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OVERVIEW

Week 1

Week 2

Week 3

Week 4

Week 5

Week 6

Introduction & Required Mathematical Methods.

Waves and Schrodinger's equation, Probability, Uncertainty and Time evolution.
Infinite square well.

The harmonic oscillator, Creation and annihilation operators.

Free particle, 1D Bound states & Scattering/Transmission, Finite well

Quantum mechanics formalism: Functions and operators, uncertainty.

Approximation methods.

Angular momentum and the Hydrogen atom, Spin
Magnetic fields, The Pauli equation, Minimal Coupling, Aharonov Bohm

Perturbation: Fine Structure of Hydrogen, The Zeeman Effect

Identical particles, Periodic table, Molecular bonds, Periodic structures, Band
structure, Bloch functions
Time-dependent perturbation: Absorption, spontaneous emission, and stimulated

emission

Final exam

Ch.3
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FOR NEXT WEEK

o Textbook Chapter 2:2.31,2.34,2.41,2.53
Textbook Chapter 3: 2.31, 2.34,2.41, 2.53

Homework documents:

= phot301_homework_braket.pdf
e Reading (by Thursday 7 August 2025): Chapter 4 of Griffiths
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SUMMARY OF WHAT WE KNOW

e Time-independent Schrodinger equation
e Find eigenstates and eigenenergies:
= complete basis: Solution is superposition of eigenstates
= orthonormal: Solution is superposition of eigenstates
e Special case(?) of free particles:
= Propagating waves ¥(z, t) o e!(kz=t)
= All energies can be reached
= Real solutions are given by wave packets

= Uncertainty between position and momentum
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SUMMARY OF WHAT WE KNOW

e Evolutionintime

= Phase factor depending on energy: e*Znt/?
= Higher energies change faster
= Superposition of bound states deform

m Free particles: wave packets have faster and slower components (dispersion)
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MATHEMATICS OF WAVE FUNCTIONS &
OBSERVABLES?

Wave functions

e Complete basis of orthonormal eigenstates

e Superposition is solution of linear Schrodinger equation

Observables

e Observables are linear operators

e Applying an operator to a wave function gives another wave function

-> Quantum mechanics can be described with linear algebra
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LINEAR ALGEBRA



FIELD OF COMPLEX NUMBERS

e The sets of rational (), real (R), and complex numbers (C) are fields:
m 2 operations: addition and multiplication
= identity elements: addition (0), multiplication (1)
= |nverse elements: addition (-x), multiplication (z 1)

= Commutativity, associativity, distributivity
Complex numbers z € C:

e Imaginary identity i = /-1, i? = —1

e Complexconjugatez*: z=zx+i1y— 2" =z —1y
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FIELD OF COMPLEX NUMBERS: PROPERTIES

Assume z =z + 1y € C:

Representation
Complex conjugate

Magnitude
Phase

Trigoniometry

Operations:

Addition
Multiplication

z=z+iy=re’ =r(cosh+1isinb)
=z —iy=re ¥ =r(cosf—isinbh)
2> = 2" 2z = 2® 4+ y? = R{2}? + T{z}?
60 = —iln(z/|z|) = arctan(y/x)

eif 1 o—if ot _ it

0 — i 0 —
coS 5 : sin 5

214+ 20 = (21 + 22) + 1 (y1 + y2)

21 29 = Troel 1702
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VECTOR SPACES

Avector spaceV = {|o), |5), |7), - -

e Addition of vectors |a) + |3) € V

e Scalar multiplication c|a) € V

.} over field F = C:

Property name rule
Addition) Commutative @) +|8) = |B) + |a)
Addition) Associative la) + (18) + 7)) = (Ja) +18)) + |7)
Addition) Identity 0+[8)=18) forall|B)

)

Addition) Inverse element

forall |8),exists —|B8): —|B)+1(8) =0

c(d|a)) = (cd) |a)

Scalar) Identity

lla) = |a)

c(la) +18)) = c|f) + ¢l

(
(
(
(
(Scalar) Compatible product
(
(
(

)
Scalar) Distributivity
Scalar) Distributivity

(c+d)|a) =cla) + d|a)
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BASIS VECTORS

Linear independence
Avector [£) is linearly independent of {|a), |8), |7), - - -}
< no linear combination: [£) = ala) + b|8) + ¢|y) + . ..

