
PHOT 301: Quantum Photonics
LECTURE 04

Michaël Barbier, Summer (2024-2025)

1Lecture 04: The time-independent Schrodinger equation (ctu’d)



OVERVIEW
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FOR NEXT WEEK

• Textbook Chapter 2: 2.11, 2.13, 2.14, 2.17, 2.18, 2.25, 2.31, 2.34, 2.41, 2.53

• Homework documents:

▪ phot301_homework_matrices.pdf

▪ phot301_homework_system_of_equations.pdf

▪ phot301_homework_eigenvalue_equations.pdf

• Reading (by Thursday 31 July 2025): Chapter 3 of Griffiths
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SUMMARY
So far we looked at bound states

• Infinite well

• Linear potential well (Electrical field, not seen yet)

• Harmonic oscillator

Different well potentials lead to different allowed energy levels

Narrower wells  less energy levels (more spread)

Discrete spectrum of energy-levels

⟶
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FREE PARTICLES
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FREE PARTICLE: PROPAGATING WAVES

• Solutions are unconstrained: all energy values

• Similar to a very wide well (with infinite walls)

− = Eψ(x),  as V (x) = 0
ℏ2

2m

ψ(x)d2

dx2

⇒ = − ψ(x),  with k =
ψ(x)d2

dx2 k2 2mE
− −−−√
ℏ

ψ(x) = A + Beikx e−ikx
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FREE PARTICLE SOLUTIONS

• Problem 1: Not normalizable

• Problem 2: Velocity is half of classical velocity

ψ(x) = A + Beikx e−ikx
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PROBLEM 1: NOT NORMALIZABLE

The last integral is bounded (oscillating between finite values)

The total integral , and therefore doesn’t exist.

ψ(x) = A + Beikx e−ikx

|ψ(x)|2

⇒ |ψ(x) dx∫ +∞

−∞
|2

= ψ(x ψ(x))∗

= ( + )(A + B )A∗e−ikx B∗eikx eikx e−ikx

= |A + |B + (A + B )|2 |2 B∗ei2kx A∗ e−i2kx

= |A + |B + R (A )|2 |2 B∗ei2kx

= (|A + |B ) ∞ + R (A ) dx|2 |2 ∫ +∞

−∞
B∗ei2kx

∫ |ψ dx ⟶ +∞|2
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PROBLEM 2: VELOCITY TOO SLOW

We can rewrite 
with :

• Both exponentials are a function of
, a “wave” moving with velocity 

Ψ(x, t) = ψ(x)e−iEt/ℏ

E = ℏ2k2

2m

Ψ(x, t) = A + Beikx−iEt/ℏ e−ikx−iEt/ℏ

= A + Beikx−iℏ t/2mk2
e−ikx−iℏ t/2mk2

= A + Beik(x− t)ℏk
2m e−ik(x− t)ℏk

2m

x ± vt v

Example of a propagating “wave”. It does not change its shape
in time.
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PROBLEM 2: VELOCITY TOO SLOW

We can rewrite 
with :

• Both exponentials are a function of
, a “wave” moving with velocity 

Ψ(x, t) = ψ(x)e−iEt/ℏ

E = ℏ2k2

2m

Ψ(x, t) = A + Beikx−iEt/ℏ e−ikx−iEt/ℏ

= A + Beikx−iℏ t/2mk2
e−ikx−iℏ t/2mk2

= A + Beik(x− t)ℏk
2m e−ik(x− t)ℏk

2m

x ± vt v

Real part of a propagating wave  (Propagating to the
right).

eik(x− t)ℏk

2m
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PROBLEM 2: VELOCITY TOO SLOW
We can rewrite  with :

• This is a function of , a “wave” moving with velocity 

• The velocity is 

• Classically the velocity  because 

• The classical velocity is twice the one according to quantum mechanics!

Ψ(x, t) = ψ(x)e−iEt/ℏ E = ℏ2k2

2m

Ψ(x, t) = A + Beikx−iEt/ℏ e−ikx−iEt/ℏ

= A + Beik(x− t)ℏk
2m e−ik(x− t)ℏk

2m

x ± vt v

= =vquantum
ℏk
2m

E
2m

−−−√
=vclassical

2E
m

−−−√ E = m1
2 v2
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WAVE PACKETS

• Superposition of propagating waves is
normalizable

• Solves the velocity problem as well!

