
PHOT 301: Quantum Photonics
LECTURE 03

Michaël Barbier, Summer (2024-2025)

1Lecture 03: The time-independent Schrodinger equation (ctu’d)



OVERVIEW

2Lecture 03: The time-independent Schrodinger equation (ctu’d)



FOR NEXT WEEK

• Textbook Chapter 2: 2.11, 2.13, 2.14, 2.17, 2.18, 2.25, 2.31, 2.34, 2.41, 2.53

• Homework documents:

▪ phot301_homework_matrices.pdf

▪ phot301_homework_system_of_equations.pdf

▪ phot301_homework_eigenvalue_equations.pdf

• Reading (by Thursday 31 July 2025): Chapter 3 of Griffiths
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REVIEW: INFINITE WELL

Time-independent solutions:

• Eigenstates and eigenenergies

• Quantum number 

Plot shows the wave function ( , grey),
probability ( , color) for first 3 eigenstates
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REVIEW: QUANTIZATION BY SPACIAL CONSTRAINTS
Energy-levels  proportional with  and En

1
L2 n2

= , = , =En
ℏ2π2n2

2mL2 E1
ℏ2π2

2mL2 En n2E1
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REVIEW: SUPERPOSITION OF STATIONARY
SOLUTIONS

For the infinite well

Example state:

• What if we let time evolve?

ψ(x) = sin( x)2
L

−−√ ∑
n=1

∞

cn
nπ

L

⎧
⎩⎨
⎪⎪
⎪⎪

= 4/5,c1

= = 3/5,c2 1 − c2
1

− −−−−√
n > 2 ⟶ = 0cn
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REVIEW: ADDING THE TIME-DEPENDENCY

Add  to each eigenstate:

For the infinite well:

• The wave function  is complex-valued

• Probability density  is real-valued

e−i /ℏEn

Ψ(x, t) = (x)∑
n=1

∞

cnψn e−i /ℏEn

Ψ(x, t) = sin( x)2
L

−−√ ∑
n=1

∞

cn
nπ

L
e−i /ℏEn

Ψ(x, t)

|Ψ(x, t)|2
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REVIEW: PROPERTIES OF STATIONARY EIGENSTATES

Coefficients  give the probability to measure energy as :

Expectation values for operators , , etc.

 are orthonormalψn

 form a complete basisψn

Coefficients   are given bycn

∫ (x (x) dx =ψm )∗ ψn δmn

f(x) = (x) ∀f(x)∑
n=1

∞

cnψn

= ∫ (x f(x) dxcn ψn )∗

|cn|2 En

⟨ ⟩ = ∫ Ψdx = |Ĥ Ψ∗Ĥ ∑
n=1

∞

cn|2En

x̂ p̂

⟨ ⟩(t) = ∫ Ψ dx = ∫ x|Ψ dxx̂ Ψ∗x̂ |2
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REVIEW: OBSERVABLES & MEASUREMENTS
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REVIEW: OBSERVABLES & MEASUREMENTS
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HARMONIC OSCILLATOR
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INTRODUCTION

• Ball-spring problem

• Analog RCL electric circuit

• Many systems are (approximately)
harmonic oscillators

▪ Optical cavity

▪ 2nd order Taylor approximation 

▪ Phonons, vibrations in molecules/
matter

• Quantization of light: Photons

V (x)
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CLASSICAL HARMONIC OSCILLATOR: PARABOLIC
WELL

• Mass in parabolic well 

• Restoring force: 

• Motion via Newton’s equation :

Linear equation with constant coefficients

Resulting solutions are: 

Turning points at : 

V (x) = αmgx2

F = − = −2αmgx
dV (x)

dx

F = ma

ma = m = −2αmgx
xd2

dt2

= −2αgx = − x,  with ω = .
xd2

dt2 ω2 2αg
− −−√

x ∝ sin(ωt)

±xmax αmg = mx2
max

1
2 v2

0
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CLASSICAL HARMONIC OSCILLATOR: BALL-SPRING

• mass attached to a spring

• Restoring force: 

• Motion via Newton’s equation :

Linear equation with constant coefficients

Resulting solutions are: 

Turning points at : 

F = − = −kx
dV (x)

dx

F = ma

ma = m = − x
xd2

dt2 k′

= − x = − x,  with ω = .
xd2

dt2

k

m
ω2 /mk′

− −−−√
x ∝ sin(ωt)

±xmax = m1
2 k′x2

max
1
2 v2

0
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QUANTUM HARMONIC OSC.: DIATOMIC MOLECULE