Example: in 3D vector space:

e Vector (z,y, z) = (0,1,1) is linearly independent from {(1, 1,0), (1,0,0)}
e BUT..(0,1,1) isdependentto {(—1,1,0), (1,0,1)}

Basis vectors:

e Avectorsetis linear independent if each of them is independent from the others.
e The span of a vector set is the subset of vectors formed by linear combinations

e Alinear independent vector set is a basis if it spans the whole space
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BASIS VECTORS

Suppose a finite set of n basis vectors:

{le1), [e2), ..., [en) }
Each vector |a) can be written as superposition:
a) = aile1) + azlez) + - - - + anlen)
In component notation for specific basis:
o) = (a1,a9,...,a,)
— Simplifies understanding the properties:

0) + |a) = |a) = 10) = (0,0,...,0)
) +|—a)=1[0) = |-a)=(-a1,—a...,—ay)
a) +clf) = |a)+c|B) = (a1 + cbi,as + cby,
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NORMED VECTOR SPACE

e There exists a norm or length of a vector |3) given by ||3]| = || |3)||
Property name rule
Non-negative 18] >0
Positive definite 18] =0« |B) =0)
Absolute homogeneity le Bl = |e| || 8]l
Triangle inequality ey + B8)[] < el + [ 8]

e Distance corresponding to norm:

d(|8) |)) = l[le) = B

e Exampledistance: d((x1,y1), (z2,y2)) = \/(wz —21)? 4+ (y2 — 11)?

e Examplenorm: [|(3,4)|| = V3% +4*=+/25=5

Lecture 05: Dirac formalism



INNER PRODUCT VECTOR SPACE

e Aninner product of a vector space:

(el 18)) = (a]B) — ceC

Property name rule

conjugate symmetry (Bla)™ = (| B)

linearity 2nd argument (a|(c|B) + d|y))) = clalB) + d{aly)
= conjugate linear 1st ((clay +d|B)) |v) = c"(aly) + d" (B]7)
positive definite (BIB) >0

e The norm is defined by

18Il =1/ (BIB)
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ORTHONORMAL BASIS VECTORS

e Avector |3) isnormalized <« ||f|| =1
e Avector|8) L |a) <& (a|B) =0
e Orthonormal set of vectors: (a;|a;) = ;5

o Always possible to find an orthonormal basis!

— In component notation: (a|8) = ajb + -+ + ayby, with a; = (e;]|a)

The norm is given by:
|a|* = (a]a) = atby 4+ -+ +aib,  with a; = |a|> + - + |an]
In R™ the angle between two vectorsisa - b = ||a||||b|| cos(0):

V{(a]B) (Bla)
]| 118]

cosf =

Lecture 05: Dirac formalism
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IMPORTANT THEOREMS

e The dimension n (= number of basis vectors) is constant for a vector space.
e Gram-Schmidt procedure: any basis — orthonormal basis.

e Schwartz inequality:

{alB)|® < (ala) (B]B)

e Triangle inequality:

e +18) | < [l + 11817
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OPERATORS: LINEAR TRANSFORMATIONS

e linear transformations T':

&'y =T |a) linearity: T(cla)+d|B8)) =aTl|a)+bT|A)

e If we know the basis vectors |e1), ..., |e,):

o) =

T |a)

T (ailer) + -+ anlen))
Tailer) + -+ T anley)
alf le1) +---+anf|en>

i a; T |€Z>
1=1
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OPERATORS: MATRIX NOTATION

e If we know the basis vectors |e1), ..., |e,):

