

PHOT 301: Quantum Photonics

LECTURE 02

Michaël Barbier, Fall semester (2024-2025)

OVERVIEW

week	Topic	Reading
Week 1	Introduction & Required Mathematical Methods. Waves and Schrödinger's equation, Probability, Uncertainty and Time evolution. Infinite square well.	Ch. 1 & Ch. 2 (up to the infinite well)
Week 2	The harmonic oscillator, Creation and annihilation operators. Free particle, 1D Bound states & Scattering/Transmission, Finite well	
Week 3	Quantum mechanics formalism: Functions and operators, uncertainty. Approximation methods.	
Week 4	Angular momentum and the Hydrogen atom, Spin Magnetic fields, The Pauli equation, Minimal Coupling, Aharonov Bohm Perturbation: Fine Structure of Hydrogen, The Zeeman Effect	
Week 5	Identical particles, Periodic table, Molecular bonds, Periodic structures, Band structure, Bloch functions Time-dependent perturbation: Absorption, spontaneous emission, and stimulated emission	
Week 6	Final exam	

FOR NEXT WEEK

- Textbook Chapter 1: 1.1, 1.2, 1.3, 1.5, 1.8
- Textbook Chapter 2: 2.1(c), 2.3, 2.4, 2.5, 2.7
- Homework documents:
 - phot301_homework_integration.pdf
 - phot301_homework_solving_equations.pdf
 - phot301_homework_fourier.pdf
- Reading (by Thursday 24 July 2025): Chapter 2 of Griffiths

STATIONARY SOLUTIONS & ENERGY LEVELS

SOLVING THE 1D SCHRODINGER EQUATION

The Schrodinger equation was given by:

$$i\hbar \frac{\partial \Psi(x, t)}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 \Psi(x, t)}{\partial x^2} + V(x, t)\Psi(x, t)$$

- The complex wave function $\Psi(x, t)$ is not observable
- Potential energy: $V \rightarrow V(x, y, z, t)$
- $\hbar = \frac{h}{2\pi} = 1.055 \times 10^{-34} \text{ J s}$
- Probability to find particle in x at time t given by $|\Psi(x, t)|^2$:

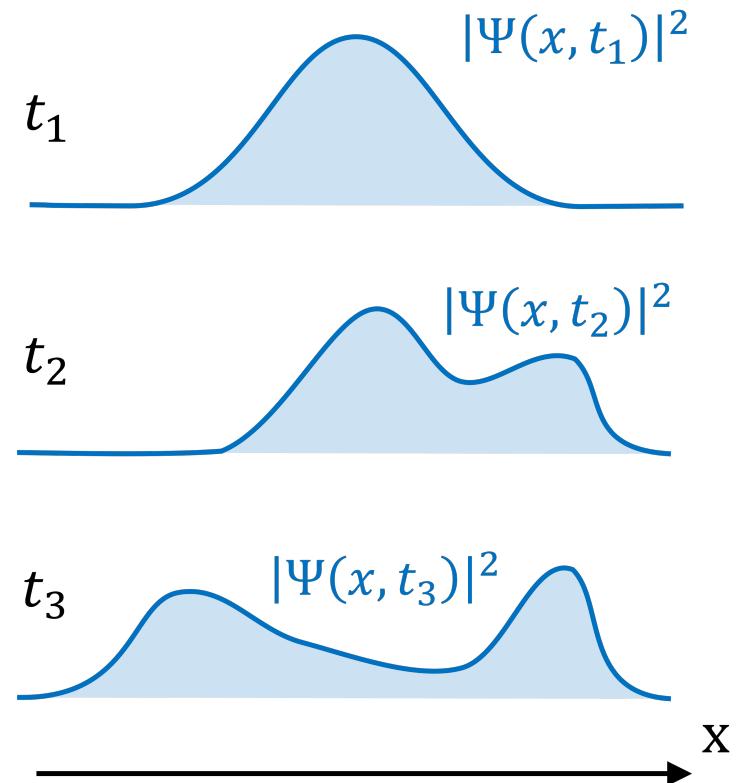
$$P(x \in [a, b]) = \int_a^b |\Psi(x, t)|^2 dx$$

