

PHOT 301: Quantum Photonics

LECTURE 03

Michaël Barbier, Summer (2024-2025)

OVERVIEW

week	Topic	Reading
Week 1	Introduction & Required Mathematical Methods. Waves and Schrödinger's equation, Probability, Uncertainty and Time evolution. Infinite square well.	
Week 2	The harmonic oscillator, Creation and annihilation operators. Free particle, 1D Bound states & Scattering/Transmission, Finite well	Ch. 2 (from Harmonic oscillator)
Week 3	Quantum mechanics formalism: Functions and operators, uncertainty. Approximation methods.	
Week 4	Angular momentum and the Hydrogen atom, Spin Magnetic fields, The Pauli equation, Minimal Coupling, Aharonov Bohm Perturbation: Fine Structure of Hydrogen, The Zeeman Effect	
Week 5	Identical particles, Periodic table, Molecular bonds, Periodic structures, Band structure, Bloch functions Time-dependent perturbation: Absorption, spontaneous emission, and stimulated emission	
Week 6	Final exam	

FOR NEXT WEEK

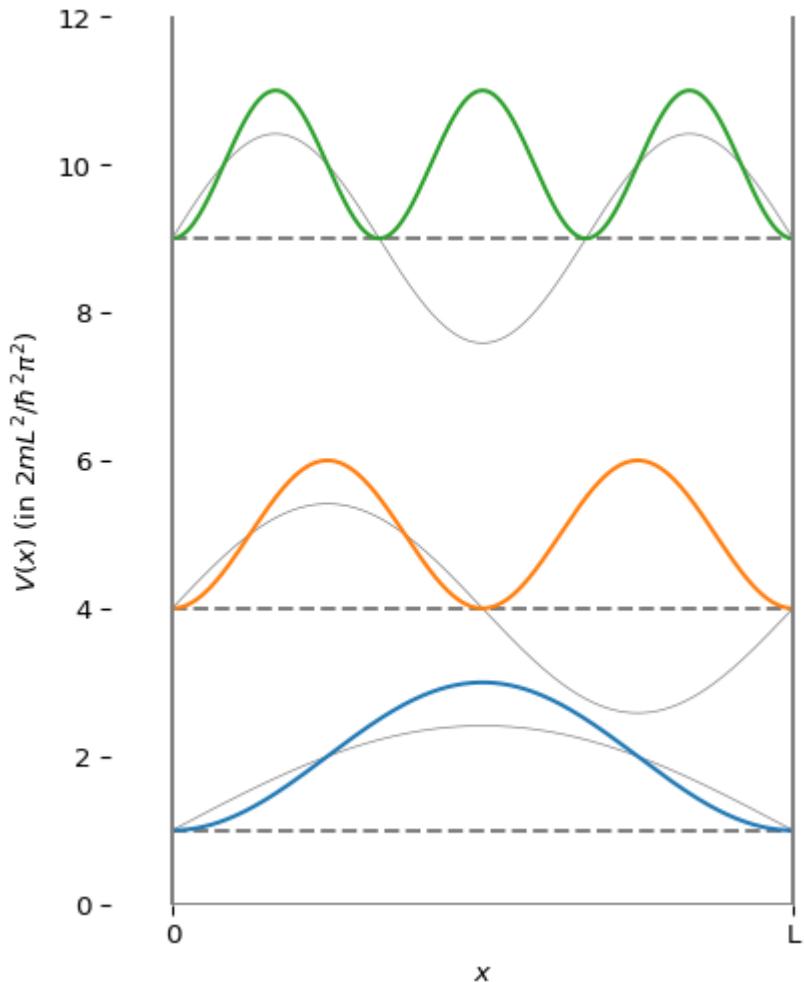
- Textbook Chapter 2: 2.11, 2.13, 2.14, 2.17, 2.18, 2.25, 2.31, 2.34, 2.41, 2.53
- Homework documents:
 - phot301_homework_matrices.pdf
 - phot301_homework_system_of_equations.pdf
 - phot301_homework_eigenvalue_equations.pdf
- Reading (by Thursday 31 July 2025): Chapter 3 of Griffiths

REVIEW: INFINITE WELL

Time-independent solutions:

- Eigenstates and eigenenergies
- Quantum number n

$$\left\{ \begin{array}{l} \psi_n(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi x}{L}\right) \\ E_n = \frac{\hbar^2 k_n^2}{2m} = \frac{\hbar^2}{2m} \left(\frac{n\pi}{L}\right)^2 \\ n = 1, 2, 3, 4, \dots \end{array} \right.$$

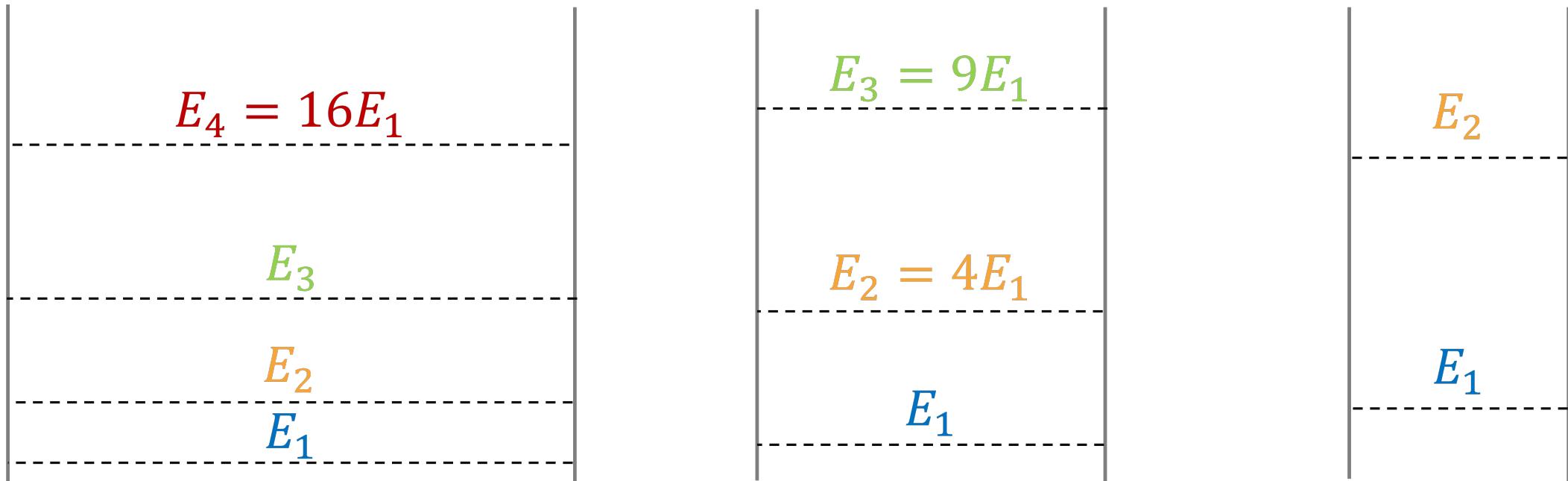


Plot shows the wave function (ψ , grey),
probability ($|\psi|^2$, color) for first 3 eigenstates

REVIEW: QUANTIZATION BY SPACIAL CONSTRAINTS

Energy-levels E_n proportional with $\frac{1}{L^2}$ and n^2

$$E_n = \frac{\hbar^2 \pi^2 n^2}{2mL^2}, \quad E_1 = \frac{\hbar^2 \pi^2}{2mL^2}, \quad E_n = n^2 E_1$$



