PHOT 301: Quantum Photonics

LECTURE 03

Michaël Barbier, Summer (2024-2025)

Overview

For next week

  • Textbook Chapter 2: 2.11, 2.13, 2.14, 2.17, 2.18, 2.25, 2.31, 2.34, 2.41, 2.53

  • Homework documents:

    • phot301_homework_matrices.pdf
    • phot301_homework_system_of_equations.pdf
    • phot301_homework_eigenvalue_equations.pdf
  • Reading (by Thursday 31 July 2025): Chapter 3 of Griffiths

Review: Infinite well

Time-independent solutions:

  • Eigenstates and eigenenergies
  • Quantum number \(n\)

\[ \left\{ \begin{aligned} \psi_n(x) &= \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi x}{L}\right)\\ &\\ E_n &= \frac{\hbar^2 k_n^2}{2m} = \frac{\hbar^2}{2m} \left( \frac{n\pi}{L} \right)^2\\ &\\ n &= 1, 2, 3, 4, \dots\\ \end{aligned} \right. \]

Plot shows the wave function (\(\psi\), grey), probability (\(|\psi|^2\), color) for first 3 eigenstates

Review: Quantization by spacial constraints

Energy-levels \(E_n\) proportional with \(\,\,\frac{1}{L^2}\,\,\) and \(\,\,n^2\)

\[ \begin{aligned} E_n = \frac{\hbar^2 \pi^2 n^2}{2mL^2}, \qquad E_1 = \frac{\hbar^2 \pi^2}{2mL^2}, \qquad E_n = n^2 E_1\\ \end{aligned} \]

Review: Superposition of stationary solutions

For the infinite well

\[ \psi(x) = \sqrt{\frac{2}{L}} \sum_{n = 1}^\infty c_n \sin\left(\frac{n\pi}{L} x\right) \]

Example state: \[ \left\{ \begin{aligned} & c_1 = 4/5,\\ & c_2 = \sqrt{1 - c_1^2} = 3/5,\\ & n > 2 \longrightarrow c_n = 0\\ \end{aligned} \right. \]

  • What if we let time evolve?

Review: Adding the time-dependency

Add \(e^{-iE_n/\hbar}\) to each eigenstate:

\[ \Psi(x, t) = \sum_{n = 1}^\infty c_n \color{blue}{\psi_n(x)} \, \color{red}{e^{-iE_n/\hbar}} \]

For the infinite well:

\[ \Psi(x, t) = \sqrt{\frac{2}{L}} \sum_{n = 1}^\infty c_n \color{blue}{\sin\left(\frac{n\pi}{L} x\right)} \, \color{red}{e^{-iE_n/\hbar}} \]

  • The wave function \(\Psi(x,t)\) is complex-valued
  • Probability density \(|\Psi(x,t)|^2\) is real-valued

Review: Properties of stationary eigenstates

\[ \begin{aligned} \psi_n \textrm{ are orthonormal}\quad & \int \psi_m(x)^* \, \psi_n(x) \, dx = \delta_{mn}\\ \psi_n \textrm{ form a complete basis}\quad & f(x) = \sum_{n = 1}^\infty c_n \psi_n(x) \qquad \forall f(x)\\ \textrm{Coefficients $c_n$ are given by}\quad & c_n = \int \psi_n(x)^* \, f(x) \, dx\\ \end{aligned} \]

Coefficients \(|c_n|^2\) give the probability to measure energy as \(E_n\):

\[ \langle \hat{H} \rangle = \int \Psi^* \hat{H} \Psi dx = \sum_{n = 1}^\infty |c_n|^2 E_n \]

Expectation values for operators \(\hat{x}\), \(\hat{p}\), etc.

\[ \langle \hat{x} \rangle(t) = \int \Psi^* \hat{x} \Psi \, dx = \int x |\Psi|^2 \, dx \]

Review: Observables & measurements

Review: Observables & measurements

Harmonic oscillator

Introduction

  • Ball-spring problem
  • Analog RCL electric circuit
  • Many systems are (approximately) harmonic oscillators
    • Optical cavity
    • 2nd order Taylor approximation \(V(x)\)
    • Phonons, vibrations in molecules/matter
  • Quantization of light: Photons