= a;Tej)
j=1

The T |e;) can be written as superposition:

T ‘€1> = T11‘61> —+ T21‘62> -+

T ‘€2> — T12‘€1> —+ T22‘62> -+
T |en) = Tinler) + Tonles) +
=Tla)=) a;Tle) =Y Y ajTile;)

Lecture 05: Dirac formalism
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OPERATORS: MATRIX NOTATION

n A
= a;Tlej) = E :E :ag Tijles) =
j=1

J=1 1=

Operator T' as a matrix T;; forbasis {|e1), ..., |en)}

a; = ) Tija;
=1
And the matrix:
/ Ty T2 - Tln\
Ty Top -+ Ty
=1 . . . . with
KTnl n2 e Tnn )

Lecture 05: Dirac formalism
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MATRICES AND VECTORS

If we have a basis basis {|e1),... , le.)}

(1)

an

o,

) =

An operator acting on a vector |a):

(Tll T1o
. n Ty T
T\a) — ZTijaj =
=1 : ;
\Tnl Tn2
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OPERATORS AND MATRIX PROPERTIES
e Adding two operators:

[}:SY—FT—)UU:SU—FEJ

e Performing multiple operators U=ST:

(}|a> — S’fﬂa} — Uij = ZSikaj
k

Lecture 05: Dirac formalism
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INTERMEZZO: MATRIX PRODUCTS

The matrix product between matrices A and B is defined as

bi1 b2

A-B:(all a2 a13) Byt boo

a1 G a3
bs1  b32

= aijbi
j

e Rows of A are multiplied by columns of B.

o Ayn - Byg < No. columns of A must equal No. rows of B

Lecture 05: Dirac formalism
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OPERATORS AND MATRIX PROPERTIES

e Transpose of a matrix T = T
= symmetric: T =T
= antisymmetric: T =-T
e Complex conjugate of a matrix T* = T
= real: T =T
= imaginary: 17 = -T
e Hermitian conjugate of a square matrix 7T = T = Tj’;
= Hermitian: Tt =T

= skew hermitian: 77T = —-T
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BRA-KET NOTATION AND INNER PRODUCTS

e Theinner product for orthonormal basis {|e1) , ..., |en)}

(a|B) = a*by + atby +--- +akib, =a'b

e ket |B) is a column vector

e bra (a] is a complex conjugate row vector

In vector notation:

[0

(a| —a=(a} a ... a¥) 8) — b=

\b;)

Lecture 05: Dirac formalism
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OPERATORS AND MATRIX PROPERTIES

Transpose of a matrix product ST=TS
Hermitian of a matrix product (S T)T =T8T
Inverse matrix T 'T =TT ' =1=;
Inverse of a matrix product (S T)_1 =716
Unitary matrixUT = U !

Unitary operators preserve inner product:

(|8') = a''b’ = (Ua)!(Ub) = a'UTUDb = alb = (a|)

Lecture 05: Dirac formalism
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CHANGE OF BASIS

e Unitary matrices U(+— U = U~!) preserve inner product
y
= Norm doesn’t change

= Angles between vectors don’t change

— Apply unitary transformation to orthonormal basis is again orthonormal basis
{le1), |e2)s---,|en)} lel) =Ule;) is orthonormal

If T' transforms a basis: a;) = T'|e;) to another orthonormal one: (aj|a;) = d;; = T'is
unitary:

0ij = (aj]ai)
= (a;|Te;) = TT=1 = 7Ti=T7"1
= (¢j|T Tle;)
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COMMUTATORS

e Matrix-multiplication not commutative «— Order of operators!

e Commutator of two operators/matrices

A A A A

S, T]=S8T —TS +— [S,T|=ST—-TS

e Anti-commutator of two operators/matrices

(S, T} =S8ST +TS +— {S,T}=ST+TS

Lecture 05: Dirac formalism
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EIGENVALUE PROBLEMS

Eigenvector x # 0 and eigenvalues A of matrix A:

Ax=dx< (AM1-A)x=0

Because x # 0the inverse of A1 — A cannot exist, because if it would:

(AMl—-—A)x=0

— Al-A) ' A1 —-A)x=A1-4)"0
— A1 —-A) (A1 -A4)x=0
—x=0

Lecture 05: Dirac formalism
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EIGENVALUE PROBLEMS

Matrix (A1 — A) not invertible — the determinant has to be zero

Solve characteristic equation:
det(A\1—A) =0

Determinant is a “characteristic” polynomialin A
Highest order of A is the dimension N of the N x N matrix

Solving it means finding A values

Lecture 05: Dirac formalism
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EXAMPLE EIGENVALUE PROBLEM

a=(22)

This gives for the characteristic equation:  det(A1 — A) = 0:

(o 1) -7 3)]
—ae[(*77 7))

MN4A-6=0— A—-2)A+3)=0

0

0

The determinant is:

Lecture 05: Dirac formalism
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EXAMPLE EIGENVALUE PROBLEM CTU’D

e Find eigenvalues \;

e Eigenvectors by filling in a specific eigenvalue \;

AXZ(_5 2) M =2 A=-3
7 4

Eigenvector x; = (z,y) for Ay = 2
A:<)\1+5 —2 )(m):(7 —2) (m):O
7 )\1—4 Yy 7T =2 (7]
(%)
— X=c
7

Lecture 05: Dirac formalism
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EIGENVALUE PROBLEMS: LARGE MATRICES

e |nverse exists < determinant is nonzero
e Determinants of 3 x 3 or higher order matrices A:
ailr a2 a3
det(A) =det | as; ax ags

azip as2 ass3

as1 Q23 asz; a2

ais +

az1 ass aziy as2

— (a22a33 — a23a32)a11 — ...

Characteristic polynomial in A of order IV for N x N matrix

Lecture 05: Dirac formalism
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EIGENVALUE PROBLEMS: SIMPLIFY

Reduce matrix A to simpler matrix B

Transform matrix A by invertible matrix T
B=T'AT — {\;} thesame
Characteristic equation of upper (or lower) triangle matrices B:
(A—=b11)(A—0b22) ... A—=byp,) =0
Derive eigenvalues and eigenvectors for B:

Eigenvalues A, = b;;
— . ,
Eigenvectors x'; of B =T%;

Lecture 05: Dirac formalism
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QUANTUM MECHANICS &
HILBERT SPACE



MATRIX-FORMALISM OF QUANTUM MECHANICS

o Works if only a finite sum of basis functions is used

e Approximations possible ?

! General case is PROBLEMATIC !

e Often: infinite number of basis functions
e Inner products might not be finite — not normalizable

e Operators can have infinite expectation values ? Undefined ?

Lecture 05: Dirac formalism
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GENERAL QUANTUM MECHANICAL FORMALISM

Mathematical correspondence:

e States: vectors in Hilbert space: L? square integrable functions
e Observables: Hermitian operators: Tt =T
e Measurements: Orthogonal projections

e Symmetries of the system: unitary operators: Ut =U""!

Dirac “bra-ket” notation: (bra|, |ket)

e A convenient way of writing

e Implicitly expresses the mathematical properties.

Lecture 05: Dirac formalism
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PRE-HILBERT SPACES OR BANACH SPACES

A Cauchy series:

e an (infinite) sequence of vectorsv,, € V : v1,v9,v3, ...

e has property: for every small value e we can find a finite V:

Vm,n>N: |v,—vnl| <e withv,,v, €V

e A Cauchy series converges to a certain “vector” v that can be outside V.