REVIEW: SUPERPOSITION OF STATIONARY SOLUTIONS

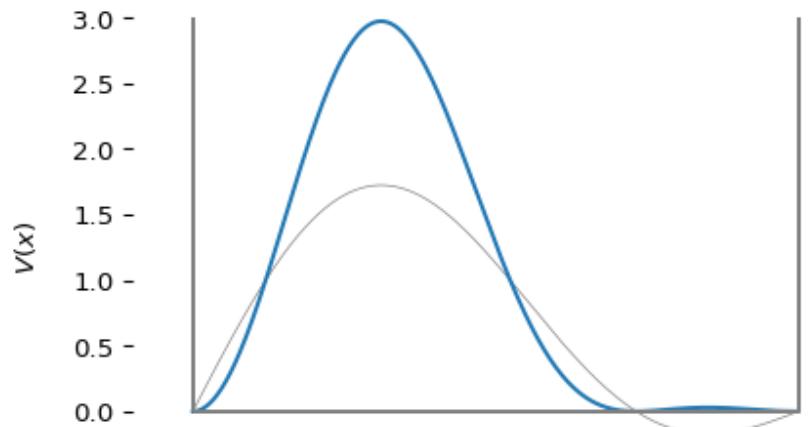
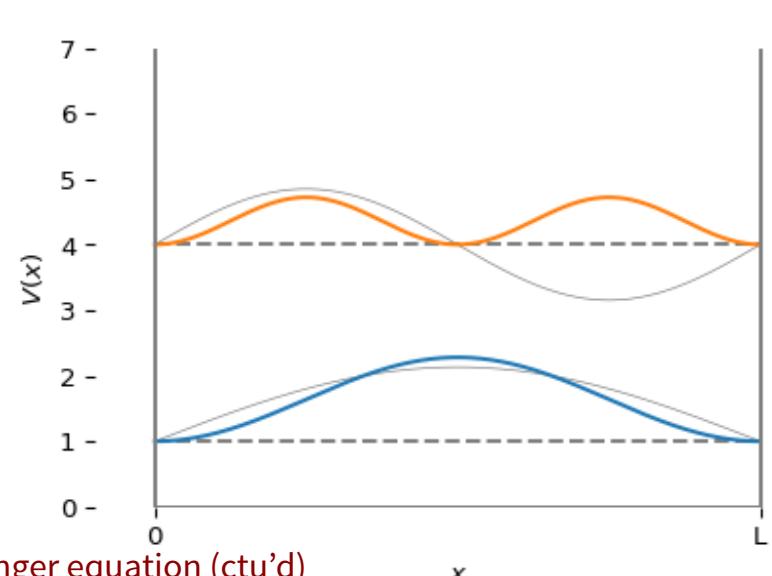
For the infinite well

$$\psi(x) = \sqrt{\frac{2}{L}} \sum_{n=1}^{\infty} c_n \sin\left(\frac{n\pi}{L}x\right)$$

Example state:

$$\begin{cases} c_1 = 4/5, \\ c_2 = \sqrt{1 - c_1^2} = 3/5, \\ n > 2 \rightarrow c_n = 0 \end{cases}$$

- What if we let time evolve?



REVIEW: ADDING THE TIME-DEPENDENCY

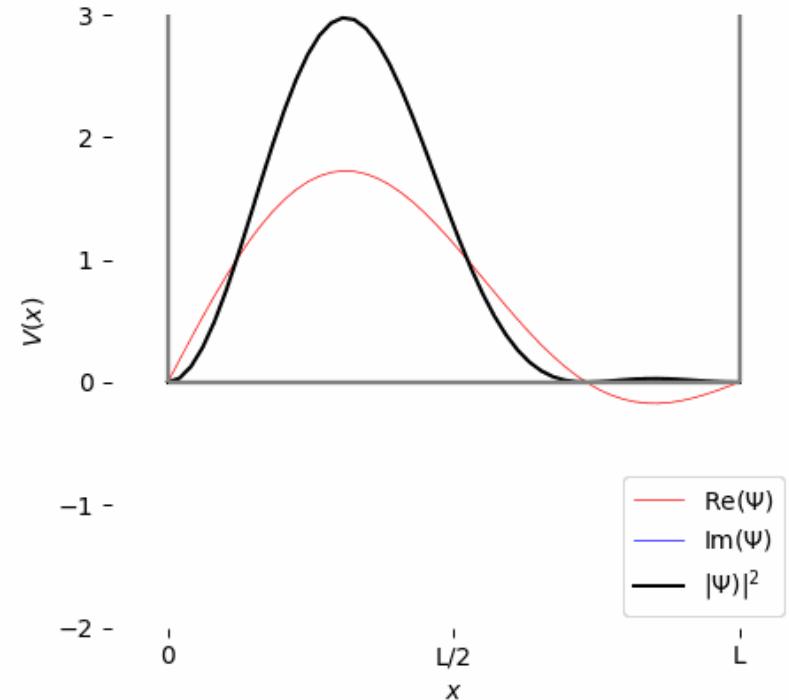
Add $e^{-iE_n/\hbar}$ to each eigenstate:

$$\Psi(x, t) = \sum_{n=1}^{\infty} c_n \psi_n(x) e^{-iE_n/\hbar}$$

For the infinite well:

$$\Psi(x, t) = \sqrt{\frac{2}{L}} \sum_{n=1}^{\infty} c_n \sin\left(\frac{n\pi}{L}x\right) e^{-iE_n/\hbar}$$

- The wave function $\Psi(x, t)$ is complex-valued
- Probability density $|\Psi(x, t)|^2$ is real-valued



REVIEW: PROPERTIES OF STATIONARY EIGENSTATES

ψ_n are orthonormal $\int \psi_m(x)^* \psi_n(x) dx = \delta_{mn}$

ψ_n form a complete basis $f(x) = \sum_{n=1}^{\infty} c_n \psi_n(x) \quad \forall f(x)$

Coefficients c_n are given by $c_n = \int \psi_n(x)^* f(x) dx$

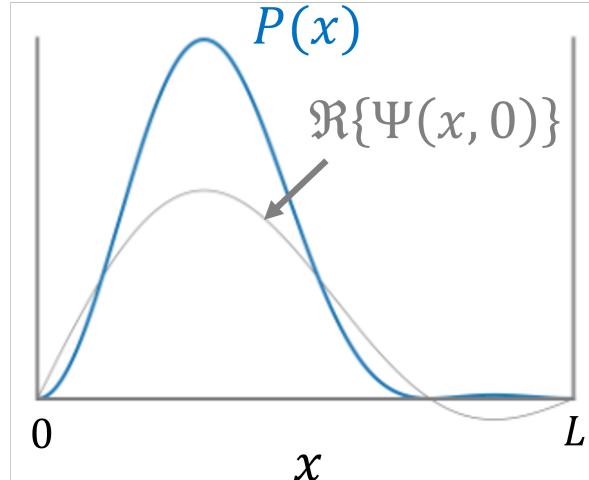
Coefficients $|c_n|^2$ give the probability to measure energy as E_n :

$$\langle \hat{H} \rangle = \int \Psi^* \hat{H} \Psi dx = \sum_{n=1}^{\infty} |c_n|^2 E_n$$

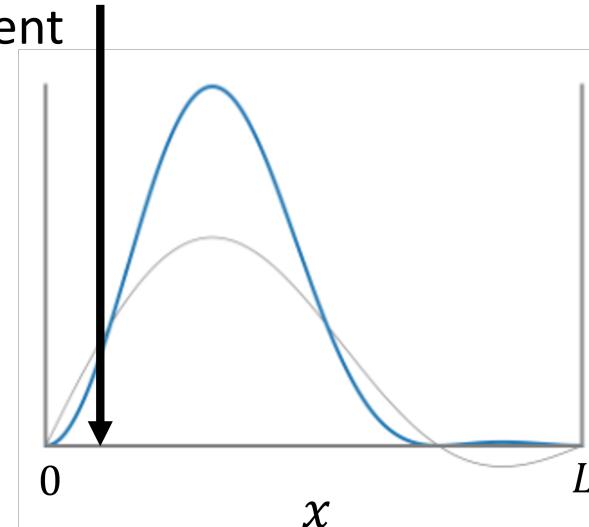
Expectation values for operators \hat{x}, \hat{p} , etc.

$$\langle \hat{x} \rangle(t) = \int \Psi^* \hat{x} \Psi dx = \int x |\Psi|^2 dx$$

