PHOT 301: Quantum Photonics
LECTURE 03

Michaél Barbier, Summer (2024-2025)

Lecture 03: The time-independent Schrodinger equation (ctu’d)



OVERVIEW

Week 1

Week 2

Week 3

Week 4

Week 5

Week 6

Introduction & Required Mathematical Methods.
Waves and Schrodinger's equation, Probability, Uncertainty and Time evolution.

Infinite square well.

Ch. 2
The harmonic oscillator, Creation and annihilation operators. .
_ _ o o (from Harmonic
Free particle, 1D Bound states & Scattering/Transmission, Finite well )
oscillator)

Quantum mechanics formalism: Functions and operators, uncertainty.

Approximation methods.

Angular momentum and the Hydrogen atom, Spin
Magnetic fields, The Pauli equation, Minimal Coupling, Aharonov Bohm

Perturbation: Fine Structure of Hydrogen, The Zeeman Effect

Identical particles, Periodic table, Molecular bonds, Periodic structures, Band
structure, Bloch functions
Time-dependent perturbation: Absorption, spontaneous emission, and stimulated

emission

Final exam
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FOR NEXT WEEK

o Textbook Chapter2:2.11,2.13,2.14,2.17,2.18, 2.25, 2.31, 2.34, 2.41, 2.53
e Homework documents:

= phot301_homework_matrices.pdf

= phot301_homework_system_of_equations.pdf

= phot301_homework_eigenvalue_equations.pdf

e Reading (by Thursday 31 July 2025): Chapter 3 of Griffiths
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REVIEW: INFINITE WELL

Time-independent solutions: 12 -

e Eigenstates and eigenenergies 10-

e Quantum numbern

(o) =2 n (")

V(x) (in 2mL?%/h%n?)
o

\ oo h’ki R (n7r)2
" 2m  2m\ L 2-
\ n=123,4,... 0-

Plot shows the wave function (1, grey),
probability (||, color) for first 3 eigenstates
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REVIEW: QUANTIZATION BY SPACIAL CONSTRAINTS

Energy-levels E,, proportional with # and n?

h27T27’L2 7"1,271'2
En — 9 — , En = 2E
2mL? L™ omI? n° s
.......... Ey=16E;
E
"""""""" poTTTTTTT E, B
_________________ 1
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REVIEW: SUPERPOSITION OF STATIONARY
SOLUTIONS

For the infinite well 3.0-

Y(z) = \/%icn sin(%w) j:

Example state:

V(x)

—-0.5
( C1 :4/5,
.
§ €2 =4/1—¢c] =3/5, 6
(n>2—c, =0 j
S
e What if we let time evolve? 5
L
o

0 L
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REVIEW: ADDING THE TIME-DEPENDENCY

Add e En/P 1o each eigenstate:
e .
U(z,t) = Z CnPn () e 1P/ 2-
n=1

For the infinite well:

V(x)

0-

U(z,t) =4/ 7 Z Cn Sin(%az) e tEn/R L S—
n—1 — Im(V)

— WP

—2 - | I |
0 L2 L

e The wave function ¥(x, t) is complex-valued x

e Probability density | ¥ (z, )| is real-valued
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REVIEW: PROPERTIES OF STATIONARY EIGENSTATES

1, are orthonormal / Y ()" Yy () de = Sy

Y, form a complete basis Z Cnn (x Vf(x)

n=1

Coefficients ¢, are given by ¢, = / Yo (x)* f(x)dr

Coefficients |c, {2 give the probability to measure energy as F,,:

0. @)
(H) = /xp*ﬁxpda; =Y |enl’E,
n=1
Expectation values for operators Z, p, etc.

