PHOT 301: Quantum Photonics
LECTURE 04

Michaél Barbier, Summer (2024-2025)

Lecture 04: The time-independent Schrodinger equation (ctu’d)



OVERVIEW

Week 1

Week 2

Week 3

Week 4

Week 5

Week 6

Introduction & Required Mathematical Methods.
Waves and Schrodinger's equation, Probability, Uncertainty and Time evolution.

Infinite square well.

Ch. 2
The harmonic oscillator, Creation and annihilation operators. .
_ _ o o (from Harmonic
Free particle, 1D Bound states & Scattering/Transmission, Finite well )
oscillator)

Quantum mechanics formalism: Functions and operators, uncertainty.

Approximation methods.

Angular momentum and the Hydrogen atom, Spin
Magnetic fields, The Pauli equation, Minimal Coupling, Aharonov Bohm

Perturbation: Fine Structure of Hydrogen, The Zeeman Effect

Identical particles, Periodic table, Molecular bonds, Periodic structures, Band
structure, Bloch functions
Time-dependent perturbation: Absorption, spontaneous emission, and stimulated

emission

Final exam
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FOR NEXT WEEK

o Textbook Chapter2:2.11,2.13,2.14,2.17,2.18, 2.25, 2.31, 2.34, 2.41, 2.53
e Homework documents:

= phot301_homework_matrices.pdf

= phot301_homework_system_of_equations.pdf

= phot301_homework_eigenvalue_equations.pdf

e Reading (by Thursday 31 July 2025): Chapter 3 of Griffiths
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SUMMARY

So far we looked at bound states

¢ Infinite well
e Linear potential well (Electrical field, not seen yet)

e Harmonic oscillator

Different well potentials lead to different allowed energy levels
Narrower wells — less energy levels (more spread)

Discrete spectrum of energy-levels
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FREE PARTICLES
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FREE PARTICLE: PROPAGATING WAVES

R? 2
o digw) = Ey(x), asV(zx)=0
= dzd‘i(f) = —k*(x), withk= zng

e Solutions are unconstrained: all energy values

e Similar to a very wide well (with infinite walls)

¢($) _ Aeika) _|_Be—z'k:13
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FREE PARTICLE SOLUTIONS
w(m) _ Aeikaz _|_Be—ika:

e Problem 1: Not normalizable

e Problem 2: Velocity is half of classical velocity
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PROBLEM 1: NOT NORMALIZABLE
Y(z) = Ae'*® + Be ™
b(a)|* = P(a)" P()
_ (A*e—z'kac 4+ B*eikaz)(Aez'kw + Be—ikw)
_ ’A’2 4 ’B‘Z 4 (AB*eika 4+ A*Be—’ika)
= |A]® + |B]® + % (AB*¢*)

—i—oo +00 ’
= / *dz = (|JA]* + |BJ*) o0 / R (AB*eZ%"E) dr

(0.@)

The last integral is bounded (oscillating between finite values)

The total integral [ [1h|°dez — 400, and therefore doesn’t exist.
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PROBLEM 2: VELOCITY TOO SLOW

We can rewrite ¥ (z, t) = 1(x)e /P y t=0
with B = hifj [

U(z,t) = AeihviBt/h | po-ike—iBt/h | "
1) =
— Aptkr—ihk’t/2m 4 Be—tkz—ihk't/2m 4 =1
— Ae zk(m—— t) 4 Be—zk(az—— ) [
T >_'X,'
e Both exponentials are a function of _
x £ vt, a “wave” moving with velocity v Y [ t
1 >
X

Example of a propagating “wave”. It does not change its shape
in time.
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PROBLEM 2: VELOCITY TOO SLOW

We can rewrite ¥ (z, t) = 1(x)e /P y
with E = % [ t=0
- 2m

X

o o NIVANVANWANYANER
\IJ(.’I?,t) :Aezkw—zEt/h+Be—zkw—zEt/h \/ \/ \/ \/ \/

— A eikw—ihkzt/2m 4 Be—z‘kx—ihkzt/zm y o

ANIANVANYA VAR
VARV ERVERV/

hkt hkt

_ Aeik(m—% ) 4 Be—ik(az—% )

X
e Both exponentials are a function of

x T vt, a “wave” moving with velocity v y [ —

ANWANANWANNAW
V V V U \»

. hk
Real part of a propagating wave ek @5, 1) (

right).