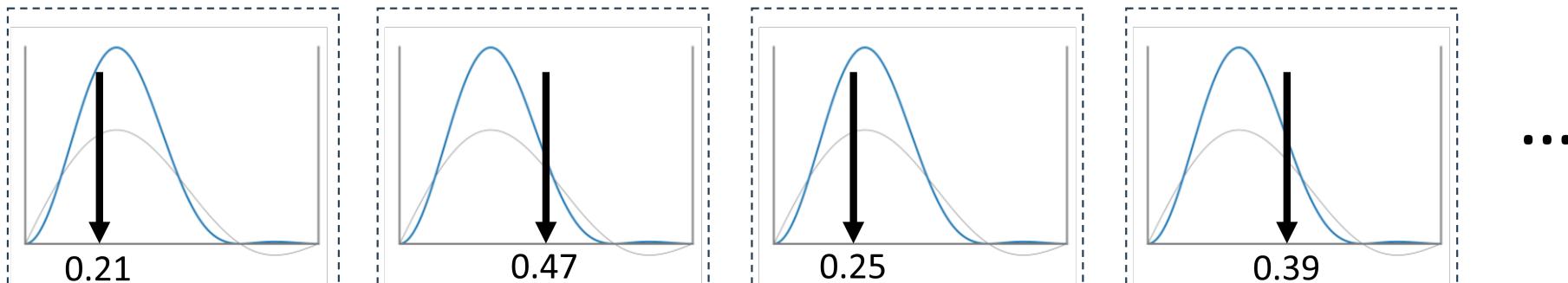
REVIEW: OBSERVABLES & MEASUREMENTS



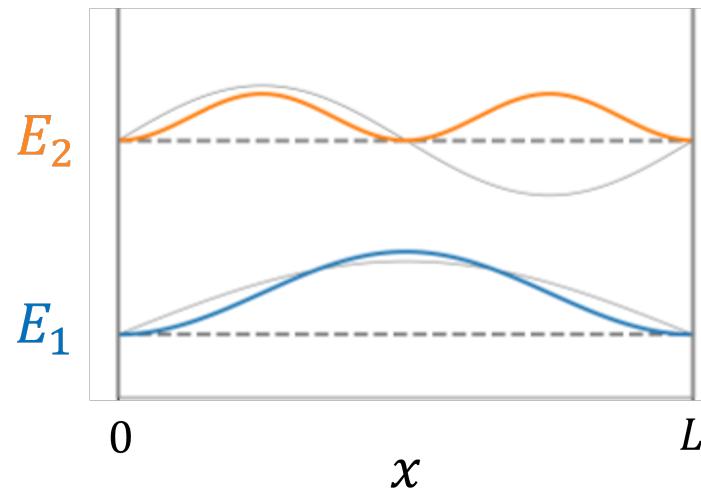
Position (x)
measurement



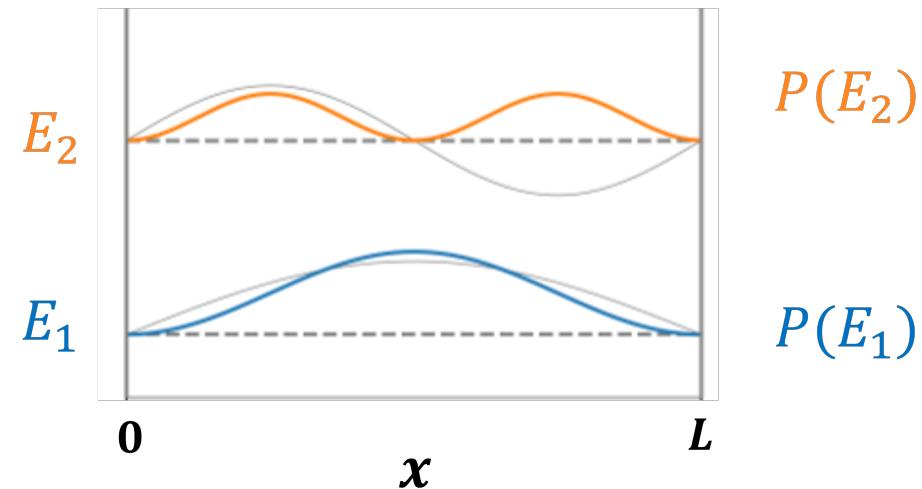
Every measurement probabilistic BUT average position $\langle x \rangle \propto \int_0^L P(x) x \, dx$



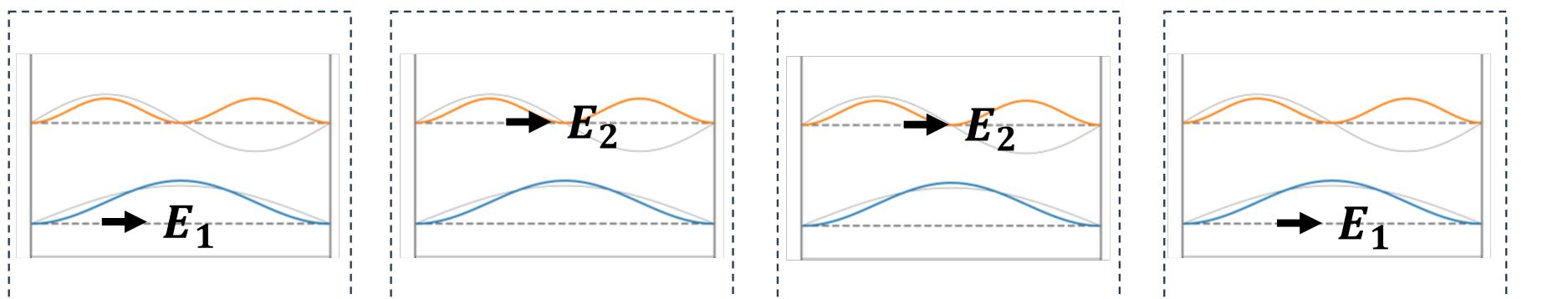
REVIEW: OBSERVABLES & MEASUREMENTS



Energy (E_n) measurement



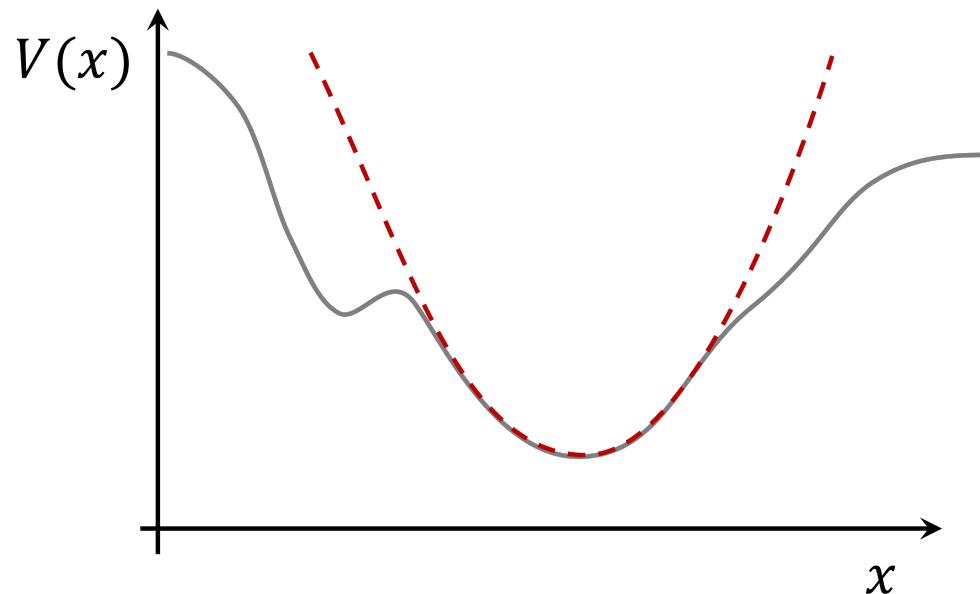
Every measurement probabilistic BUT average energy $\langle H \rangle \propto \sum_n P(E_n)E_n$



HARMONIC OSCILLATOR

INTRODUCTION

- Ball-spring problem
- Analog RCL electric circuit
- Many systems are (approximately) harmonic oscillators
 - Optical cavity
 - **2nd order Taylor approximation $V(x)$**
 - Phonons, vibrations in molecules/ matter
- **Quantization of light: Photons**



CLASSICAL HARMONIC OSCILLATOR: PARABOLIC WELL

- Mass in parabolic well $V(x) = \alpha mgx^2$
- Restoring force: $F = -\frac{dV(x)}{dx} = -2\alpha mgx$
- Motion via Newton's equation $F = ma$:

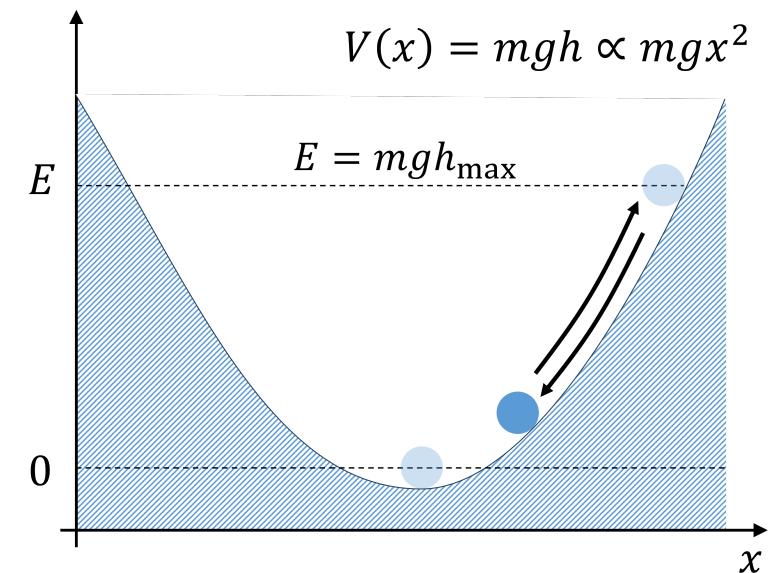
$$ma = m \frac{d^2x}{dt^2} = -2\alpha mgx$$