Classical harmonic oscillator: parabolic well

  • Mass in parabolic well \(V(x) = \alpha mgx^2\)
  • Restoring force: \(F = -\frac{dV(x)}{dx} = -2\alpha mgx\)
  • Motion via Newton’s equation \(F = m a\):

\[ m a = m \frac{d^2x}{dt^2} = - 2\alpha mgx \]

Linear equation with constant coefficients

\[ \frac{d^2x}{dt^2} = - 2\alpha g x = -\omega^2 x, \textrm{ with } \omega = \sqrt{2\alpha g}. \]

Resulting solutions are: \(\quad x \propto \sin(\omega t)\)

Turning points at \(\pm x_\textrm{max}\): \(\quad\alpha m g x_\textrm{max}^2 = \frac{1}{2} m v_0^2\)

Classical harmonic oscillator: ball-spring

  • mass attached to a spring
  • Restoring force: \(F = -\frac{dV(x)}{dx} = -k x\)
  • Motion via Newton’s equation \(F = m a\):

\[ m a = m \frac{d^2x}{dt^2} = -k' x \]

Linear equation with constant coefficients

\[ \frac{d^2x}{dt^2} = - \frac{k}{m} x = -\omega^2 x, \textrm{ with } \omega = \sqrt{k'/m}. \]

Resulting solutions are: \(\quad x \propto \sin(\omega t)\)

Turning points at \(\pm x_\textrm{max}\): \(\quad\frac{1}{2} k' x_\textrm{max}^2 = \frac{1}{2} m v_0^2\)

Quantum harmonic osc.: diatomic molecule

  • Vibrations approximate harmonic oscillator
  • Restoring force: \(F = -\frac{dV(x)}{dx} = -k' x\)
  • Schrodinger equation with potential:

\[ V(x) = -\frac{1}{2} k' x^2 \]

\[ \left\{ \begin{aligned} &\textrm{Quantization energy-levels}\\ &\textrm{Groundstate nonzero energy}\\ &\textrm{Time-evolution }\,\,\rho(x,t) = |\Psi(x,t)|^2\\ \end{aligned} \right. \]

Solving the QM harmonic oscillator

The time-independent Schrodinger equation (TISE):

\[ -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2}\psi(x) + V(x) \psi(x) = E \psi \]

Potential energy: \(V(x) = \frac{1}{2}m\omega^2 x^2\)

\[ -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2}\psi(x) + \frac{1}{2}m\omega^2 x^2 \psi(x) = E \psi \]

Rewrite in dimensionless units: \(\xi = \sqrt{\frac{m\omega}{\hbar}}\)

\[ \frac{1}{2} \frac{\partial^2}{\partial \xi^2}\psi(\xi) - \frac{1}{2} \xi^2 \psi(\xi) = -\frac{E}{\hbar \omega} \psi \]

\(\longrightarrow\) 2nd order linear differential equation

Solving the QM harmonic oscillator

\[ \frac{1}{2} \frac{\partial^2}{\partial \xi^2}\psi(\xi) - \frac{1}{2} \xi^2 \psi(\xi) = -\frac{E}{\hbar \omega} \psi \]

Standard method to solve differential equation

STEP 1: Try to find asymptotic solutions

\[ \lim_{\xi\longrightarrow\infty} \quad \Rightarrow\quad \frac{E}{\hbar \omega} \ll \frac{1}{2} \xi^2 \]

\[ \Rightarrow \frac{\partial^2}{\partial \xi^2}\psi(\xi) \approx \xi^2 \psi(\xi) \qquad \Rightarrow \qquad \psi \propto \exp(-\xi^2/2) \]

STEP 2: Trial solution to hopefully simplify the equation

\[ \psi(x) = \exp(-\xi^2/2) H(\xi), \qquad \textrm{where solutions}\,\,\,H(\xi)\,\,\,\textrm{are yet unknown} \]

Solving the QM harmonic oscillator

STEP 2: Trial solution to hopefully simplify the equation

Fill in trial solution \(\psi = \exp(-\xi^2/2) H(\xi)\) in the original equation.