(2)(t) = /\I!a:\If do — /x\w iz
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REVIEW: OBSERVABLES & MEASUREMENTS

Position (x)

measurement
P(x)
R{WP(x,0)}
0 L 0
X X

g
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REVIEW: OBSERVABLES & MEASUREMENTS

Energy (E,;) measurement

______________________________________________________________

P(E1)
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HARMONIC OSCILLATOR

Lecture 03: The time-independent Schrodinger equation (ctu’d)
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INTRODUCTION

e Ball-spring problem
e Analog RCL electric circuit

e Many systems are (approximately)
harmonic oscillators

= Optical cavity

= 2nd order Taylor approximation V()

= Phonons, vibrations in molecules/
matter

e Quantization of light: Photons

Lecture 03: The time-independent Schrodinger equation (ctu’d)
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CLASSICAL HARMONIC OSCILLATOR: PARABOLIC
WELL

e Mass in parabolic well V(z) = amgz?

dV(x)
dr

e Motion via Newton’s equation ' = ma:

V(x) = mgh < mgx?

e Restoring force: F' = — = —2amgzx

P

-

d%x
ma=m-—_— = —2amagzx ////,,. ,
dt ? J =

Linear equation with constant coefficients

d’x
— = —2agr = —w’z, withw = ,/2ag.
2 I ?

Resulting solutions are: & o sin(wt)

Turning points at £Tmax: QMGTIax = Lma?

N 0 . :
Lecture 03: The time-indepengent Schrodinger equation (ctu’d
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CLASSICAL HARMONIC OSCILLATOR: BALL-SPRING

e mass attached to a spring

dv(z) _ ko >
dx Y !

e Motion via Newton’s equation ' = ma:

—Xmax +xmax

e Restoring force: F' = —

2
d2
ma—m—:—k'az 7,
dt2
Z|

Linear equation with constant coefficients

d? k
Wf:_am_—wm Wlthw—\/m’b Z\AM/\/\/V\/\/\/V\/

Resulting solutions are: & o sin(wt)

Turning points at +2 .« %k’wmax = %mv%
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QUANTUM HARMONIC OSC.: DIATOMIC MOLECULE

e Vibrations approximate harmonic
i Atom 1
oscillator WA N

e Restoring force: F' = —

e Schrodinger equation with potential:

1
Viz) = —§k'w2

 Quantization energy-levels
Groundstate nonzero energy

_/\

| Time-evolution p(z,t) = |¥(z,t)|*

Distance r

|
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SOLVING THE QM HARMONIC OSCILLATOR

The time-independent Schrodinger equation (TISE):

D @)+ V@) = B
Potential energy: V(z) = s mw?z?
R 67 1 2 9
" o9m Ox2 P(x) + o MW T P(z) = Ey
Rewrite in dimensionless units: £ = , / 7=
1 0?2 1, E
3 V(O — WO = 50

— 2nd order linear differential equation

Lecture 03: The time-independent Schrodinger equation (ctu’d)
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SOLVING THE QM HARMONIC OSCILLATOR

1 02 1, E
292 (&) — 5¢ P() = ¥
Standard method to solve differential equation

STEP 1: Try to find asymptotic solutions

| E 1,
SN T e €2t
82 2 2
> G O~EUO = Yocep(-£/2)

STEP 2: Trial solution to hopefully simplify the equation

Y(z) = exp(—&2/2)H(§), where solutions H(&) are yet unknown
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SOLVING THE QM HARMONIC OSCILLATOR

STEP 2: Trial solution to hopefully simplify the equation
Fillin trial solution ¢ = exp(—£&2%/2) H (&) in the original equation.
1

S o) — (O =

(and we multiply equation by 2)

2 2 2 2
sl S - e €rHE = - e

Then calculate 2nd derivative (f'(x) = 0f(x)/0x):

!

e 2| = [~ CPHE + e CLH(E
= —e U 2H(E) + e 2H(E) — 2te PH!(6) + e 2H ()

Lecture 03: The time-independent Schrodinger equation (ctu’d)
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SOLVING THE QM HARMONIC OSCILLATOR

STEP 2: Trial solution to hopefully simplify the equation
—&2/2 1 —&2/2 71 2F —£2/2
e~ "H(§) —26e ™ "H(§) = (1——— ) e "H(¢)

Divide by e=¢/2

H'(© - 2@ = (1- 7. ) H(O
Define dimensionless K = %

H"(§) —26H'(§) + (K —1) H(§) =0

New differential equation: Simpler?