Linear equation with constant coefficients

$$\frac{d^2x}{dt^2} = -2\alpha gx = -\omega^2 x, \text{ with } \omega = \sqrt{2\alpha g}.$$

Resulting solutions are: $x \propto \sin(\omega t)$

Turning points at $\pm x_{\max}$: $\alpha mgx_{\max}^2 = \frac{1}{2}mv_0^2$



CLASSICAL HARMONIC OSCILLATOR: BALL-SPRING

- mass attached to a spring
- Restoring force: $F = -\frac{dV(x)}{dx} = -kx$
- Motion via Newton's equation $F = ma$:

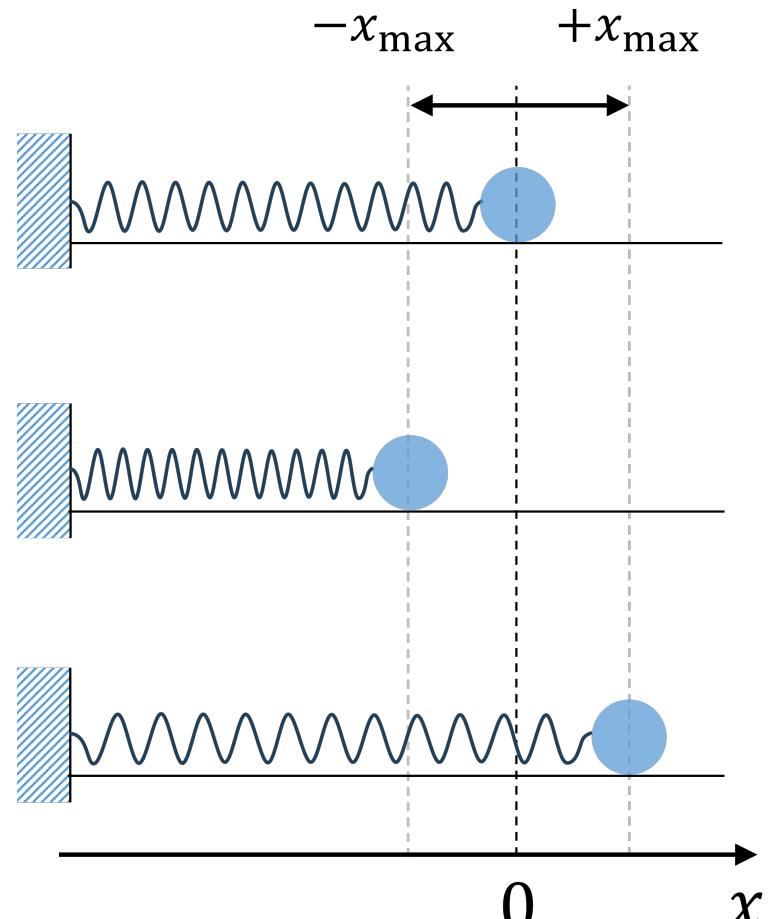
$$ma = m \frac{d^2x}{dt^2} = -k'x$$

Linear equation with constant coefficients

$$\frac{d^2x}{dt^2} = -\frac{k}{m}x = -\omega^2x, \text{ with } \omega = \sqrt{k'/m}.$$

Resulting solutions are: $x \propto \sin(\omega t)$

Turning points at $\pm x_{\max}$: $\frac{1}{2}k'x_{\max}^2 = \frac{1}{2}mv_0^2$

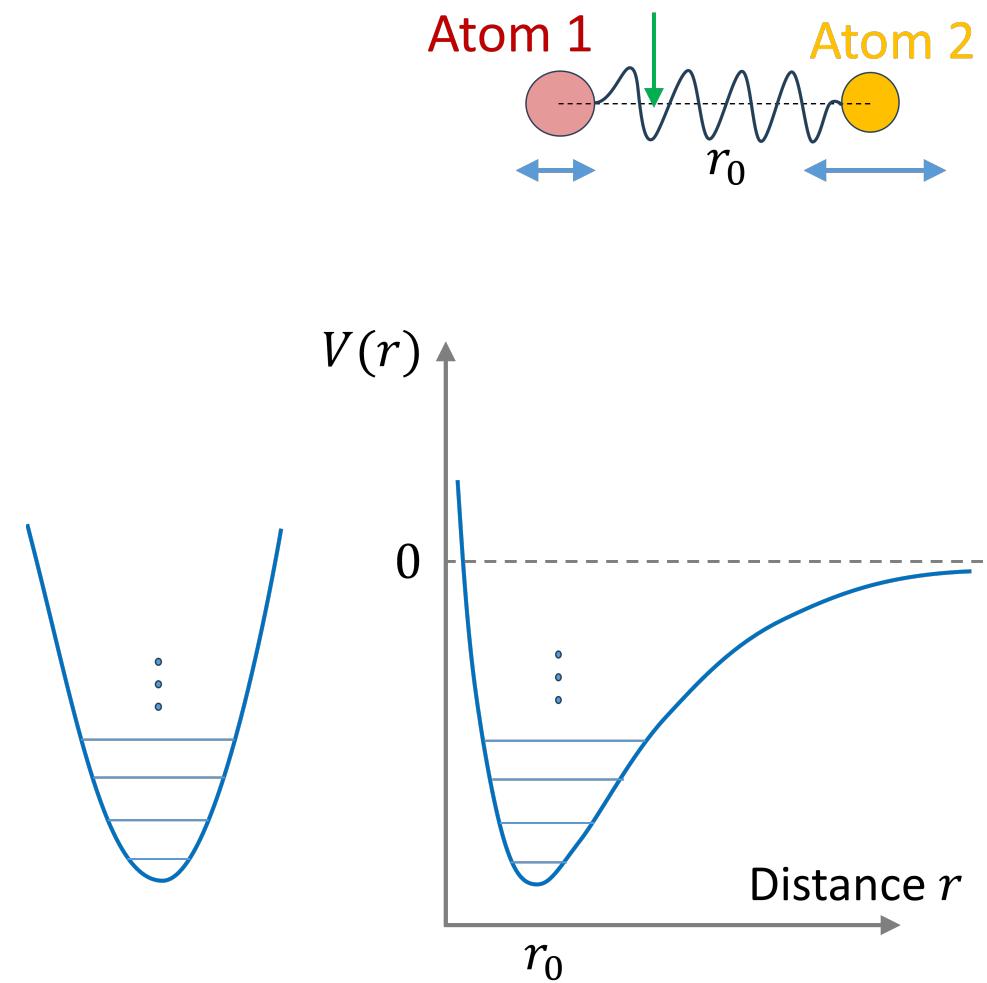


QUANTUM HARMONIC OSC.: DIATOMIC MOLECULE

- Vibrations approximate harmonic oscillator
- Restoring force: $F = -\frac{dV(x)}{dx} = -k'x$
- Schrodinger equation with potential:

$$V(x) = -\frac{1}{2}k'x^2$$

{ Quantization energy-levels
Groundstate nonzero energy
Time-evolution $\rho(x, t) = |\Psi(x, t)|^2$



SOLVING THE QM HARMONIC OSCILLATOR

The time-independent Schrodinger equation (TISE):

$$-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \psi(x) + V(x) \psi(x) = E \psi$$

Potential energy: $V(x) = \frac{1}{2}m\omega^2 x^2$

$$-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \psi(x) + \frac{1}{2}m\omega^2 x^2 \psi(x) = E \psi$$

Rewrite in dimensionless units: $\xi = \sqrt{\frac{m\omega}{\hbar}}$

$$\frac{1}{2} \frac{\partial^2}{\partial \xi^2} \psi(\xi) - \frac{1}{2} \xi^2 \psi(\xi) = -\frac{E}{\hbar\omega} \psi$$

→ 2nd order linear differential equation

SOLVING THE QM HARMONIC OSCILLATOR

$$\frac{1}{2} \frac{\partial^2}{\partial \xi^2} \psi(\xi) - \frac{1}{2} \xi^2 \psi(\xi) = -\frac{E}{\hbar\omega} \psi$$

Standard method to solve differential equation

STEP 1: Try to find asymptotic solutions

$$\lim_{\xi \rightarrow \infty} \Rightarrow \frac{E}{\hbar\omega} \ll \frac{1}{2} \xi^2$$

$$\Rightarrow \frac{\partial^2}{\partial \xi^2} \psi(\xi) \approx \xi^2 \psi(\xi) \Rightarrow \psi \propto \exp(-\xi^2/2)$$

STEP 2: Trial solution to **hopefully simplify** the equation

$$\psi(x) = \exp(-\xi^2/2) H(\xi), \quad \text{where solutions } H(\xi) \text{ are yet unknown}$$