Propagating to the
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PROBLEM 2: VELOCITY TOO SLOW

We can rewrite ¥(z,t) = 9(z)e *#/P with B = h;n’fj :

\IJ(.’,U,t) — Ae ikr—iEt/h + Be—ikaz—iEt/h
_ Aezk(w—— ) 4+ Be—zk(w—— t)

This is a function of = vt, a “wave” moving with velocity v

The velocity is Vquantum = % — A/ %

e Classically the velocity Vclassical = % because £ =

1, .2
5 TV

e The classical velocity is twice the one according to quantum mechanics!
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WAVE PACKETS

e Superposition of propagating waves is
normalizable

e Solves the velocity problem as well!
e |s consistent with uncertainty principle

e Fourier’s trick to find coefficients

AAAAAAAW*

-

-3 -2 -1

Image from Wikipedia
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LOCALIZED WAVES USING MORE K-VALUES

e Superposition of waves

e Momentum around main

SV ko £ ndk

e Plots from top to bottom

N=1,248
N
w(m) _ Z ei(kzo—i—an)w

w(x)

w(x)

w(x)

?MM

i

M

=

|

|
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e

e
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GROUP VELOCITY OF THE WAVE PACKET

Phase velocity v

15
f ‘- ) ’ 'r \“
[ N , 1l
w 1.0 4 H H 1 1 [ " “I [ | ‘l ‘
_— — I A
'U k O.S-HHH U‘}' - \ ,‘\‘ Inl | | ‘l "

0.0 4 ‘ ‘ ‘ ' | | l‘ I\ ‘.‘ ‘.‘ ‘l \‘ (|
i

W(x, t)

Group velocity: Sof 1Y AN

-15

dw -
vg — % 1.5 41

1.0 41

wix, ]2

N
\I!(m,t) _ Z ez’(ko+n(5k)m 2

0.0 A
T T
-30 -15.0 0 15.0 30

n——

NIRRT NIE DI BN I B

©0nce @ Loop © Reflect
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PHASE AND GROUP VELOCITY

i(krx—wt)
U(z,t) = m/qb

Assume ¢(k) around kg

1 . |
\If(:c,t) I~ —27T /¢(k0 + S)ez((k0+s)m—(wo+sw0)t)

1 ei(kox—wot)/¢(k0_|_S)ei8(w—w6t)
27

Y
Y
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GENERAL WAVE PACKETS: FOURIER TRANSFORMS

e Wave packets of any shape

e Includes all possible k-values (energies)
L i(kz— 12 p)
U(x,t) = — o(k)e 2m ") dk
e Time-independent ¥(x,0) = ¥(x):

¥ (z,0) = % /_ ) o(k)e™ dk

Fourier transform Inverse Fourier transform

o) = —= [ “wl)e *da w(@) = = [ o0 b
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WAVE PACKET TIME EVOLUTION

e Weknow ¥(z,0)and T —

V(e,t) = = / (k)e'Fe W) g, tl’/\l%c,tl)lz
o
Rk’ W, )2
(U(k) = % tZ X, Lo
o

e Phase velocity of k < (k) slower

e Phase velocity of k > (k) faster o

—> Wave packets broadens in time
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BOUND STATES AND SCATTERING



BOUND STATES AND FREE PARTICLES

S . .
-, Scattering __, scattering

Bound states >

Bound states have a bounded domain

Particle is stuck in a potential valley
e Free particles can go everywhere
e Scattering of particles with £ > V

e Scattering also called Tunneling when B < V.«
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INTERMEZZO: THE DIRAC DELTA FUNCTION

Dirac delta distribution: 5 -
d(x #0) =0 ;.

d(x =0) = +o0 2

+00 _

/ 5(z) = 1 °

_OO -1

Limit of series of functions: 5

e peaked such as sinc(x) or Gaussian
e limit to infinitely thin and high

o Area kept normalized

Filters out single point:

fla) = [ f(z)d(z — a) dz
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DELTA FUNCTION POTENTIAL WELL
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The potential energy function: p V(x)

V(z) = —ad(x # 0) 0
o e v e il i
V(iz #0) = —ad(z #0) = —ac
h2 d2 : >
- 2m dzi(zw) — ad(z)y = By 0 X

Bound states have E < (. Outside the well:

A2 d*¢(a)

2m  dx?