Lecture 03: The time-independent Schrodinger equation (ctu’d)
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SOLVING THE QM HARMONIC OSCILLATOR

STEP 3: Solve by power series expansion

Assume H(§) = ag + a1€ + ap€® +a3€® +--- =3 a2 ja;¢
| H(¢) =ap+arf+axt’ +as’+--- = f;ajgj
p=
{ H'(§) = a1 +2a6+3a38" + -+ = f;(j +1)a; 1€
p=
H"(6) = 24z + 6az + - = f;(j $2)(j+ Dagoré
\ =

H"(§) —26H'(§) + (K —1) H(§) =0

Then fill in the power series in the equation

Lecture 03: The time-independent Schrodinger equation (ctu’d)
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SOLVING THE QM HARMONIC OSCILLATOR

STEP 3: Solve by power series expansion

H"(§) —26H'(§) + (K — 1) H(§) =0

Then fill in the power series in the equation:

> (G +2)(G + Dajer — 2ja; + (K — 1) aj] & =0
7=0

Lecture 03: The time-independent Schrodinger equation (ctu’d)

( 00
H(¢) =ao+ a1€ + as€® + as€® + -+ =) a;¢
=0
{ H'(§) = a1 +2a26 + 3az€® + - - = Z(J +1)aj 1€’
=0
H"(§) = 2ay + 6asé+--- =Y (j+2)(j+ aj2¢
\ j=0
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SOLVING THE QM HARMONIC OSCILLATOR

STEP 3: Solve by power series expansion
m .
3 (G +2)( + Dajiz — 2ja; + (K — 1) a;] € =0
7=0
For every power of £ equation needs to be zero
(] + 2)(] + 1)aj+2 — 2jaj —+ (K — ].) CLj — O
Solve for coefficients:

2j+1—K
G+2)(+1)

If we know ag (even series) and aj (odd series) we know all a,,

Aj+2 = a; =0

Lecture 03: The time-independent Schrodinger equation (ctu’d)
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SOLVING THE QM HARMONIC OSCILLATOR

STEP 3: Solve by power series expansion

One problem: we require

lim ef /2H(€) =0

£—00

This is not the case for our infinite series.

UNLESS the series terminates: d5: 29+1—-K =0
Solutions existfor K — 1 = % — 1 = 2n, n=20,1,2,3...

[y, = Ap exp(—€%/2)H, (€),

Lecture 03: The time-independent Schrodinger equation (ctu’d)

| E, = (n+1/2)hw withn =0,1,2,...

23



Lecture 03: The time-independent Schrodinger equation (ctu’d)



HARMONIC OSCILLATOR SOLUTIONS

( 'an = A, exp(—§2/2)Hn(§),
E, = (n+ %) hw withn =0,1,2,...

1 mw
An p— p— _
\ \/ V2" n! § h

Hermite polynomials H,, (&) (our even/odd power series)

Hy=1
H, = 2¢
Hy, = 4£% — 2

H; = 8¢° —12¢

Ho(€) = 26H, 1(€) — 2(n — 1)H,_5(¢)
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HARMONIC OSCILLATOR SOLUTIONS

Solutions for the wave function:

e (zaussian

e Normalization

e Hermite polynomials H, (&)

Hy=1
Hy=2¢
Hy= 4¢% — 2

Hy= 8¢ —12¢

Lecture 03: The time-independent Schrodinger equation (ctu’d)
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HARMONIC OSCILLATOR SOLUTIONS

Wave function (&) Probability density function |¢(€)[?

4 -3 -2 -1 0 1 2 3

Lecture 03: The time-independent Schrodinger equation (ctu’d)
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HIGH ENERGY SOLUTIONS

Classmally:zre[ \/ﬁf \/ZEz} and \@bn] — Pelass. (T) = %%

0.20- p
0.15]

| |
0.10- ﬂ n n n
. N MMMWMW ' ' ﬁ HMMWMMM I
| R A
0.00 ARATRILHITHI] ARLRLRYRL JO I AN
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POTENTIAL PARAMETERS & SOLUTIONS

e Energy-levels E,, < w, Width parabola scales with 1 /w

1
E, = (n—l— 5) hw withn =0,1,2,...

Lecture 03: The time-independent Schrodinger equation (ctu’d)
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ENERGY INFINITE WELL VS. HARMONIC OSCILLATOR

Infinite well:

E4 — 16E1 -----------------
e B, xn?  [rtTeesteeeel L
e B, oc1/L? | B B =an
E,
£2-202 | E. 1 E, |
2mL