SOLVING THE QM HARMONIC OSCILLATOR

STEP 2: Trial solution to **hopefully simplify** the equation

Fill in trial solution $\psi = \exp(-\xi^2/2)H(\xi)$ in the original equation.

$$\frac{1}{2} \frac{\partial^2}{\partial \xi^2} \psi(\xi) - \frac{1}{2} \xi^2 \psi(\xi) = -\frac{E}{\hbar\omega} \psi$$

(and we multiply equation by 2)

$$\frac{\partial^2}{\partial \xi^2} \left[e^{-\xi^2/2} H(\xi) \right] - \xi^2 e^{-\xi^2/2} H(\xi) = -\frac{2E}{\hbar\omega} e^{-\xi^2/2} H(\xi)$$

Then calculate 2nd derivative ($f'(x) = \partial f(x) / \partial x$):

$$\begin{aligned} \left[e^{-\xi^2/2} H(\xi) \right]'' &= \left[-\xi e^{-\xi^2/2} H(\xi) + e^{-\xi^2/2} H(\xi) \right]' \\ &= -e^{-\xi^2/2} H(\xi) + \xi^2 e^{-\xi^2/2} H(\xi) - 2\xi e^{-\xi^2/2} H'(\xi) + e^{-\xi^2/2} H''(\xi) \end{aligned}$$

SOLVING THE QM HARMONIC OSCILLATOR

STEP 2: Trial solution to hopefully simplify the equation

$$e^{-\xi^2/2} H''(\xi) - 2\xi e^{-\xi^2/2} H'(\xi) = \left(1 - \frac{2E}{\hbar\omega}\right) e^{-\xi^2/2} H(\xi)$$

Divide by $e^{-\xi^2/2}$

$$H''(\xi) - 2\xi H'(\xi) = \left(1 - \frac{2E}{\hbar\omega}\right) H(\xi)$$

Define dimensionless $K \equiv \frac{2E}{\hbar\omega}$

$$H''(\xi) - 2\xi H'(\xi) + (K - 1) H(\xi) = 0$$

New differential equation: Simpler?

SOLVING THE QM HARMONIC OSCILLATOR

STEP 3: Solve by power series expansion

$$H''(\xi) - 2\xi H'(\xi) + (K - 1) H(\xi) = 0$$

Assume $H(\xi) = a_0 + a_1\xi + a_2\xi^2 + a_3\xi^3 + \dots = \sum_n a_{j=0}^{\infty} a_j \xi^j$

$$\left\{ \begin{array}{l} H(\xi) = a_0 + a_1\xi + a_2\xi^2 + a_3\xi^3 + \dots = \sum_{j=0}^{\infty} a_j \xi^j \\ H'(\xi) = a_1 + 2a_2\xi + 3a_3\xi^2 + \dots = \sum_{j=0}^{\infty} (j+1)a_{j+1} \xi^j \\ H''(\xi) = 2a_2 + 6a_3\xi + \dots = \sum_{j=0}^{\infty} (j+2)(j+1)a_{j+2} \xi^j \end{array} \right.$$

Then fill in the power series in the equation

SOLVING THE QM HARMONIC OSCILLATOR

STEP 3: Solve by power series expansion

$$H''(\xi) - 2\xi H'(\xi) + (K - 1) H(\xi) = 0$$

$$\left\{ \begin{array}{l} H(\xi) = a_0 + a_1\xi + a_2\xi^2 + a_3\xi^3 + \dots = \sum_{j=0}^{\infty} a_j \xi^j \\ H'(\xi) = a_1 + 2a_2\xi + 3a_3\xi^2 + \dots = \sum_{j=0}^{\infty} (j+1)a_{j+1} \xi^j \\ H''(\xi) = 2a_2 + 6a_3\xi + \dots = \sum_{j=0}^{\infty} (j+2)(j+1)a_{j+2} \xi^j \end{array} \right.$$

Then fill in the power series in the equation:

$$\sum_{j=0}^{\infty} [(j+2)(j+1)a_{j+2} - 2ja_j + (K - 1) a_j] \xi^j = 0$$

SOLVING THE QM HARMONIC OSCILLATOR

STEP 3: Solve by power series expansion

$$\sum_{j=0}^{\infty} [(j+2)(j+1)a_{j+2} - 2ja_j + (K-1)a_j] \xi^j = 0$$

For every power of ξ equation needs to be zero

$$(j+2)(j+1)a_{j+2} - 2ja_j + (K-1)a_j = 0$$

Solve for coefficients:

$$a_{j+2} = \frac{2j+1-K}{(j+2)(j+1)} a_j = 0$$

If we know a_0 (even series) and a_1 (odd series) we know all a_n

SOLVING THE QM HARMONIC OSCILLATOR

STEP 3: Solve by power series expansion

One problem: we require

$$\lim_{\xi \rightarrow \infty} e^{\xi^2/2} H(\xi) = 0$$

This is not the case for our infinite series.

UNLESS the series terminates: $\exists j : 2j + 1 - K = 0$

Solutions exist for $K - 1 = \frac{2E}{\hbar\omega} - 1 = 2n, \quad n = 0, 1, 2, 3 \dots$

$$\rightarrow \begin{cases} \psi_n = A_n \exp(-\xi^2/2) H_n(\xi), \\ E_n = (n + 1/2) \hbar\omega \text{ with } n = 0, 1, 2, \dots \end{cases}$$

HARMONIC OSCILLATOR SOLUTIONS

$$\begin{cases} \psi_n = A_n \exp(-\xi^2/2) H_n(\xi), \\ E_n = \left(n + \frac{1}{2}\right) \hbar\omega \text{ with } n = 0, 1, 2, \dots \\ A_n = \sqrt{\frac{1}{\sqrt{\pi} 2^n n!}} \quad \xi = \sqrt{\frac{m\omega}{\hbar}} \end{cases}$$

Hermite polynomials $H_n(\xi)$ (our even/odd power series)

$$H_0 = 1$$

$$H_1 = 2\xi$$

$$H_2 = 4\xi^2 - 2$$

$$H_3 = 8\xi^3 - 12\xi$$

⋮

$$H_n(\xi) = 2\xi H_{n-1}(\xi) - 2(n-1)H_{n-2}(\xi)$$

HARMONIC OSCILLATOR SOLUTIONS

Solutions for the wave function:

$$\psi_n(x) = \frac{1}{\sqrt{2^n n!}} \left(\frac{m\omega}{\pi\hbar} \right)^{1/4} H_n \left(\sqrt{\frac{m\omega}{\hbar}} x \right) e^{-\frac{m\omega}{2\hbar} x^2}$$