\[ \frac{1}{2} \frac{\partial^2}{\partial \xi^2}\psi(\xi) - \frac{1}{2} \xi^2 \psi(\xi) = -\frac{E}{\hbar \omega} \psi \]

(and we multiply equation by \(2\))

\[ \frac{\partial^2}{\partial \xi^2}\left[e^{-\xi^2/2} H(\xi)\right] - \xi^2 e^{-\xi^2/2} H(\xi) = -\frac{2E}{\hbar \omega} e^{-\xi^2/2} H(\xi) \]

Then calculate 2nd derivative (\(f'(x) = \partial f(x)/\partial x\)):

\[ \begin{aligned} \left[e^{-\xi^2/2} H(\xi)\right]'' &= \left[- \xi e^{-\xi^2/2} H(\xi) + e^{-\xi^2/2} H(\xi)\right]'\\ &= -e^{-\xi^2/2} H(\xi) + \xi^2 e^{-\xi^2/2} H(\xi) - 2 \xi e^{-\xi^2/2} H'(\xi) + e^{-\xi^2/2} H''(\xi)\\ \end{aligned} \]

Solving the QM harmonic oscillator

STEP 2: Trial solution to hopefully simplify the equation

\[ e^{-\xi^2/2} H''(\xi) - 2 \xi e^{-\xi^2/2} H'(\xi) = \left(1 - \frac{2E}{\hbar\omega}\right)\, e^{-\xi^2/2} H(\xi) \]

Divide by \(e^{-\xi^2/2}\)

\[ H''(\xi) - 2 \xi H'(\xi) = \left(1 - \frac{2E}{\hbar\omega}\right)\, H(\xi) \]

Define dimensionless \(K \equiv \frac{2E}{\hbar\omega}\)

\[ H''(\xi) - 2 \xi H'(\xi) + \left(K - 1\right)\, H(\xi) = 0 \]

New differential equation: Simpler?

Solving the QM harmonic oscillator

STEP 3: Solve by power series expansion


\[ H''(\xi) - 2 \xi H'(\xi) + \left(K - 1 \right)\, H(\xi) = 0 \]

Assume \(H(\xi) = a_0 + a_1 \xi + a_2 \xi^2 + a_3 \xi^3 + \dots = \sum_n a_{j=0}^\infty a_j \xi^j\)

\[ \left\{ \begin{aligned} H(\xi) &= a_0 + a_1 \xi + a_2 \xi^2 + a_3 \xi^3 + \dots = \sum_{j=0}^\infty a_j \xi^j\\ H'(\xi) &= a_1 + 2 a_2 \xi + 3 a_3 \xi^2 + \dots = \sum_{j=0}^\infty (j+1) a_{j+1} \xi^{j}\\ H''(\xi) &= 2 a_2 + 6 a_3 \xi + \dots = \sum_{j=0}^\infty (j+2)(j+1) a_{j+2} \xi^{j}\\ \end{aligned} \right. \]

Then fill in the power series in the equation

Solving the QM harmonic oscillator

STEP 3: Solve by power series expansion

\[ H''(\xi) - 2 \xi H'(\xi) + \left(K - 1 \right)\, H(\xi) = 0 \]

\[ \left\{ \begin{aligned} H(\xi) &= a_0 + a_1 \xi + a_2 \xi^2 + a_3 \xi^3 + \dots = \sum_{j=0}^\infty a_j \xi^j\\ H'(\xi) &= a_1 + 2 a_2 \xi + 3 a_3 \xi^2 + \dots = \sum_{j=0}^\infty (j+1) a_{j+1} \xi^{j}\\ H''(\xi) &= 2 a_2 + 6 a_3 \xi + \dots = \sum_{j=0}^\infty (j+2)(j+1) a_{j+2} \xi^{j}\\ \end{aligned} \right. \]

Then fill in the power series in the equation:

\[ \sum_{j=0}^\infty\left[ (j+2)(j+1) a_{j+2} - 2 j a_{j} + \left(K - 1 \right)\, a_j \right] \xi^{j} = 0 \]