= Ev

where F/ < 0 and thus exponential
solutions
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DELTA FUNCTION POTENTIAL WELL
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Bound states have &£ < 0. Outside the well: V(%)

h? d*y(x i
-5 fg ) _ Ev g ______________________ I S
m L Ae ™™ + Be™™ \i| Fe ™™ 4+ Ge™*

Exponential solutions:

\ 4

/—OmE .
() o< e, with Kk = m 0 X

h

Wave function must be continuous:

Pz <0) =z > 0)

Lecture 04: The time-independent Schrodinger equation (ctu’d)



DELTA FUNCTION POTENTIAL WELL

Discontinuity: integrate the Schrodinger equation

h_2 € d*yP(z) dr — o - §(x)Ydr = E/+6¢dw

o2m ). dz? e

A2 dy(a)

9m  dr

—+€

~ ap(0) = 0

—€

Then take the limitfore — 0

R (aw(w)) oo

dx

We know the derivatives in x = +0:

dx
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DELTA FUNCTION POTENTIAL WELL

A (42 = 2Favo

; dx h?2
A (dzﬁ(w)) = —2rB
\ dx
Make use of (0) = B
2
—h—rn;aB = —2rB
mao
— TR
h2 K2 mao?
E _ — _ —
= 2m 2h2

The eigenstate with energy F becomes after normalization:

Y = Be "7l = /re "=l

Lecture 04: The time-independent Schrodinger equation (ctu’d)
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FINITE POTENTIAL BARRIERS/
STEPS/WELLS



FINITE SQUARE WELL

d’y  om d’y _ 2m
oY =2m (/o — E)y oY =2m (/o — E)p
Vo-
d*y 2m
o~ etV
0 ] T T |
—a 0 a
e Finite square potential well Schrodinger equation:
e Boundstates0 < F < V 52 d2¢(w)
e Scattering states £ > V} T om  dp? (B —V(z)) ¢(z)
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FINITE WELL: BOUND STATES

d’y _ 2m
P _2m (o — E)y

Q.

TV =2m (o — E)y

For bound states 0 < E < V}

V2mE

inside: ¥Y(—a <z < a) = Csin(Az) + D cos(Ax) A

h
Sutside: Y(r < —a) = Ae "* 4+ Be"* = Be™” . V2m(Vy — E)
' Y(x > a) = Fe " + Ge™ = Fe "™ h
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FINITE WELL: BOUND STATES

d? d?
Y =20(Vo—E)y e =20(Vo—E)y
Vo
d’y _ _2m
o~ etV
O- T
—a 0 a
Since ¥(x) is continuousinz = —a and = a:
Be " = —C's D
© stm()\a) + Dcos(a) Y(x) continuous in x = —a, a
Fe " = Csin(Aa) + D cos(\a)
Bre " = AC'cos(Aa) + Dsin()\a) dip(x) , ,
B . continuous In £ = —a, a
—Fre " = AC'cos(Aa) — ADsin(Aa) dz

Lecture 04: The time-independent Schrodinger equation (ctu’d) 8



FINITE WELL: BOUND STATES

Be " = —(C'sin(Aa) + D cos(a)

" nz——a,
Fe ™ = Csin(Aa) + D cos(Aa) ¥(z) continuous in z @

Bre " = AC'cos(Aa) + ADsin(\a) dy(z)
—Fre " = AC cos(Aa) — ADsin(Aa) dr

continuous in * = —a, a

Add the first two equations and subtract the others:

(B+ F)e " = 2D cos Aa

(B + F);e’“‘ — 2Dsin \a
And divide them < B # —F
; = tan \a

Lecture 04: The time-independent Schrodinger equation (ctu’d)
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FINITE WELL: BOUND STATES

Be " = —(C'sin(Aa) + D cos(a) . .
~ , Y(x) continuous in x = —a, a
Fe " = Csin(Aa) 4+ D cos(Aa)

Brke " = AC cos(Aa) + AD sin()\a) dip(z) , ,
N , contimuous In £ = —a, a
—Fre " = AC cos(Aa) — ADsin(Aa) dr

Now subtract the first two equations and add the others:

(B— F)e "* = —2C'sin \a

(B — F);e"‘a = 2C cos A\a

And divide them < B # F

= —cot A\a if B# F

> > &

= tan \a if B # —F from before

Lecture 04: The time-independent Schrodinger equation (ctu’d)
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FINITE WELL: BOUND STATES

= —cot A\a if B# F

= tan \a if B # —F from before

> H>| &

e The relations are inconsistent!

e Only possibleif one of themisinvalid: B = ForB = —F

(B— F)e " = —2C'sin \a

B=F = (B—F)Ee_"‘“:2Ccos)\a = C' = 0,%(x) = D cos(Ax)
A
(B+ F)e " = 2D cos Aa
peol (B + F)Ee_"’“ — 9Dsinda D =0,9(z) = Csin(z)
A

Lecture 04: The time-independent Schrodinger equation (ctu’d)
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FINITE WELL: BOUND STATES (WAVE FUNCTION)

Symmetric solutions Asymmetric solutions

( Y(r < —a) = Be"™® ( Y(r < —a) = Be™™*

{ Y(—a < x < a)=Dcos(\z) ¢ Y(—a <z < a)=Csin(A\x)

\ Y(x > a) = Be ™ \ Y(x > a) = —Be ™
withFF =B & k= Atanla withFF = —B & k= —M\cotAa
Vo Vo
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FINITE WELL: BOUND STATES

Symmetric solutions Asymmetric solutions
( Y(r < —a) = Be"™® ( Y(r < —a) = Be™™*
{ Y(—a < x < a)=Dcos(\z) ¢ Y(—a <z < a)=Csin(A\x)
\ Y(x > a) = Be ™ \ Y(x > a) = —Be ™
withFF =B & k= Atanla withFF = —B & k= —M\cotla

Let’s first obtain the energy from k and A:

2m 2m
K = =) — (Vo — E), A = ﬁ(E)
Definez = Aaand zyg = a ﬂ;?i%

2
— /12+)\2:hﬂ;( 0) =22/a®> = Ka®=2-2
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FINITE WELL: BOUND STATES

Symmetric solutions Asymmetric solutions
( Y(r < —a) = Be"™® ( Y(r < —a) = Be™™*
{ Y(—a < x < a)=Dcos(\z) ¢ Y(—a <z < a)=Csin(A\x)
\ Y(x > a) = Be ™ \ Y(x > a) = —Be ™
withFF =B & k= Atanla withFF = —B & k= —M\cotla
22 22
—> tanz = —g— — —cotz = _g_
z z

where we made use of:

2.2 __ 2 2 _ 2 /,2
K'a® =zf — 2 :>/<:/)\—\/zo/z —1

Lecture 04: The time-independent Schrodinger equation (ctu’d) 34



Lecture 04: The time-independent Schrodinger equation (ctu’d)



FINITE WELL: E FOR SYMMETRIC BOUND STATES

Symmetric solutions

( Y(x < —a) = Be™™
{ P(—a <z < a)= Dcos(\z)
\ Y(x > a) = Be ™

withF ' =B & k= AtanA\a

2
2()

— tanz = —2—1
z

|
— \/zé%/z2 -1
— tan(2)

0

/2

m 3m/2 2m 5m/2
Z

Lecture 04: The time-independent Schrodinger equation (ctu’d)
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FINITE WELL: E FOR ASYMMETRIC BOUND STATES