• Vibrations approximate harmonic
oscillator

• Restoring force: 

• Schrodinger equation with potential:

F = − = − x
dV (x)

dx
k′

V (x) = −
1
2

k′x2

⎧
⎩⎨
⎪
⎪

Quantization energy-levels
Groundstate nonzero energy
Time-evolution  ρ(x, t) = |Ψ(x, t)|2
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SOLVING THE QM HARMONIC OSCILLATOR
The time-independent Schrodinger equation (TISE):

− ψ(x) + V (x)ψ(x) = Eψ
ℏ2

2m

∂2

∂x2

Potential energy: V (x) = m1
2 ω2x2

− ψ(x) + m ψ(x) = Eψ
ℏ2

2m

∂2

∂x2

1
2

ω2x2

Rewrite in dimensionless units: 

 2nd order linear differential equation

ξ = mω
ℏ

−−−√

ψ(ξ) − ψ(ξ) = − ψ
1
2

∂2

∂ξ2

1
2

ξ2 E

ℏω

⟶
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SOLVING THE QM HARMONIC OSCILLATOR

Standard method to solve differential equation

STEP 1: Try to find asymptotic solutions

ψ(ξ) − ψ(ξ) = − ψ
1
2

∂2

∂ξ2

1
2

ξ2 E

ℏω

⇒ ≪lim
ξ⟶∞

E

ℏω

1
2

ξ2

⇒ ψ(ξ) ≈ ψ(ξ) ⇒ ψ ∝ exp(− /2)
∂2

∂ξ2 ξ2 ξ2

STEP 2: Trial solution to hopefully simplify the equation

ψ(x) = exp(− /2)H(ξ), where solutions H(ξ) are yet unknownξ2
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SOLVING THE QM HARMONIC OSCILLATOR
STEP 2: Trial solution to hopefully simplify the equation

Fill in trial solution  in the original equation.

(and we multiply equation by )

Then calculate 2nd derivative ( ):

ψ = exp(− /2)H(ξ)ξ2

ψ(ξ) − ψ(ξ) = − ψ
1
2

∂2

∂ξ2

1
2

ξ2 E

ℏω

2

[ H(ξ)] − H(ξ) = − H(ξ)
∂2

∂ξ2 e− /2ξ2
ξ2e− /2ξ2 2E

ℏω
e− /2ξ2

(x) = ∂f(x)/∂xf ′

[ H(ξ)]e− /2ξ2 ′′
= [−ξ H(ξ) + H(ξ)]e− /2ξ2

e− /2ξ2 ′

= − H(ξ) + H(ξ) − 2ξ (ξ) + (ξ)e− /2ξ2
ξ2e− /2ξ2

e− /2ξ2
H ′ e− /2ξ2

H ′′
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SOLVING THE QM HARMONIC OSCILLATOR
STEP 2: Trial solution to hopefully simplify the equation

Divide by 

Define dimensionless 

New differential equation: Simpler?

(ξ) − 2ξ (ξ) = (1 − ) H(ξ)e− /2ξ2
H ′′ e− /2ξ2

H ′ 2E

ℏω
e− /2ξ2

e− /2ξ2

(ξ) − 2ξ (ξ) = (1 − ) H(ξ)H ′′ H ′ 2E

ℏω

K ≡ 2E
ℏω

(ξ) − 2ξ (ξ) + (K − 1) H(ξ) = 0H ′′ H ′
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SOLVING THE QM HARMONIC OSCILLATOR
STEP 3: Solve by power series expansion

Assume 

Then fill in the power series in the equation

(ξ) − 2ξ (ξ) + (K − 1) H(ξ) = 0H ′′ H ′

H(ξ) = + ξ + + + ⋯ =a0 a1 a2ξ2 a3ξ3 ∑n a∞
j=0ajξj

⎧

⎩
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

H(ξ)

(ξ)H ′

(ξ)H ′′

= + ξ + + + ⋯ =a0 a1 a2ξ2 a3ξ3 ∑
j=0

∞

ajξj

= + 2 ξ + 3 + ⋯ = (j + 1)a1 a2 a3ξ2 ∑
j=0

∞

aj+1ξj

= 2 + 6 ξ + ⋯ = (j + 2)(j + 1)a2 a3 ∑
j=0

∞

aj+2ξj
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SOLVING THE QM HARMONIC OSCILLATOR
STEP 3: Solve by power series expansion

Then fill in the power series in the equation:

(ξ) − 2ξ (ξ) + (K − 1) H(ξ) = 0H ′′ H ′

⎧

⎩
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

H(ξ)