Solving the QM harmonic oscillator

STEP 3: Solve by power series expansion

\[ \sum_{j=0}^\infty\left[ (j+2)(j+1) a_{j+2} - 2 j a_{j} + \left(K - 1 \right)\, a_j \right] \xi^{j} = 0 \]

For every power of \(\xi\) equation needs to be zero

\[ (j+2)(j+1) a_{j+2} - 2 j a_{j} + \left(K - 1 \right)\, a_j = 0 \]

Solve for coefficients:

\[ a_{j+2} = \frac{2 j + 1 - K}{(j+2)(j+1)}\, a_j = 0 \]

If we know \(a_0\) (even series) and \(a_1\) (odd series) we know all \(a_n\)

Solving the QM harmonic oscillator

STEP 3: Solve by power series expansion

One problem: we require

\[ \lim_{\xi\longrightarrow\infty} e^{\xi^2/2} H(\xi) = 0 \]

This is not the case for our infinite series.


UNLESS the series terminates: \(\qquad \exists j: \quad 2 j + 1 - K = 0\)


Solutions exist for \(K - 1 = \frac{2E}{\hbar\omega} - 1 = 2n, \qquad n = 0, 1, 2, 3 \dots\)

\[ \longrightarrow \quad \left\{ \begin{aligned} \psi_n &= A_n \exp(-\xi^2/2) H_n(\xi), \\ &\\ E_n &= (n + 1/2) \hbar \omega \,\,\, \textrm{with} \,\, n = 0, 1, 2, \dots\\ \end{aligned} \right. \]

Harmonic oscillator solutions

\[ \left\{ \begin{aligned} \psi_n &= A_n \exp(-\xi^2/2) H_n(\xi),\\ E_n &= \left(n + \frac{1}{2}\right) \hbar \omega \,\,\, \textrm{with} \,\, n = 0, 1, 2, \dots\\ A_n &= \sqrt{\frac{1}{\sqrt{\pi}2^n n!}} \qquad \xi = \sqrt{\frac{m \omega}{\hbar}} \end{aligned} \right. \]

Hermite polynomials \(\, H_n(\xi)\,\) (our even/odd power series)

\[ \begin{aligned} H_0 &= 1\\ H_1 &= 2\xi\\ H_2 &= 4\xi^2 - 2\\ H_3 &= 8\xi^3 - 12\xi\\ \vdots \,\, & \\ H_n(\xi) &= 2\xi H_{n-1}(\xi) - 2(n-1) H_{n-2}(\xi)\\ \end{aligned} \]

Harmonic oscillator solutions

Solutions for the wave function:

\[ \psi_n(x) = \color{green}{\frac{1}{\sqrt{2^n \, n!}} \, \left(\frac{m\omega}{\pi \hbar}\right)^{1/4}} \, \color{red}{H_n\left(\sqrt{\frac{m\omega}{\hbar}} \,x\right)} \, \color{blue}{e^{-\frac{m\omega}{2\hbar}\,x^2}} \]

  • \(\color{blue}{\textrm{Gaussian}}\)
  • \(\color{green}{\textrm{Normalization}}\)
  • \(\color{red}{\textrm{Hermite polynomials}}\,\,\,\color{red}{H_n(\xi)}\)

\[ \begin{aligned} \color{red}{H_0} &\color{red}{= 1}\\ \color{red}{H_1} &\color{red}{= 2\xi}\\ \color{red}{H_2} &\color{red}{= 4\xi^2 - 2}\\ \color{red}{H_3} &\color{red}{= 8\xi^3 - 12\xi}\\ \color{red}{\vdots} \,\, & \\ \end{aligned} \]

Harmonic oscillator solutions

\[ \textrm{Wave function}\quad \psi(\xi) \qquad\qquad\qquad \textrm{Probability density function}\quad |\psi(\xi)|^2 \]

High energy solutions

Classically \(x \in \left[-\sqrt{\frac{2E}{m\omega^2}}, \,\,\sqrt{\frac{2E}{m\omega^2}}\right]\quad\) and \(\quad|\psi_n|^2 \,\, \rightarrow\,\, \rho_\textrm{class.}(x) = \frac{1}{T}\,\frac{1}{v(x)}\)