• Is consistent with uncertainty principle

• Fourier’s trick to find coefficients

e−x 
2/2 · sin(2π·4x)

−4 −3 −2 432 −1 0 1
−1.5

−1.0

−0.5

0.0

0.5

1.5

1.0

Image from Wikipedia
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LOCALIZED WAVES USING MORE K-VALUES

• Superposition of waves

• Momentum around main

• Plots from top to bottom

± nδk∑N
n=−N k0

N = 1, 2, 4, 8

ψ(x) = ∑
n=−N

N

ei( +nδk)xk0
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GROUP VELOCITY OF THE WAVE PACKET

Phase velocity 

Group velocity:

       

Once Loop Reflect

v

v =
ω

k

=vg
dω

dk

Ψ(x, t) = ∑
n=−N

N

ei( +nδk)xk0


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PHASE AND GROUP VELOCITY

Assume  around 

Ψ(x, t) = ∫ ϕ(k)
1
2π
−−√

ei(kx−ωt)

ϕ(k) k0

Ψ(x, t) ≈ ∫ ϕ( + s)
1
2π
−−√

k0 ei(( +s)x−( +s )t)k0 ω0 ω′
0

≈ ∫ ϕ( + s)
1
2π
−−√

ei( x− t)k0 ω0 k0 eis(x− t)ω′
0
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GENERAL WAVE PACKETS: FOURIER TRANSFORMS

• Wave packets of any shape

• Includes all possible k-values (energies)

• Time-independent :

Ψ(x, t) = ϕ(k) dk
1
2π
−−√

∫ ∞

−∞
ei(kx− t)ℏk2

2m

Ψ(x, 0) = ψ(x)

Ψ(x, 0) = ϕ(k) dk
1
2π
−−√

∫ ∞

−∞
eikx

Fourier transform Inverse Fourier transform

ϕ(k) = ψ(x) dx, ψ(x) = ϕ(k) dk
1
2π
−−√

∫ ∞

−∞
e−ikx 1

2π
−−√

∫ ∞

−∞
eikx
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WAVE PACKET TIME EVOLUTION

• We know  and

• Phase velocity of  slower

• Phase velocity of  faster

–> Wave packets broadens in time

Ψ(x, 0)

Ψ(x, t)

ω(k)

= ϕ(k) dk,
1
2π
−−√

∫ ∞

−∞
ei(kx−ω(k)t)

=
ℏk2

2m

k < ⟨k⟩

k > ⟨k⟩
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BOUND STATES AND SCATTERING
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BOUND STATES AND FREE PARTICLES

sca�ering

Bound states

sca�ering

• Bound states have a bounded domain

• Particle is stuck in a potential valley

• Free particles can go everywhere

• Scattering of particles with 

• Scattering also called Tunneling when 

E > V∞

E < Vmax
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INTERMEZZO: THE DIRAC DELTA FUNCTION

Dirac delta distribution:

Limit of series of functions:

• peaked such as sinc(x) or Gaussian

• limit to infinitely thin and high

• Area kept normalized

Filters out single point:

{ δ(x ≠ 0)
δ(x = 0)

= 0
= +∞

δ(x) = 1∫ +∞

−∞

f(a) = f(x) δ(x − a) dx∫ +∞
−∞
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DELTA FUNCTION POTENTIAL WELL

21Lecture 04: The time-independent Schrodinger equation (ctu’d)



The potential energy function:

Bound states have . Outside the well:

where  and thus exponential
solutions

V (x) = −αδ(x ≠ 0)

{ V (x ≠ 0) = −αδ(x ≠ 0)
V (x ≠ 0) = −αδ(x ≠ 0)

= 0
= −α∞

− − αδ(x)ψ
ℏ2

2m

ψ(x)d2

dx2 = Eψ

E < 0

−
ℏ2

2m

ψ(x)d2

dx2 = Eψ

E < 0
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DELTA FUNCTION POTENTIAL WELL
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Bound states have . Outside the well:

Exponential solutions:

Wave function must be continuous:

E < 0

−
ℏ2

2m

ψ(x)d2

dx2 = Eψ

ψ(x) ∝ , with κ =e±κx −2mE
− −−−−−√

ℏ

ψ(x < 0) = ψ(x > 0)
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DELTA FUNCTION POTENTIAL WELL
Discontinuity: integrate the Schrodinger equation

Then take the limit for 

We know the derivatives in :

− dx − α δ(x)ψ dx
ℏ2

2m
∫ +ϵ

−ϵ

ψ(x)d2

dx2 ∫ +ϵ

−ϵ

− − αψ(0)
ℏ2

2m

dψ(x)
dx

∣
∣
+ϵ

−ϵ

= E ψ dx∫ +ϵ

−ϵ

= 0

ϵ ⟶ 0

Δ ( ) = − αψ(0)
dψ(x)

dx

2m

ℏ2

x = ±0

−Bκ − (Bκ) ⇒ Δ ( ) = −2κB
dψ(x)

dx
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DELTA FUNCTION POTENTIAL WELL

Make use of 

The eigenstate with energy  becomes a�er normalization:

⎧
⎩⎨
⎪⎪⎪
⎪⎪⎪

Δ ( )dψ(x)
dx

Δ ( )dψ(x)
dx

= − αψ(0)
2m

ℏ2

= −2κB

ψ(0) = B

− αB = −2κB
2m

ℏ2

⇒ κ =
mα

ℏ2

⇒ E = − = −
ℏ2κ2

2m

mα2

2ℏ2

E

ψ = B =e−κ|x| κ−−√ e−κ|x|
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FINITE POTENTIAL BARRIERS/
STEPS/WELLS
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FINITE SQUARE WELL

• Finite square potential well

• Bound states 

• Scattering states 

Schrodinger equation:

0 < E < V0

E > V0
− = (E − V (x)) ψ(x)

ℏ2

2m

ψ(x)d2

dx2
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FINITE WELL: BOUND STATES

For bound states 0 < E < V0

inside:  ψ(−a < x < a) = C sin(λx) + D cos(λx) λ =
2mE
− −−−√
ℏ

outside: κ =
ψ(x < −a)

ψ(x > a)
= A + B = Be−κx eκx eκx

= F + G = Fe−κx eκx e−κx

2m( − E)V0
− −−−−−−−−−√

ℏ
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FINITE WELL: BOUND STATES

Since  is continuous in  and :ψ(x) x = −a x = a

ψ(x) continuous in x = −a, a
Be−κa

Fe−κa

= −C sin(λa) + D cos(λa)
= C sin(λa) + D cos(λa)

 continuous in x = −a, a
Bκe−κa

−Fκe−κa

= λC cos(λa) + D sin(λa)
= λC cos(λa) − λD sin(λa)

dψ(x)
dx
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FINITE WELL: BOUND STATES

Add the first two equations and subtract the others:

And divide them 

ψ(x) continuous in x = −a, a
Be−κa

Fe−κa

= −C sin(λa) + D cos(λa)
= C sin(λa) + D cos(λa)

 continuous in x = −a, a
Bκe−κa

−Fκe−κa

= λC cos(λa) + λD sin(λa)
= λC cos(λa) − λD sin(λa)

dψ(x)
dx

(B + F)e−κa

(B + F)
κ

λ
e−κa

= 2D cos λa

= 2D sin λa

⇔ B ≠ −F

κ

λ
= tan λa
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FINITE WELL: BOUND STATES

Now subtract the first two equations and add the others:

And divide them 

ψ(x) continuous in x = −a, a
Be−κa

Fe−κa

= −C sin(λa) + D cos(λa)
= C sin(λa) + D cos(λa)

 continuous in x = −a, a
Bκe−κa

−Fκe−κa

= λC cos(λa) + λD sin(λa)
= λC cos(λa) − λD sin(λa)

dψ(x)
dx

(B − F)e−κa

(B − F)
κ

λ
e−κa

= −2C sin λa

= 2C cos λa

⇔ B ≠ F

κ

λ
κ

λ

= − cot λa  if B ≠ F

= tan λa  if B ≠ −F  from before
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FINITE WELL: BOUND STATES

• The relations are inconsistent!

• Only possible if one of them is invalid:  or 

κ

λ
κ

λ

= − cot λa  if B ≠ F

= tan λa  if B ≠ −F  from before

B = F B = −F

B = F ⇒ ⇒ C = 0, ψ(x) = D cos(λx)
(B − F)e−κa

(B − F)
κ

λ
e−κa

= −2C sin λa

= 2C cos λa

B = −F ⇒ ⇒ D = 0, ψ(x) = C sin(λx)
(B + F)e−κa

(B + F)
κ

λ
e−κa

= 2D cos λa

= 2D sin λa
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FINITE WELL: BOUND STATES (WAVE FUNCTION)

Symmetric solutions

with 

Asymmetric solutions

with 

⎧
⎩⎨
⎪
⎪

ψ(x < −a)
ψ(−a < x < a)

ψ(x > a)

= Beκx

= D cos(λx)
= Be−κx

F = B & κ = λ tan λa

⎧
⎩⎨
⎪
⎪

ψ(x < −a)
ψ(−a < x < a)

ψ(x > a)

= Beκx

= C sin(λx)
= −Be−κx

F = −B & κ = −λ cot λa
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FINITE WELL: BOUND STATES

Symmetric solutions

with 

Asymmetric solutions

with 

Let’s first obtain the energy from  and :

⎧
⎩⎨
⎪
⎪

ψ(x < −a)
ψ(−a < x < a)

ψ(x > a)

= Beκx

= D cos(λx)
= Be−κx

F = B & κ = λ tan λa

⎧
⎩⎨
⎪
⎪

ψ(x < −a)
ψ(−a < x < a)

ψ(x > a)