- Gaussian
- Normalization
- Hermite polynomials $H_n(\xi)$

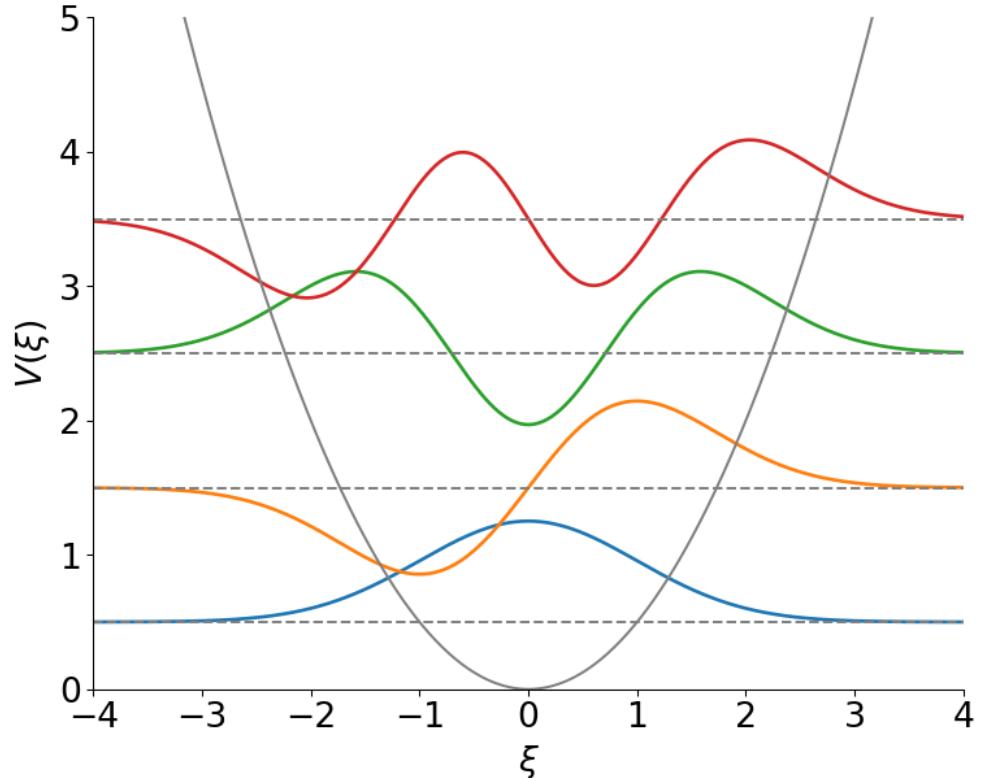
$$H_0 = 1$$

$$H_1 = 2\xi$$

$$H_2 = 4\xi^2 - 2$$

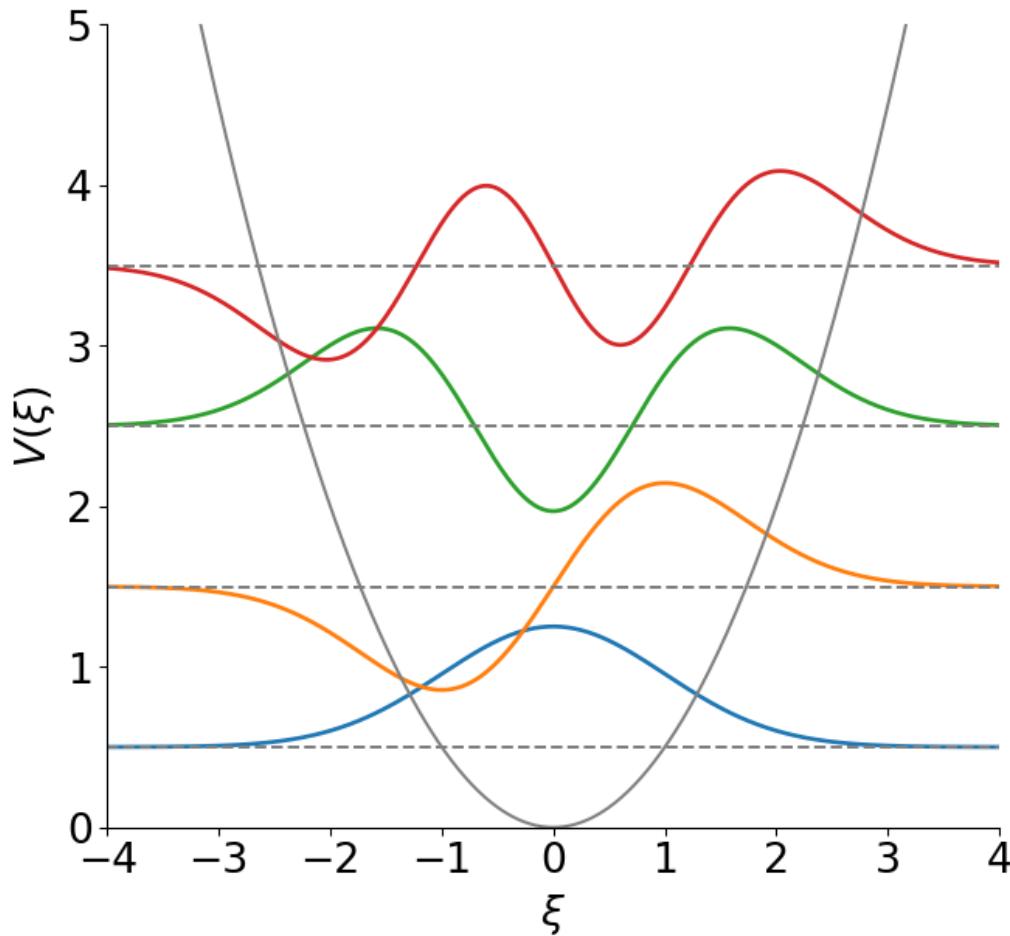
$$H_3 = 8\xi^3 - 12\xi$$

⋮

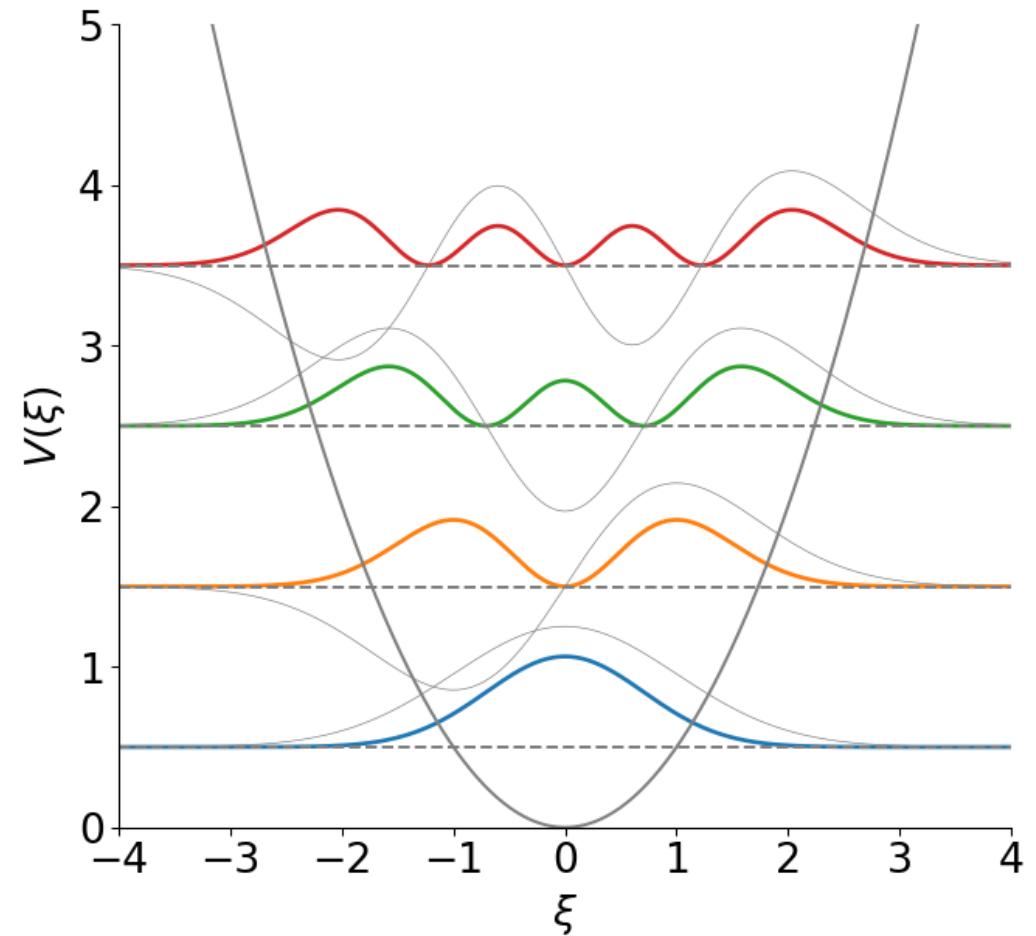


HARMONIC OSCILLATOR SOLUTIONS

Wave function $\psi(\xi)$



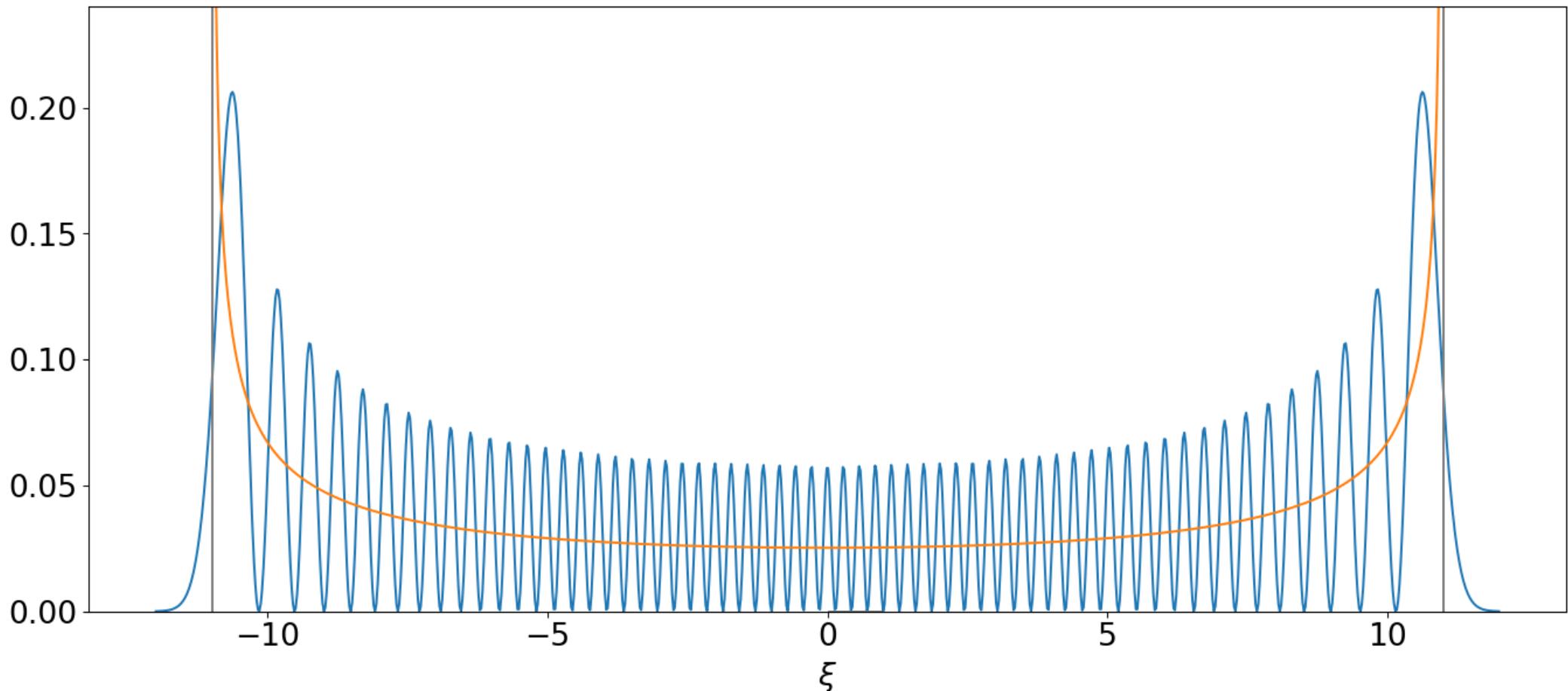
Probability density function $|\psi(\xi)|^2$



HIGH ENERGY SOLUTIONS

Classically $x \in \left[-\sqrt{\frac{2E}{m\omega^2}}, \sqrt{\frac{2E}{m\omega^2}}\right]$ and $|\psi_n|^2 \rightarrow \rho_{\text{class.