenvalue equation:

• Filling in momentum operator :

This differential equation has solution:

|Ψ⟩ = p|Ψ⟩p̂

= −iℏp̂ d

dx

= (x)
d (x)ψp

dx

ip

ℏ
ψp

(x) = A =ψp eipx/ℏ 1

2π
−−√

eipx/ℏ
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OPERATORS, MEASUREMENTS,
AND COLLAPSE
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OBSERVABLES, OPERATORS AND COLLAPSE

• We can measure observables:

▪ position and momentum of a particle,

▪ energy of a particle in a potential,

▪ excitation-level of an electron in an atom

▪ spin of an electron

▪ …

• Before measurement

▪ superposition of eigenstates

▪ Probability to find a particle in : 

▪ 

x |Ψ(x, t)|2

Ψ(x, t) = ∑ (t) (x) ⟶ P(n) = | (t)cn ψn cn |2

• Measurement: system collapses to single eigenstate
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INFINITE WELL
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INFINITE WELL: OBSERVABLE POSITION
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INFINITE WELL: ENERGIES
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INFINITE WELL: OBSERVABLE ENERGY
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WAVEPACKET INCIDENT ON BARRIER
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WAVEPACKET: OBSERVABLE POSITION
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OBSERVABLES, OPERATORS AND COLLAPSE

• State of a quantum system: 

• Wave function represents state: 

• Observable is something we can measure (a real number)

• Observable  corresponds to an Hermitian operator 

• Measuring NOT same as applying operator 

|Ψ⟩

⟨x|Ψ(t)⟩⟶ Ψ(x, t)

Q Q̂

|Ψ⟩Q̂

• Measurement operators DON’T always commute (incompatible observables)

• Incompatible observables NO common basis of eigenfunctions⟶
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UNCERTAINTY PRINCIPLE

• Heisenberg uncertainty principle

• Commutator is nonzero:

• Can’t measure position and momentum at the same time

• Measuring position destroys the momentum measurement

≥σxσp
ℏ
2

[ , ] = − = iℏx̂ p̂ x̂p̂ p̂ x̂
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GENERALIZED UNCERTAINTY PRINCIPLE

• General uncertainty principle is related to the commutator

• Number between brackets is real but can be negative

• We need the square at the right-hand-side

• Commutating operators  no restriction on , 

How to proof this?

≥σ2
A

σ2
B ( ⟨[ , ]⟩)1

2i
Â B̂

2

⟶ σA σB
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EXAMPLE UNCERTAINTY PRINCIPLE

• General uncertainty principle for position/momentum

• The commutator for  and :

Fill in in general uncertainty formula:

 Heisenberg uncertainty principle

x̂ p̂

[ , ] = iℏx̂ p̂

σ2
A

σ2
B

⇒ σ2
xσ2

p

⇒ σxσp

≥ ( ⟨[ , ]⟩)1
2i

Â B̂

2

≥ = =( ⟨[ , ]⟩)1
2i

x̂ p̂

2 ( ⟨iℏ⟩)1
2i

2 ℏ2

4

≥
ℏ
2

⟶
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COMMUTATORS AND UNCERTAINTY

• Compatible observables: Commutating observables 

▪ Measurements independent, order doesn’t matter

▪ No restriction on the common uncertainty of the measurement

▪ A common basis of eigenstates can be found

≥σ2
A

σ2
B ( ⟨[ , ]⟩)1

2i
Â B̂

2

[ , ] = 0Â B̂

• Incompatible observables: Non-commutating observables 

▪ Order of the measurement matters !

▪ Minimum uncertainty on the measurements according to formula

▪ NO common basis of eigenstates can be found

[ , ] ≠ 0Â B̂
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DIRAC NOTATION
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BRACKETS: BRA’S AND KETS

• Inner product in matrix notation (separate “vectors”)

• “bra” acts on the ket by row vector multiplication

• “bra” vector is separate from the “ket” vector: bra sits in a dual vector space

• Now with possible infinite basis:

⟨α|β⟩ = ( ) = + + …a∗
1 a∗

2 … a∗
n

⎛

⎝
⎜⎜⎜⎜

b1

b2

⋮
bn

⎞

⎠
⎟⎟⎟⎟ a∗

1b1 a∗
2b2 a∗

nbn

⟨α| = (… ⟶ ⟨α| = ∫ (…)dx∑
j

a∗
j )j α∗
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BRACKETS: BRA’S AND KETS