(ξ)H ′

(ξ)H ′′

= + ξ + + + ⋯ =a0 a1 a2ξ2 a3ξ3 ∑
j=0

∞

ajξj

= + 2 ξ + 3 + ⋯ = (j + 1)a1 a2 a3ξ2 ∑
j=0

∞

aj+1ξj

= 2 + 6 ξ + ⋯ = (j + 2)(j + 1)a2 a3 ∑
j=0

∞

aj+2ξj

[(j + 2)(j + 1) − 2j + (K − 1) ] = 0∑
j=0

∞

aj+2 aj aj ξj
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SOLVING THE QM HARMONIC OSCILLATOR
STEP 3: Solve by power series expansion

For every power of  equation needs to be zero

Solve for coefficients:

If we know  (even series) and  (odd series) we know all 

[(j + 2)(j + 1) − 2j + (K − 1) ] = 0∑
j=0

∞

aj+2 aj aj ξj

ξ

(j + 2)(j + 1) − 2j + (K − 1) = 0aj+2 aj aj

= = 0aj+2
2j + 1 − K

(j + 2)(j + 1)
aj

a0 a1 an
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SOLVING THE QM HARMONIC OSCILLATOR
STEP 3: Solve by power series expansion

One problem: we require

This is not the case for our infinite series.

UNLESS the series terminates: 

Solutions exist for 

H(ξ) = 0lim
ξ⟶∞

e /2ξ2

∃j : 2j + 1 − K = 0

K − 1 = − 1 = 2n, n = 0, 1, 2, 3 …2E
ℏω

⟶
⎧
⎩⎨
⎪
⎪

ψn

En

= exp(− /2) (ξ),An ξ2 Hn

= (n + 1/2)ℏω with n = 0, 1, 2, …
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HARMONIC OSCILLATOR SOLUTIONS

Hermite polynomials  (our even/odd power series)

⎧

⎩
⎨
⎪⎪⎪⎪⎪⎪⎪
⎪⎪⎪⎪⎪⎪⎪

ψn

En

An

= exp(− /2) (ξ),An ξ2 Hn

= (n + ) ℏω with n = 0, 1, 2, …
1
2

= ξ =
1

n!π−−√ 2n

− −−−−−−√ mω

ℏ

− −−−√

(ξ)Hn

H0

H1

H2

H3

⋮
(ξ)Hn

= 1
= 2ξ

= 4 − 2ξ2

= 8 − 12ξξ3

= 2ξ (ξ) − 2(n − 1) (ξ)Hn−1 Hn−2
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HARMONIC OSCILLATOR SOLUTIONS
Solutions for the wave function:

• 

• 

• 

(x) = ( x)ψn
1

n!2n− −−−√
( )mω

πℏ

1/4
Hn

mω

ℏ

− −−−√ e− mω

2ℏ x2

Gaussian

Normalization

Hermite polynomials (ξ)Hn

H0

H1

H2

H3

⋮

= 1
= 2ξ

= 4 − 2ξ2

= 8 − 12ξξ3
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HARMONIC OSCILLATOR SOLUTIONS

Wave function ψ(ξ) Probability density function |ψ(ξ)|2
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HIGH ENERGY SOLUTIONS

Classically  and x ∈ [− , ]2E
mω2

− −−√ 2E
mω2

− −−√ | → (x) =ψn|2 ρclass.
1
T

1
v(x)

11.0
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POTENTIAL PARAMETERS & SOLUTIONS

• Energy-levels , Width parabola scales with ∝ ωEn 1/ω

= (n + ) ℏω with n = 0, 1, 2, …En
1
2
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ENERGY INFINITE WELL VS. HARMONIC OSCILLATOR

Infinite well:

• 

• 

Quantum H.O.:

• equidistant 

• 

• 

∝En n2

∝ 1/En L2

=En
ℏ2π2n2

2mL2

En

∝ ωEn

width ∝ 1/ω

= (n + 1/2)ℏωEn
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ALTERNATIVE (ALGEBRAIC)
DERIVATION
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ALTERNATIVE (ALGEBRAIC) DERIVATION
The time-independent Schrodinger equation (TISE):

with potential energy: 

− ψ(x) + V (x)ψ(x) = Eψ
ℏ2

2m

∂2

∂x2

V (x) = m1
2 ω2x2

− ψ(x) + m ψ(x) = Eψ
ℏ2

2m

∂2

∂x2

1
2

ω2x2

Operator form:

( + ) ψ(x) = Eψ, = −iℏ
1

2m
p̂2 m2ω2x2 p̂

∂
∂x

This is a sum of squares  factorize ⟶ + = (iu + v)(−iu + v)u2 v2
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LADDER OPERATORS
Ladder operators = (iu + v)(−iu + v) = +â−â+ u2 v2

= (∓i + mωx) , [ , ] = x − x = iℏâ±
1

2ℏmω
− −−−−√

p̂ x̂ p̂ p̂ p̂

The product is:

â−â+ = (i + mωx)(−i + mωx)
1

2ℏmω
p̂ p̂

= ( + (mωx − imω(x − x))
1

2ℏmω
p̂2 )2 p̂ p̂

= ( + (mωx ) − (x − x)
1

2ℏmω
p̂2 )2 i

2ℏ
p̂ p̂

= ( + (mωx ) +
1

2ℏmω
p̂2 )2 1

2

= +
1

ℏω
Ĥ

1
2
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LADDER OPERATORS
Ladder operators = (iu + v)(−iu + v) = +â−â+ u2 v2

= (∓i + mωx) , [ , ] = x − x = iℏâ±
1

2ℏmω
− −−−−√

p̂ x̂ p̂ p̂ p̂

We can also flip the ladder operators:

Ĥ

Ĥ

= ( − ) ℏωâ−â+
1
2

= ( + ) ℏωâ+â−
1
2

Stationary Schrodinger equation becomes:

ψ = ℏω ( + ) ψ = E ψĤ â+â−
1
2
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LADDER OPERATORS GENERATE SOLUTIONS
If  is a solution, the  is another solution:ψ(x) ψ(x)â+

ψ(x) = Eψ ⇒ ( ψ(x)) = (E + ℏω)( ψ(x))Ĥ Ĥ â+ â+

If  is a solution, then  is another solution:ψ(x) ψ(x)â−

ψ(x) = Eψ ⇒ ( ψ(x)) = (E − ℏω)( ψ(x))Ĥ Ĥ â− â−
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LADDER OPERATORS GENERATE SOLUTIONS
Since energy  operating with  leads at some point to:E > 0 â−

= 0â−ψ0

The leads to the following differential equation

(ℏ + mωx) (x)
1

2ℏmω
− −−−−√

d

dx
ψ0

⇒
d (x)ψ0

dx

⇒ ∫ dx
d (x)ψ0

(x)ψ0

⇒ ln( (x))ψ0

⇒ (x)ψ0

= 0

= − x (x)
mω

ℏ
ψ0

= − ∫ x dx
mω

ℏ

= − + C
mω

2ℏ
x2

= A e− mω

2ℏ x2
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LADDER OPERATORS GENERATE SOLUTIONS

⇒ (x)ψ0 = A e− mω

2ℏ x2

Normalization requires 

where we used the identity

∫ | (x) = 1ψ0 |2

| (x) dx = |A = |A∫ ∞

−∞
ψ0 |2 |2 ∫ ∞

−∞
e− mω

ℏ x2
|2

πℏ
mω

− −−−√

dx =∫ ∞

−∞
e−ax2 π

a

−−√
This results in the solution:

(x) =ψ0 ( )mω

πℏ

1/4
e− mω

2ℏ x2
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SOLUTIONS WITH THE LADDER OPERATORS
Other solutions  can now be generated:(x)ψn

(x) = ( (x), with = (n + ) ℏωψn An â+)n ψ0 En
1
2

The normalization factor  can be calculatedAn

(x) = ( (x), with = (n + ) ℏωψn
1

n!
−−√

â+)n ψ0 En
1
2

And operating with a single ladder operator:

= , =â+ψn n + 1− −−−−√ ψn+1 â−ψn n−−√ ψn−1
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SUMMARY

• Infinite well

▪ Eigenstates evolve different in time

▪ Single eigenstates are stationary for finite expectation energy 

▪ Superposition of eigenstates leads to non-constant , i.e. a nonzero velocity

• Harmonic oscillator

▪ Energy levels equally spaced 

▪ Nonzero ground energy 

▪ Solutions proportional with Hermite polynomials 

▪ Alternative algebraic method

▪ Ladder operators (Algebraic method)

⟨ ⟩Ĥ

⟨ ⟩x̂

= ℏω(n + 1/2)En

= ℏωE0
1
2

(x)Hn
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SUMMARY
So far we looked at bound states

• Infinite well

• Linear potential well (Electrical field, not seen yet)

• Harmonic oscillator

Different well potentials lead to different allowed energy levels

Narrower wells  less energy levels (more spread)⟶
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