11.0

Potential parameters & solutions

  • Energy-levels \(E_n \propto \omega\), \(\qquad\) Width parabola scales with \(1/\omega\)

\[ E_n = \left(n + \frac{1}{2}\right) \hbar \omega \,\,\, \textrm{with} \,\, n = 0, 1, 2, \dots\\ \]

Energy infinite well vs. harmonic oscillator

Infinite well:

  • \(E_n \propto n^2\)
  • \(E_n \propto 1/L^2\)

\[ E_n = \frac{\hbar^2 \pi^2 n^2}{2mL^2}\\ \]

Quantum H.O.:

  • equidistant \(E_n\)
  • \(E_n \propto \omega\)
  • \(\textrm{width} \propto 1/\omega\)

\[ E_n = (n + 1/2) \hbar\omega \]


Alternative (Algebraic) derivation

Alternative (Algebraic) derivation

The time-independent Schrodinger equation (TISE):

\[ -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2}\psi(x) + V(x) \psi(x) = E \psi \]

with potential energy: \(V(x) = \frac{1}{2}m\omega^2 x^2\)

\[ -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2}\psi(x) + \frac{1}{2}m\omega^2 x^2 \psi(x) = E \psi \]

Operator form:

\[ \frac{1}{2m} \left(\hat{p}^2 + m^2\omega^2 x^2\right) \psi(x) = E \psi, \qquad \hat{p} = -i\hbar \frac{\partial}{\partial x} \]

This is a sum of squares \(\longrightarrow\) factorize \(u^2 + v^2 = (i u + v)(-iu + v)\)

Ladder operators

Ladder operators \(\hat{a}_-\hat{a}_+ = (i u + v)(-i u + v) = u^2 + v^2\)

\[ \hat{a}_\pm = \frac{1}{\sqrt{2 \hbar m \omega}}\left(\mp i \hat{p} + m\omega x \right), \qquad [\hat{x},\hat{p}] = x\hat{p} - \hat{p}x = i \hbar \]

The product is:

\[ \begin{aligned} \hat{a}_-\hat{a}_+ &= \frac{1}{2\hbar m \omega} (i \hat{p} + m\omega x)(-i \hat{p} + m\omega x)\\ &= \frac{1}{2\hbar m \omega} \left(\hat{p}^2 + (m\omega x)^2 - i m\omega (x\hat{p} - \hat{p}x)\right)\\ &= \frac{1}{2\hbar m \omega} \left(\hat{p}^2 + (m\omega x)^2\right) - \frac{i}{2 \hbar} (x\hat{p} - \hat{p}x)\\ &= \frac{1}{2\hbar m \omega} \left(\hat{p}^2 + (m\omega x)^2\right) + \frac{1}{2}\\ &= \frac{1}{\hbar \omega} \hat{H} + \frac{1}{2}\\ \end{aligned} \]

Ladder operators

Ladder operators \(\hat{a}_-\hat{a}_+ = (i u + v)(-i u + v) = u^2 + v^2\)

\[ \hat{a}_\pm = \frac{1}{\sqrt{2 \hbar m \omega}}\left(\mp i \hat{p} + m\omega x \right), \qquad [\hat{x},\hat{p}] = x\hat{p} - \hat{p}x = i \hbar \]

We can also flip the ladder operators:

\[ \begin{aligned} \hat{H} & = \left(\hat{a}_-\hat{a}_+ - \frac{1}{2}\right) \hbar \omega\\ \hat{H} & = \left(\hat{a}_+\hat{a}_- + \frac{1}{2}\right) \hbar \omega\\ \end{aligned} \]

Stationary Schrodinger equation becomes:

\[ \begin{aligned} \hat{H}\psi = \hbar \omega \left(\hat{a}_+\hat{a}_- + \frac{1}{2}\right) \,\psi = E\,\psi \\ \end{aligned} \]

Ladder operators generate solutions

If \(\psi(x)\) is a solution, the \(\hat{a}_+\psi(x)\) is another solution:

\[ \hat{H} \psi(x) = E \psi \Rightarrow \hat{H} (\hat{a}_+ \psi(x)) = (E + \hbar \omega) (\hat{a}_+ \psi(x)) \]