A Banach space:

e Isanormed vector space
e Every Cauchy series converges to an element v of the vector space: v € V.

s Example: any Cauchy series of real numbers x,, € R convergesinR

1
2n
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HILBERT SPACES

A Hilbert space

e Has aninner product
e Hasits norm derived from the inner product: ||a|| = +/{a|a)

¢ |s aBanach space

Vectors in Hilbert space are well-behaved

e Similar to vectors in R
e Existance of complete orthonormal basis
e Applying most linear operators gives again a vector in the same space

e Definition Hermitian conjugate of an operator:

(7' a|B) = (a|TB)

Lecture 05: Dirac formalism
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SUMMARY OF VECTOR SPACES/PROPERTIES

e \ector space:

= Addition: |a) + |B)

Vector Normed Linear Space

= Scalar multiplication: ¢ absolutel
| Space Inner Product ;‘,g;’;;;ge"g“s Metric
e Inner product: («|B) arallotism Space Space
Angle Hilbert Space
e Norm: ||a|| = (a|a) [] Banach ...
@ Euclidean Space
e Banach space: Cauchy complete tine | Norm with

Completeness §

e Hilbert space:

= Cauchy complete

= Inner product with norm

Lecture 05: Dirac formalism
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WAVE FUNCTIONS IN HILBERT SPACE

Quantum mechanics — specific Hilbert space: L?(a, b)

e functions f(x) square integrable over interval |a, b]

b
172 = / f(z)2de < o0

— f(xz) normalizable

e Inner product (f|g) given by:

b
(flg) = / @) g@)dz <1 norm: |f] = \/(fIf)

The last inequality requires normalized f(z) and g(x)

Lecture 05: Dirac formalism
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WAVE FUNCTIONS IN HILBERT SPACE

e Schwartz inequality = inner product is finite

(flg)] < \/(£1£)(glg)

e Orthonormal complete set of basis vectors {| f,.) }

b
Gl f) = / Fn ()" fou (@) = Gy

b
D= elf)s  en={fulf) = / ful@)* f(2)da

n

— We will use sometimes f, g instead of 1), |1,), etc. for (wave) functions

Lecture 05: Dirac formalism
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OBSERVABLES
e Observables are represented by measurement operators
Q= [ Quds - (¥QY)

Since measurements need to be real: (Q) = (Q)*

(T|QT) = (QU|T)

A

— The operator Q = QT is Hermitian

e In afinite basis:  Hermitian operators <= Hermitian matrices

Lecture 05: Dirac formalism
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WHICH OPERATORS ARE HERMITIAN?

e Check thisfor p = —ih%:

(flpa) = (Sl iR >

:_m/f

~ ~ f(a) g@;)[: +ih / )y
— z‘h/ dfcz)* g(z)dz

= (~ih \ flg

= (pflg)

— Important that f and g become zero at x = o0

Lecture 05: Dirac formalism
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DETERMINATE STATES OF OBSERVABLES

Perform independent measurements — different outcomes (probabilistic)
A determinate state — every time the same outcome

For a determinate state |¥) for@Q: @ — (Q) = gis a constant

=07 = ((Q —(@))*) = (¥|(Q —9)*¥) = (@ —9)¥|(Q — 9)¥) =0

— (@ -9q)¥)=10) — Q¥) =47

Hermitian operator Q has eigenvalue g

The determinate state is an eigenstate of Q

Lecture 05: Dirac formalism
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SPECTRUM: EIGENVALUES OF AN OPERATOR

Spectrum of an operator: all eigenvalues

e Multiplicity or degeneracy: same eigenvalue for 2 or more eigenstates

e Hamiltonian operator is the standard example

H|vp) = Ely)

e Two types of spectra:
» Discrete spectrum: spaced eigenvalues, normalizable eigenstates (e.g. infinite well)

= Continuous spectrum: Continuous range of eigenvalues, non-normalizable
eigenstates (e.g. free particle)

= Possible mixture of both (e.g. finite well)
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SPECTRUM: EIGENVALUES OF AN OPERATOR

Eigenvalues
spectrum
Discrete spectrum Continuous spectrum Mixture of discrete &
Eigenfunctions: normalizable Eigenfunctions: NOT normalizable continuous spectrum
(Gn, ¥n) (Gns fn)