}}(x) = \frac{1}{T} \frac{1}{v(x)}$

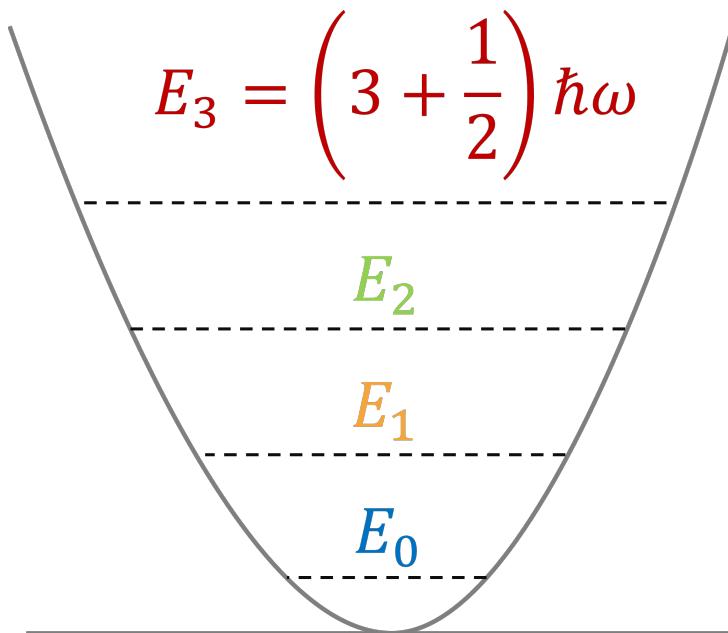
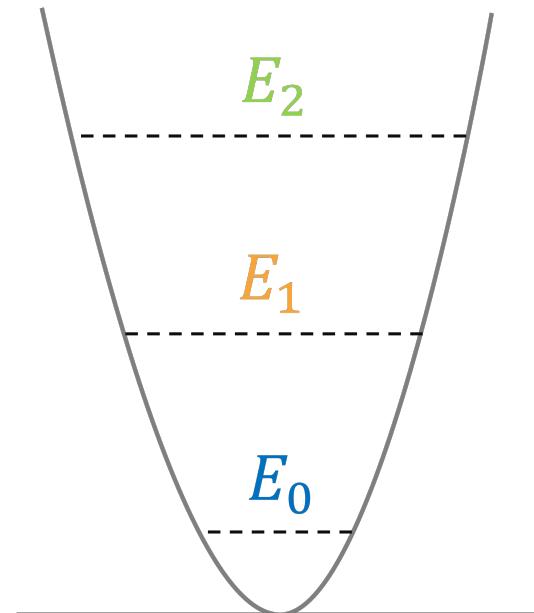
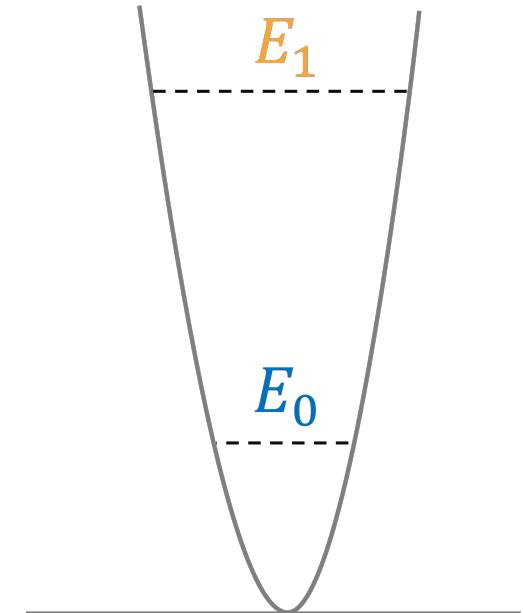
11.0



POTENTIAL PARAMETERS & SOLUTIONS

- Energy-levels $E_n \propto \omega$, *Width parabola scales with $1/\omega$*

$$E_n = \left(n + \frac{1}{2} \right) \hbar\omega \text{ with } n = 0, 1, 2, \dots$$

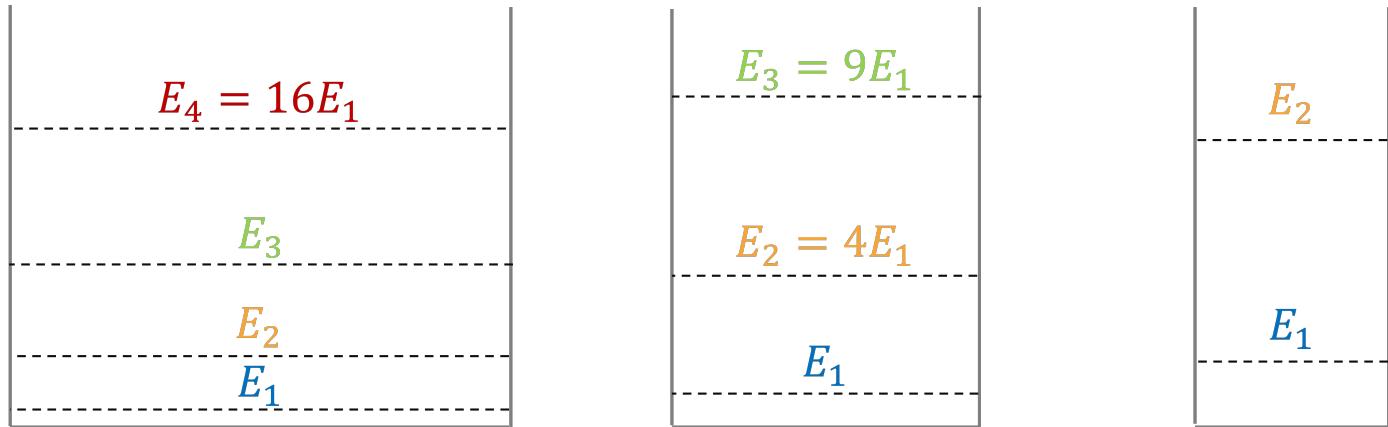


ENERGY INFINITE WELL VS. HARMONIC OSCILLATOR

Infinite well:

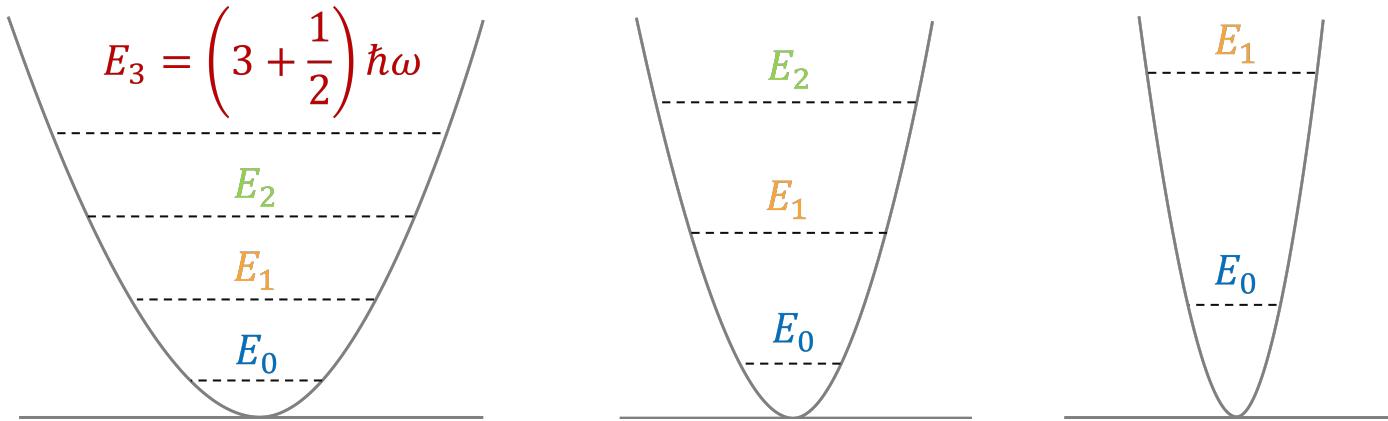
- $E_n \propto n^2$
- $E_n \propto 1/L^2$

$$E_n = \frac{\hbar^2 \pi^2 n^2}{2mL^2}$$



Quantum H.O.:

- equidistant E_n
- $E_n \propto \omega$
- width $\propto 1/\omega$



$$E_n = (n + 1/2)\hbar\omega$$

ALTERNATIVE (ALGEBRAIC) DERIVATION

ALTERNATIVE (ALGEBRAIC) DERIVATION

The time-independent Schrodinger equation (TISE):

$$-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \psi(x) + V(x) \psi(x) = E \psi$$

with potential energy: $V(x) = \frac{1}{2}m\omega^2 x^2$

$$-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \psi(x) + \frac{1}{2}m\omega^2 x^2 \psi(x) = E \psi$$

Operator form:

$$\frac{1}{2m} \left(\hat{p}^2 + m^2 \omega^2 x^2 \right) \psi(x) = E \psi, \quad \hat{p} = -i\hbar \frac{\partial}{\partial x}$$

This is a sum of squares \rightarrow factorize $u^2 + v^2 = (iu + v)(-iu + v)$

LADDER OPERATORS

Ladder operators $\hat{a}_- \hat{a}_+ = (iu + v)(-iu + v) = u^2 + v^2$

$$\hat{a}_\pm = \frac{1}{\sqrt{2\hbar m\omega}} (\mp i\hat{p} + m\omega x), \quad [\hat{x}, \hat{p}] = x\hat{p} - \hat{p}x = i\hbar$$

The product is:

$$\begin{aligned}\hat{a}_- \hat{a}_+ &= \frac{1}{2\hbar m\omega} (i\hat{p} + m\omega x)(-i\hat{p} + m\omega x) \\ &= \frac{1}{2\hbar m\omega} (\hat{p}^2 + (m\omega x)^2 - im\omega(x\hat{p} - \hat{p}x)) \\ &= \frac{1}{2\hbar m\omega} (\hat{p}^2 + (m\omega x)^2) - \frac{i}{2\hbar}(x\hat{p} - \hat{p}x) \\ &= \frac{1}{2\hbar m\omega} (\hat{p}^2 + (m\omega x)^2) + \frac{1}{2} \\ &= \frac{1}{\hbar\omega} \hat{H} + \frac{1}{2}\end{aligned}$$

LADDER OPERATORS

Ladder operators $\hat{a}_- \hat{a}_+ = (iu + v)(-iu + v) = u^2 + v^2$

$$\hat{a}_\pm = \frac{1}{\sqrt{2\hbar m\omega}} (\mp i\hat{p} + m\omega x), \quad [\hat{x}, \hat{p}] = x\hat{p} - \hat{p}x = i\hbar$$

We can also flip the ladder operators:

$$\begin{aligned}\hat{H} &= \left(\hat{a}_- \hat{a}_+ - \frac{1}{2} \right) \hbar\omega \\ \hat{H} &= \left(\hat{a}_+ \hat{a}_- + \frac{1}{2} \right) \hbar\omega\end{aligned}$$

Stationary Schrodinger equation becomes:

$$\hat{H}\psi = \hbar\omega \left(\hat{a}_+ \hat{a}_- + \frac{1}{2} \right) \psi = E\psi$$

LADDER OPERATORS GENERATE SOLUTIONS

If $\psi(x)$ is a solution, the $\hat{a}_+ \psi(x)$ is another solution:

$$\hat{H}\psi(x) = E\psi \Rightarrow \hat{H}(\hat{a}_+ \psi(x)) = (E + \hbar\omega)(\hat{a}_+ \psi(x))$$

If $\psi(x)$ is a solution, then $\hat{a}_- \psi(x)$ is another solution:

$$\hat{H}\psi(x) = E\psi \Rightarrow \hat{H}(\hat{a}_- \psi(x)) = (E - \hbar\omega)(\hat{a}_- \psi(x))$$

LADDER OPERATORS GENERATE SOLUTIONS

Since energy $E > 0$ operating with \hat{a}_- leads at some point to:

$$\hat{a}_- \psi_0 = 0$$

This leads to the following differential equation

$$\begin{aligned} \frac{1}{\sqrt{2\hbar m\omega}} \left(\hbar \frac{d}{dx} + m\omega x \right) \psi_0(x) &= 0 \\ \Rightarrow \frac{d\psi_0(x)}{dx} &= -\frac{m\omega}{\hbar} x \psi_0(x) \\ \Rightarrow \int \frac{d\psi_0(x)}{\psi_0(x)} dx &= -\frac{m\omega}{\hbar} \int x dx \\ \Rightarrow \ln(\psi_0(x)) &= -\frac{m\omega}{2\hbar} x^2 + C \\ \Rightarrow \psi_0(x) &= A e^{-\frac{m\omega}{2\hbar} x^2} \end{aligned}$$

LADDER OPERATORS GENERATE SOLUTIONS

$$\Rightarrow \psi_0(x) = A e^{-\frac{m\omega}{2\hbar} x^2}$$

Normalization requires $\int |\psi_0(x)|^2 = 1$

$$\int_{-\infty}^{\infty} |\psi_0(x)|^2 dx = |A|^2 \int_{-\infty}^{\infty} e^{-\frac{m\omega}{\hbar} x^2} = |A|^2 \sqrt{\frac{\pi\hbar}{m\omega}}$$

where we used the identity

$$\int_{-\infty}^{\infty} e^{-ax^2} dx = \sqrt{\frac{\pi}{a}}$$

This results in the solution:

$$\psi_0(x) = \left(\frac{m\omega}{\pi\hbar}\right)^{1/4} e^{-\frac{m\omega}{2\hbar}x^2}$$

SOLUTIONS WITH THE LADDER OPERATORS

Other solutions $\psi_n(x)$ can now be generated:

$$\psi_n(x) = A_n (\hat{a}_+)^n \psi_0(x), \quad \text{with} \quad E_n = \left(n + \frac{1}{2} \right) \hbar\omega$$

The normalization factor A_n can be calculated

$$\psi_n(x) = \frac{1}{\sqrt{n!}} (\hat{a}_+)^n \psi_0(x), \quad \text{with} \quad E_n = \left(n + \frac{1}{2} \right) \hbar\omega$$

And operating with a single ladder operator:

$$\hat{a}_+ \psi_n = \sqrt{n+1} \psi_{n+1}, \quad \hat{a}_- \psi_n = \sqrt{n} \psi_{n-1}$$

SUMMARY

- Infinite well
 - Eigenstates evolve different in time
 - Single eigenstates are stationary for finite expectation energy $\langle \hat{H} \rangle$
 - Superposition of eigenstates leads to non-constant $\langle \hat{x} \rangle$, i.e. a nonzero velocity
- Harmonic oscillator
 - Energy levels equally spaced $E_n = \hbar\omega(n + 1/2)$
 - Nonzero ground energy $E_0 = \frac{1}{2}\hbar\omega$
 - Solutions proportional with Hermite polynomials $H_n(x)$
 - Alternative algebraic method
 - Ladder operators (Algebraic method)

SUMMARY

So far we looked at bound states

- Infinite well
- Linear potential well (Electrical field, not seen yet)
- Harmonic oscillator

Different well potentials lead to different allowed energy levels

Narrower wells → less energy levels (more spread)