Quantum H.O.:

e equidistant E,,
o [/, xw

e width ox 1/w

E,=(n+1/2)hw
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ALTERNATIVE (ALGEBRAIC)
DERIVATION



ALTERNATIVE (ALGEBRAIC) DERIVATION

The time-independent Schrodinger equation (TISE):

h? 0?
T (@) + V()i = By
with potential energy: V(z) = 3 mw?z?
h? 0? 1 5,
(@) + ymetat(z) = By
Operator form:
= (p* + m*w’z?) ¢(z) = Ev D = —ihg
2m ’ Ox

This is a sum of squares — factorize u? + v* = (iu + v)(—iu + v)

Lecture 03: The time-independent Schrodinger equation (ctu’d)
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LADDER OPERATORS

Ladder operators a_a, = (iu + v)(—iu + v) = u? + v?

A 1
a p—
* v 2hmw

The product is:

(Fip +mwz),  [&9] =zp —pe =ik

|
\

A

_|_
|

Lecture 03: The time-independent Schrodinger equation (ctu’d) 30
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LADDER OPERATORS
Ladder operators a_a, = (iu + v)(—iu + v) = u? + v?
4y = ———(Fip +mwz),  [8,5] = zp — px = i

T v 2hmw

We can also flip the ladder operators:

Stationary Schrodinger equation becomes:
A o 1
Hvy = hw (a+a + 5) V= FE

Lecture 03: The time-independent Schrodinger equation (ctu’d)
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LADDER OPERATORS GENERATE SOLUTIONS

If y() is a solution, the G () is another solution:

Hi(w) = By = H(a,p(x)) = (B + hw)(a: ()

If y() is a solution, then @_1(x) is another solution:

Hy(z) = By = H(a_¢(z)) = (E — hw)(a_y(z))

Lecture 03: The time-independent Schrodinger equation (ctu’d)
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LADDER OPERATORS GENERATE SOLUTIONS

Since energy /. > 0 operating with a_ leads at some point to:

a1 =20

The leads to the following differential equation

! (hi + mww) o(z) = 0

V2hmw \ dz
d%( ) Z—% z o (z)
:>/d¢0 ——% /wdm
:>1n¢(m)):—7;—:m +C

:>?,b()( ) Ae 2n
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LADDER OPERATORS GENERATE SOLUTIONS

mw 2

= ¢0(CB) — Ae = ”

Normalization requires(]’]@bo(ac)\2 =1

o0 o0 _mw .2 7Th
/ o ()2 dz = |AJ? / e AT
oo N mw

©.@)

o0
2 7
/ e “Pdr=,/—
o a

mw mw 92

Po() = (ﬁ)mﬁ_ﬁx

where we used the identity

This results in the solution:

Lecture 03: The time-independent Schrodinger equation (ctu’d) 36
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SOLUTIONS WITH THE LADDER OPERATORS

Other solutions 1, (z) can now be generated:

Yn(z) = An (a4 )" Yo(z), with E, = (n + %) hw

The normalization factor A4,, can be calculated

Yn(2) = —— (@-)" ¢o(x), with Enz(m%) ”

And operating with a single ladder operator:

ar¥n = N+ 14, a—_p = /MYp_1

Lecture 03: The time-independent Schrodinger equation (ctu’d)
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SUMMARY

e Infinite well

= Eigenstates evolve differentin time

= Single eigenstates are stationary for finite expectation energy {I—:T>

= Superposition of eigenstates leads to non-constant (&), i.e. a nonzero velocity
e Harmonic oscillator

= Energy levels equally spaced FE,, = hw(n + 1/2)

= Nonzero ground energy Fy = %hw

= Solutions proportional with Hermite polynomials H,,(x)

= Alternative algebraic method

Ladder operators (Algebraic method)

Lecture 03: The time-independent Schrodinger equation (ctu’d)



SUMMARY

So far we looked at bound states

¢ Infinite well
e Linear potential well (Electrical field, not seen yet)

e Harmonic oscillator

Different well potentials lead to different allowed energy levels

Narrower wells — less energy levels (more spread)

Lecture 03: The time-independent Schrodinger equation (ctu’d)
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