Lecture 05: Dirac formalism
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DISCRETE SPECTRUM

1. Eigenvalues of operator Q are real:

Assume eigenvalue g Qf = qf

= a(fIf) = (FIQF) = (QfIF) = a"(f1)
2. Eigenfunction of different eigenvalues are orthogonal
Assume: Qf=gqf Qg=4d'g

— ¢'(flg) = (f|Qg) = (Qflg) = ¢"(f|g)

:}q/:q*:q

Lecture 05: Dirac formalism
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DISCRETE SPECTRUM

Properties

1. Real eigenvalues
2. Eigenfunction of different eigenvalues are orthogonal:  (fi.|fr) = dmn

3. Degenerate eigenvalues can exist, but we can choose orthonormal basis of those
eigenfunctions

4. Finite dimensional spaces are complete

Axiom: Any observable operator in Hilbert space has a complete basis of eigenfunctions

f@) =S edal@)  with e = (£lf) = [ fule) fla)do

n

—> Observable operators are Hermitian and have a complete basis of eigenfunctions
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DISCRETE SPECTRUM: STATISTICAL INTERPRETATION

A

e wave function ¥(z, t) and eigenfunctions f,, :  Qf, = qunfn

e Wave function can be expanded in f,,:

V(o t) = S ealt)fulz),  with en(t) = (fu]¥) = / £(2) U (2, £)da

n

e Measure expectation with observable operator Q : <\I/|Q U)

Q) = (T|OT) = <Zcm (t) fn (o \chn (t) fu(z) )
= chm t)dn fm( )| fn(2))
—chm t)qndmn = Z|Cn

Lecture 05: Dirac formalism
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SPECTRUM: EIGENVALUES OF AN OPERATOR

Eigenvalues
spectrum
Discrete spectrum Continuous spectrum Mixture of discrete &
Eigenfunctions: normalizable Eigenfunctions: NOT normalizable continuous spectrum
(Gn, ¥n) (Gns fn)

Lecture 05: Dirac formalism
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INTERMEZZO: THE DIRAC DELTA FUNCTION

Dirac delta distribution: 5 -
d(x#0)=0 N
d(x =0) =+o0 2

/_:O é(xz) =1 _:

Limit of series of functions:

e peaked such as sinc(x) or Gaussian 41

e limit to infinitely thin and high

o Area kept normalized

Filters out single point: 0-

fla) = [T f(z) 6(z — a) dz

Lecture 05: Dirac formalism
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CONTINUOUS SPECTRA

Eigenfunctions/values continuous variable z — f,
Eigenfunctions are NOT normalizable
Solution: Assume real eigenvalues

New definitions:

Orthonormality (falfz) =6(2 — 2)

Completeness flz) = /C(z)fzdz with ¢(2) = (f.|f)

Folf) = / o(2)(f | f.)dz = / (2)8(' — 2)dz

Lecture 05: Dirac formalism
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CONTINUOUS SPECTRA: EXAMPLE

Momentum operator for a free particle

Momentum eigenvalue equation:

p|¥) = p|¥)
e Fillingin momentum operatorp = —ih%:
dipy () ip
de ﬁzpp(:c)

This differential equation has solution:

Yp(z) = AeP*I? =

Lecture 05: Dirac formalism
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CONTINUOUS SPECTRA: EXAMPLE

Momentum operator for a free particle

Eigenvalues and eigenfunctions:

—ihCZEfp(a:) = pfy(xz) with fo(x) = Ae®/h

If eigenvalues p € R then {f,} is orthogonal:
<fp/‘fp> = /f};k/fpdw — |A‘2 /ei(p_p’)x/hdm — ‘A{227Th5(p _p/)

Completeness follows from Fourier analysis:

f(z) = / e(p) f,(z)dp = ﬂlﬁ / (p)c™ dp

Lecture 05: Dirac formalism
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CONTINUOUS SPECTRA: EXAMPLE

Momentum operator for a free particle

Completeness follows from Fourier analysis:

_ _ 1 ipx/h
f(z) = / e(p) (@l = / c(p)c* dp

The coefficients ¢(p) are as expected:
oty = [ eto)s fodp = [ cp)bo -~ B)dp = clv)

e Eigenfunctions f, NOT normalizable — don’t exist

e BUT: Dirac orthonormal ({fy| f,) = d(p — p')) + complete

— Create normalized wave function from superposition

Lecture 05: Dirac formalism
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QUANTUM STATES



WAVE FUNCTION VERSUS STATE

State of a system at ¢ represented by vector in Hilbert space:  |S(¢))

e Represented by the wave function ¥ (x,t) = (z|S(t))

e Represented by the wave function in momentum space ®(p,t) = (p|S(t))

e Represented in the basis of stationary eigenstates ¢, (t) = (n|S(t))

We can write the state in any basis:

Lecture 05: Dirac formalism
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EIGENSTATES AS BASIS IN HILBERT SPACE

e The wave function of a quantum state |¥(¢))

U(z,t) = ([¥(t),  zlr) = z0|z)

—  x are eigenvalues of position operator x

(@ ¥(0) = [ 8l — 20)p(z)de = v(a0)

Lecture 05: Dirac formalism

58



MOMENTUM EIGENVECTORS?

Momentum eigenvalue equation:

p|¥) =p|¥)
e Fillingin momentum operatorp = —z’h%:
dipp () P
de i¢p(£)

This differential equation has solution:

Vp(z) = AeP /P =

Lecture 05: Dirac formalism
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OPERATORS, MEASUREMENTS,
AND COLLAPSE



OBSERVABLES, OPERATORS AND COLLAPSE

e We can measure observables:
= position and momentum of a particle,
= energy of a particle in a potential,

excitation-level of an electron in an atom

= spin of an electron

e Before measurement
= superposition of eigenstates
= Probability to find a particle in z: |¥(z, t)|’
" U(z,8) = Y ea(t)pn(z) — P(n) = [ea(t)]”

e Measurement: system collapses to single eigenstate

Lecture 05: Dirac formalism
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INFINITE WELL

P, (x) P(x)
R{V(x,0)}
0 L 0 L
X X

P == — = — R O
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INFINITE WELL: OBSERVABLE POSITION

Position (x)

measurement
P(x)
R{WP(x,0)}
0 L 0
X X

g

Lecture 05: Dirac formalism
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INFINITE WELL: ENERGIES

Energy (E,;) measurement

Lecture 05: Dirac formalism
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INFINITE WELL: OBSERVABLE ENERGY

_______________________________

Energy (E,;) measurement

e A = g A ——. | -

P(E1)
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WAVEPACKET INCIDENT ON BARRIER

timet=20
Y(x,0) V)
timet = t4 Vo)
X

M_@[\

LIJri ght (x ’ tl)

S
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WAVEPACKET: OBSERVABLE POSITION

Position (x)
measurement

timet = t4

Wlef%

Every measurement probabilistic BUT average position {x) o« fOL P(x) xdx

V(x)

qui ght (X ) tl)
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OBSERVABLES, OPERATORS AND COLLAPSE

State of a quantum system: |¥)
Wave function represents state: (x|¥(t)) — ¥(z,t)

Observable is something we can measure (a real number)
Observable () corresponds to an Hermitian operator Q

Measuring NOT same as applying operator Q|\I!>

Measurement operators DON’T always commute (incompatible observables)

Incompatible observables — NO common basis of eigenfunctions
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UNCERTAINTY PRINCIPLE

e Heisenberg uncertainty principle

=t

e Commutator is nonzero:

[z,p] = zp — px = ih

e Can’t measure position and momentum at the same time

e Measuring position destroys the momentum measurement
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GENERALIZED UNCERTAINTY PRINCIPLE

e General uncertainty principle is related to the commutator

e Number between brackets is real but can be negative
e We need the square at the right-hand-side

e Commutating operators — no restrictionon o 4,0p

How to proof this?
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EXAMPLE UNCERTAINTY PRINCIPLE

e General uncertainty principle for position/momentum

e The commutator forz and p:

= 0,0p 2>

L (1z.<[:f:,m>)2 - (21<h>)
h
2

— Heisenberg uncertainty principle
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COMMUTATORS AND UNCERTAINTY

iy > (5 ([4 BW

e Compatible observables: Commutating observables [21 B] =

= Measurements independent, order doesn’t matter
= No restriction on the common uncertainty of the measurement

= A common basis of eigenstates can be found

e Incompatible observables: Non-commutating observables [fl, B] #+ 0
= Order of the measurement matters !
= Minimum uncertainty on the measurements according to formula

= NO common basis of eigenstates can be found
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DIRAC NOTATION



BRACKETS: BRA'S AND KETS

e Inner product in matrix notation (separate “vectors”)
(r)
be
(o) =(af a5 ... a}) =atby +asby +...a5b,

\b:n)

e “bra” acts on the ket by row vector multiplication

e “bra” vector is separate from the “ket” vector: bra sits in a dual vector space

e Now with possible infinite basis:

<a|:Za;(...)j o (a|:/a*(...)daz
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BRACKETS: BRA'S AND KETS

e Kets are vectors in vector space
e Bra’s are vectors in dual space
¢ Infinite dimensions:

= Kkets are column vectors

= bra’s are complex conjugate row vectors

k

(bra| = (o = (a} a}

/2\

ket) = |B)

\b;/
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DUAL SPACE AND HERMITIAN CONJUGATES

e Converting a |ket) to a (bra| and vice versa:

e An operator acting on a (bral:

~t A A T
(0@ = (Qal = (Qla))
— operators can act to the left as this is allowed by associativity

o Why is this? See definition of Hermitian conjugate of operators:

Q' alB) = (a]QB)
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IN FINITE DIMENSIONS: MATRIX-FORMALISM

: : : : a
e Example in two dimensions, an operator actingon a |a) = ( ! ) ;
az

Q|a> — Qa — (Qn le) (a1) _ (Q11a1 +Q12a2)
Q21 Q2 as Q2101 + Q2202

The Hermitian conjugate gives

QL @y

(0 — al0! = (a a;>(% o

) = (Quiai + Qiaas Q3iai + Qhar)
For this example we indeed see that:

@l@' = ()’
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THE PROJECTION OPERATOR
e The projection operator defined for a normalized |«):

A

Py = |a){a]

— Projects any other vector |3) onto the direction of |a):

A

Po|f) = ((aB)) o)

Example: projection in two dimensions
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THE PROJECTION OPERATOR: EXAMPLE

Example: projection in two dimensions

= e(5) 1=

Polf) = |a){alf) = ;(21) (1 —2i) (f) =509 (21)

The operator itself is an outer product:

P, = |a){a| = ;(zlz) (1 —2i) = ;)(212 _42i)

Two-dimensional vector spaces are actually useful: Spin, the two-level atom
approximation, etc.
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IDENTITY OPERATORS

e If we have a complete basis { |e,,) }

e Projection operator:

A

P, = |ey)(en]|

Then the identity operator can be written as:

Y Pu=> len)en =1

Or for a continuous spectrum and eigenfunction basis:

(eslel) = 6(z — 2') /|ez><ez\ dz =1
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FUNCTIONS OF OPERATORS: POWER SERIES

e Sums and products of operators, order is important:

(Q + cR)|a) = Qla) + cRla)  QRla) = Q (Rla))

e Functions of operators are represented by their power series

e Likewise with matrices (also operators in our case):

A 1 2 1 =~3
1 ~ 2 ~3 . ~d4
—=14+4Q+Q +0Q +Q +
1-@Q
R ~ 1 ~2 1 ~3 1 -4
1n(1‘|‘Q):Q_§Q ‘|‘§Q _ZQ
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