If \(\psi(x)\) is a solution, then \(\hat{a}_- \psi(x)\) is another solution:

\[ \hat{H} \psi(x) = E \psi \Rightarrow \hat{H} (\hat{a}_- \psi(x)) = (E - \hbar \omega) (\hat{a}_- \psi(x)) \]

Ladder operators generate solutions

Since energy \(E > 0\) operating with \(\hat{a}_-\) leads at some point to:

\[ \hat{a}_-\psi_0 = 0 \]

The leads to the following differential equation \[ \begin{aligned} \frac{1}{\sqrt{2\hbar m \omega}}\left(\hbar \frac{d}{d x} + m \omega x\right) \, \psi_0(x) &= 0\\ \Rightarrow \frac{d \psi_0(x)}{d x} &= - \frac{m \omega}{\hbar} \, x \, \psi_0(x)\\ \Rightarrow \int \frac{d \psi_0(x)}{\psi_0(x)} \, dx &= - \frac{m \omega}{\hbar} \, \int x \, dx\\ \Rightarrow \ln(\psi_0(x)) &= - \frac{m \omega}{2\hbar} \, x^2 + C \\ \Rightarrow \psi_0(x) &= A \, e^{- \frac{m \omega}{2\hbar} \, x^2} \\ \end{aligned} \]

Ladder operators generate solutions

\[ \begin{aligned} \Rightarrow \psi_0(x) &= A \, e^{- \frac{m \omega}{2\hbar} \, x^2} \\ \end{aligned} \]

Normalization requires \(\int |\psi_0(x)|^2 = 1\)

\[ \int_{-\infty}^{\infty} |\psi_0(x)|^2 \, dx = |A|^2 \, \int_{-\infty}^{\infty} e^{- \frac{m \omega}{\hbar} \, x^2} = |A|^2 \, \sqrt{\frac{\pi\hbar}{m\omega}} \]

where we used the identity

\[ \int_{-\infty}^{\infty} e^{- a x^2} dx = \sqrt{\frac{\pi}{a}} \]

This results in the solution:

\[ \psi_0(x) = \left(\frac{m \omega}{\pi \hbar}\right)^{1/4} e^{-\frac{m\omega}{2\hbar} x^2} \]

Solutions with the ladder operators

Other solutions \(\psi_n(x)\) can now be generated:

\[ \psi_n(x) = A_n \, (\hat{a}_+)^n \, \psi_0(x), \quad \textrm{with} \quad E_n = \left(n + \frac{1}{2}\right) \hbar \omega \]

The normalization factor \(A_n\) can be calculated

\[ \psi_n(x) = \frac{1}{\sqrt{n!}} \, (\hat{a}_+)^n \, \psi_0(x), \quad \textrm{with} \quad E_n = \left(n + \frac{1}{2}\right) \hbar \omega \]

And operating with a single ladder operator:

\[ \hat{a}_+ \psi_n = \sqrt{n+1} \psi_{n+1}, \qquad \hat{a}_- \psi_n = \sqrt{n} \psi_{n-1} \]

Summary

  • Infinite well
    • Eigenstates evolve different in time
    • Single eigenstates are stationary for finite expectation energy \(\langle \hat{H} \rangle\)
    • Superposition of eigenstates leads to non-constant \(\langle \hat{x} \rangle\), i.e. a nonzero velocity
  • Harmonic oscillator
    • Energy levels equally spaced \(\quad E_n = \hbar \omega (n + 1/2)\)
    • Nonzero ground energy \(\,\,E_0 = \frac{1}{2}\hbar\omega\)
    • Solutions proportional with Hermite polynomials \(\,H_n(x)\)
    • Alternative algebraic method
    • Ladder operators (Algebraic method)

Summary

So far we looked at bound states

  • Infinite well
  • Linear potential well (Electrical field, not seen yet)
  • Harmonic oscillator

Different well potentials lead to different allowed energy levels

Narrower wells \(\longrightarrow\) less energy levels (more spread)