Asymmetric solutions

withF'= —B & k= —)\cotA\a

—> —Ccot 2z =

Asymmetric energies approximately

“shifted” to the right

( Y(x < —a) = Be™
{ Y(—a <z < a) = Csin(Ax)
\ Y(x > a) = —Be **

|

— V%

/z% -1

0 n2 m 312 21 51/

Lecture 04: The time-independent Schrodinger equation (ctu’d)
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FINITE WELL: GRAPHICAL ENERGY-LEVELS

e Symmetric and asymmetric solutions

e Energy levels at intersections of red curve
with blue/green curves.

e Energies close to infinite well energies
(vertical asymptotes):

h? 2 < foo _ h? nnm?
~7" 0 2m (2a)?

E, =
2ma?

e 2y isintersection of red curve with x-axis

e Increasing zg —= more energy-levels

e Decreasing zp = less energy-levels

J2mV;
e 2p = Zq’oaoc\/VOa

| | |

- \/ z2/z% — 1
— tan(2)
— —cot(2)

n)2

I

32 2m 512
Z
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FINITE WELL: NUMERICAL SOLUTIONS

Numerically solving for z:

Gives us:

2)\2 o ﬁ2z2
2m  2ma?

e Energy levels E,,

e Values for C or D as function of B:

B = Dcos(Aa)e™
B = —C'sin(Aa)e™

e Normalization — final unknown B

Vo]

?

wiAVAVA
—I\/ L
I\
TN
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SCATTERING

Lecture 04: The time-independent Schrodinger equation (ctu’d)
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PROBABILITY DENSITY CURRENT

e Probability p(z,t) = |¥(z,t)|*

e Continuity equation

e Changein p(z, t) leads to probability current

Op(z)
ox

Op(z)
ox

Lecture 04: The time-independent Schrodinger equation (ctu’d)
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SCATTERING AT A BARRIER

timet=20
Y(x,0) V)
timet = t, V(x)
X

qjlef% _/3{(%&)

Lecture 04: The time-independent Schrodinger equation (ctu’d)
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SCATTERING AT A BARRIER

Position (x)
measurement

timet = t4

Wlef%

Every measurement probabilistic BUT average position {x) o« fOL P(x) xdx

V(x)

qui ght (X ) tl)
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SCATTERING AT A SINGLE POTENTIAL STEP

e Scatteringstates B > V) @ g
e Classically no reflection &2 §>
E B RPN DD IPEPEDEPESD U iR, P i, N
e R:Reflection coefficient, probability to —) v
reflect 1 ’
e T': Transmission probability/coefficient 0
e Total probability one: 0 X
T —I_ R — 1 A V(X)
) ) . Ceikzx
Schrodinger equation (TISE): E|----- B L TR SRR
A elklx + Be—lklx VO
h? d*¢(z)
- = (F —V(x x
o de = EV@) @)
0 x

Lecture 04: The time-independent Schrodinger equation (ctu’d)
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SCATTERING AT A SINGLE POTENTIAL STEP

_ — (E — T

o (B —V(z)) ¢(z) i - r,
l Vo

1
{ Y(z < 0) = Ae™® 4 Be M@ 0
Y(r < 0) = Cetke® 0 <
V2mE 2m(E — V|
kl — m , k‘2 — \/ m( O) V(x)
h h
P Cet™
tkq1x —ikqx

Ae + Be V,
O N
0 X

Lecture 04: The time-independent Schrodinger equation (ctu’d)
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SCATTERING AT A SINGLE POTENTIAL STEP

B2 d2(x) e g
— = (E-V T
e d ~E- V@ e L T,
—) v
0
1
{ w(m < O) _ Aeiklx 4 Be—ikw 0
Y(z < 0) = Ce'*2® 0 <
vV2mE 2m(E — V,
By = 2 o YIMEZV)
h h
o : o Cel™ .
Continuity of ¥(x) and ¥/ () A olkix § po—ikix V.
{ Aeiklm + Be—iklw _ Ceik2m
ik‘lAeiklx — ’ilee_iklx — ikgC’eikﬁ 0 R
0 X
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