= Beκx

= C sin(λx)
= −Be−κx

F = −B & κ = −λ cot λa

κ λ

= ( − E), = (E)κ2 2m

ℏ2 V0 λ2 2m

ℏ2

Define  and z = λ a = az0
2mV0√
ℏ

⟹ + = ( ) = / ⟹ = −κ2 λ2 2m

ℏ2 V0 z2
0 a2 κ2a2 z2

0 z2
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FINITE WELL: BOUND STATES

Symmetric solutions

with 

Asymmetric solutions

with 

⎧
⎩⎨
⎪
⎪

ψ(x < −a)
ψ(−a < x < a)

ψ(x > a)

= Beκx

= D cos(λx)
= Be−κx

F = B & κ = λ tan λa

⟹ tan z = − 1
z2

0

z2

− −−−−−√

⎧
⎩⎨
⎪
⎪

ψ(x < −a)
ψ(−a < x < a)

ψ(x > a)

= Beκx

= C sin(λx)
= −Be−κx

F = −B & κ = −λ cot λa

⟹ − cot z = − 1
z2

0

z2

− −−−−−√
where we made use of:

= − ⟹ κ/λ =κ2a2 z2
0 z2 / − 1z2

0 z2
− −−−−−−−√
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FINITE WELL: E FOR SYMMETRIC BOUND STATES

Symmetric solutions

with 

⎧
⎩⎨
⎪
⎪

ψ(x < −a)
ψ(−a < x < a)

ψ(x > a)

= Beκx

= D cos(λx)
= Be−κx

F = B & κ = λ tan λa

⟹ tan z = − 1
z2

0

z2

− −−−−−√
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FINITE WELL: E FOR ASYMMETRIC BOUND STATES

Asymmetric solutions

with 

Asymmetric energies approximately
“shi�ed” to the right

⎧
⎩⎨
⎪
⎪

ψ(x < −a)
ψ(−a < x < a)

ψ(x > a)

= Beκx

= C sin(λx)
= −Be−κx

F = −B & κ = −λ cot λa

⟹ − cot z = − 1
z2

0

z2

− −−−−−√
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FINITE WELL: GRAPHICAL ENERGY-LEVELS

• Symmetric and asymmetric solutions

• Energy levels at intersections of red curve
with blue/green curves.

• Energies close to infinite well energies
(vertical asymptotes):

•  is intersection of red curve with x-axis

• Increasing  more energy-levels

• Decreasing  less energy-levels

• 

= ⪅ =En
ℏ2z2

2ma2 E∞
n

ℏ2

2m

n2π2

(2a)2

z0

⟹z0

⟹z0

= a ∝ az0
2mV0√
ℏ V0

−−√
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FINITE WELL: NUMERICAL SOLUTIONS

Numerically solving for :

Gives us:

• Energy levels 

• Values for  or  as function of :

• Normalization  final unknown 

z

tan z

− cot z

= ,/ − 1z2
0 z2

− −−−−−−−√
= / − 1z2

0 z2
− −−−−−−−√

= =En
ℏ2λ2

2m
ℏ2z2

2ma2

C D B

B

B

= D cos(λa)eκa

= −C sin(λa)eκa

⟶ B
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SCATTERING
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PROBABILITY DENSITY CURRENT

• Probability 

• Continuity equation

• Change in  leads to probability current

ρ(x, t) = |Ψ(x, t)|2

=
∂ρ(x, t)

∂t

∂ρ(x)
∂x

ρ(x, t)

∂ρ(x)
∂x

∂ρ(x)
∂x
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SCATTERING AT A BARRIER
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SCATTERING AT A BARRIER
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SCATTERING AT A SINGLE POTENTIAL STEP

• Scattering states 

• Classically no reflection

• : Reflection coefficient, probability to
reflect

• : Transmission probability/coefficient

• Total probability one:

Schrodinger equation (TISE):

E > V0

R

T

T + R = 1

− = (E − V (x)) ψ(x)
ℏ2

2m

ψ(x)d2

dx2
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SCATTERING AT A SINGLE POTENTIAL STEP

− = (E − V (x)) ψ(x)
ℏ2

2m

ψ(x)d2

dx2

{ ψ(x < 0)
ψ(x < 0)

= A + Bei xk1 e−i xk1

= Cei xk2

= , =k1
2mE
− −−−√
ℏ

k2
2m(E − )V0
− −−−−−−−−−√

ℏ
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SCATTERING AT A SINGLE POTENTIAL STEP

Continuity of  and 

− = (E − V (x)) ψ(x)
ℏ2

2m

ψ(x)d2

dx2

{ ψ(x < 0)
ψ(x < 0)

= A + Bei xk1 e−i xk1

= Cei xk2

= , =k1
2mE
− −−−√
ℏ

k2
2m(E − )V0
− −−−−−−−−−√

ℏ

ψ(x) (x)ψ′

{ A + Bei xk1 e−i xk1

i A − i Bk1 ei xk1 k1 e−i xk1

= Cei xk2

= i Ck2 ei xk2
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