• Kets are vectors in vector space

• Bra’s are vectors in dual space

• In finite dimensions:

▪ kets are column vectors

▪ bra’s are complex conjugate row vectors

⟨bra|

|ket⟩

= ⟨α| = ( )a∗
1 a∗

2 … a∗
n

= |β⟩ =

⎛

⎝
⎜⎜⎜⎜

b1

b2

⋮
bn

⎞

⎠
⎟⎟⎟⎟
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DUAL SPACE AND HERMITIAN CONJUGATES

• Converting a  to a  and vice versa:

• An operator acting on a :

 operators can act to the le� as this is allowed by associativity

• Why is this? See definition of Hermitian conjugate of operators:

|ket⟩ ⟨bra|

⟨α| = |α⟩†

⟨bra|

⟨α| = ⟨ α| =Q̂
†

Q̂ ( |α⟩)Q̂
†

⟶

⟨ α|β⟩ = ⟨α| β⟩Q̂
†

Q̂
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IN FINITE DIMENSIONS: MATRIX-FORMALISM

• Example in two dimensions, an operator acting on a :

The Hermitian conjugate gives

For this example we indeed see that:

|α⟩ = ( )a1

a2

|α⟩ = Qa = ( ) ( ) = ( )Q̂
Q11

Q21

Q12

Q22

a1

a2

+Q11a1 Q12a2

+Q21a1 Q22a2

⟨α| = = ( ) ( ) = ( )Q̂
†

a†Q† a∗
1 a∗

2

Q∗
11

Q∗
12

Q∗
21

Q∗
22

+Q∗
11a∗

1 Q∗
12a∗

2 +Q∗
21a∗

1 Q∗
22a2

⟨α| =Q̂
† ( |α⟩)Q̂

†
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THE PROJECTION OPERATOR

• The projection operator defined for a normalized :

 Projects any other vector  onto the direction of :

|α⟩

= |α⟩⟨α|P̂ α

⟶ |β⟩ |α⟩

|β⟩ = (⟨α|β⟩) |α⟩P̂ α

Example: projection in two dimensions

|α⟩ = ( ) , |β⟩ = ( )1

5–√
1
2i

2
1

|β⟩ = |α⟩⟨α|β⟩ = ( ) ( ) ( ) = (1− i) ( )P̂ α
1
5

1
2i

1 −2i
2
1

2
5

1
2i
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THE PROJECTION OPERATOR: EXAMPLE
Example: projection in two dimensions

The operator itself is an outer product:

Two-dimensional vector spaces are actually useful: Spin, the two-level atom
approximation, etc.

|α⟩ = ( ) , |β⟩ = ( )1

5–√
1
2i

2
1

|β⟩ = |α⟩⟨α|β⟩ = ( ) ( ) ( ) = (1− i) ( )P̂ α
1
5

1
2i

1 −2i
2
1

2
5

1
2i

= |α⟩⟨α| = ( ) ( ) = ( )P̂ α
1
5

1
2i

1 −2i
1
5

1
2i

−2i

4
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IDENTITY OPERATORS

• If we have a complete basis 

• Projection operator:

Then the identity operator can be written as:

Or for a continuous spectrum and eigenfunction basis:

{ | ⟩}en

= | ⟩⟨ |P̂ n en en

= | ⟩⟨ | =∑
n

P̂ n ∑
n

en en 1̂

⟨ | ⟩ = δ(z− )ez e′
z z′ ∫ | ⟩⟨ | dz =ez ez 1̂
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FUNCTIONS OF OPERATORS: POWER SERIES

• Sums and products of operators, order is important:

• Functions of operators are represented by their power series

• Likewise with matrices (also operators in our case):

( + c )|α⟩ = |α⟩+ c |α⟩ |α⟩ = ( |α⟩)Q̂ R̂ Q̂ R̂ Q̂R̂ Q̂ R̂

= 1 + + + + …eQ̂ Q̂
1
2

Q̂
2 1

3!
Q̂

3

= 1 + + + + + …
1

1− Q̂
Q̂ Q̂

2
Q̂

3
Q̂

4

ln(1 + ) = − + − …Q̂ Q̂
1
2

Q̂
2 1

3
Q̂

3 1
4

Q̂
4
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