SOLVING THE 1D SCHRODINGER EQUATION

- Wave function $\Psi(x, t)$ defines $|\Psi(x, t)|^2$
- How to calculate $\Psi(x, t = 0)$?
- Evolution in time of $\Psi(x, t)$?

$$i\hbar \frac{\partial \Psi(x, t)}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 \Psi(x, t)}{\partial x^2}$$

$$+ V(x, t) \Psi(x, t)$$



How do we solve for given $V(x, t)$?

SOLVING THE 1D SCHRODINGER EQUATION

$$i\hbar \frac{\partial \Psi(x, t)}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 \Psi(x, t)}{\partial x^2} + V(x, t)\Psi(x, t)$$

How do we solve this equation for given $V(x, t)$?

- Assume $V(x, t)$ independent of time: $V(x) \leftarrow V(x, t)$
- Solve by separation of the variables $\Psi(x, t) = \psi(x)\phi(t)$

$$i\hbar \frac{\partial(\psi(x)\phi(t))}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2(\psi(x)\phi(t))}{\partial x^2} + V(x)\psi(x)\phi(t)$$

SOLVING THE 1D SCHRODINGER EQUATION

$$i\hbar \frac{\partial(\psi(x)\phi(t))}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2(\psi(x)\phi(t))}{\partial x^2} + V(x)\psi(x)\phi(t)$$

$$\Rightarrow i\hbar\psi(x) \frac{\partial\phi(t)}{\partial t} = -\phi(t) \frac{\hbar^2}{2m} \frac{\partial^2\psi(x)}{\partial x^2} + V(x)\psi(x)\phi(t)$$

Divide the equation by $\Psi(x, t) = \psi(x)\phi(t)$

$$\Rightarrow i\hbar \frac{1}{\phi(t)} \frac{\partial\phi(t)}{\partial t} = -\frac{\hbar^2}{2m} \frac{1}{\psi(x)} \frac{\partial^2\psi(x)}{\partial x^2} + V(x)$$

→ the left hand side depends only on x and the right hand side only on t .

$$\Rightarrow i\hbar \frac{1}{\phi(t)} \frac{\partial\phi(t)}{\partial t} = -\frac{\hbar^2}{2m} \frac{1}{\psi(x)} \frac{\partial^2\psi(x)}{\partial x^2} + V(x) = \text{constant } E$$

TIME-DEPENDENCE & STATIONARY EQUATION

$$i\hbar \frac{1}{\phi(t)} \frac{\partial \phi(t)}{\partial t} = -\frac{\hbar^2}{2m} \frac{1}{\psi(x)} \frac{\partial^2 \psi(x)}{\partial x^2} + V(x) = E$$

→ System of 2 ordinary differential equations:

$$\left\{ \begin{array}{l} -\frac{\hbar^2}{2m} \frac{1}{\psi(x)} \frac{d^2 \psi(x)}{dx^2} + V(x) = E \\ i\hbar \frac{1}{\phi(t)} \frac{d\phi(t)}{dt} = E \end{array} \right.$$

IF we can solve both equations $\Rightarrow \Psi(x, t) = \psi(x)\phi(t)$ is a solution

TIME EVOLUTION

- Solving the equation for $\phi(t)$

$$i\hbar \frac{1}{\phi(t)} \frac{d\phi(t)}{dt} = E \quad \Rightarrow \quad \frac{d\phi(t)}{dt} = -\frac{i}{\hbar} E \phi(t)$$

1st order differential equation with general solution:

$$\phi(t) = C \exp(-iEt/\hbar)$$

Full solution of the form (C is absorbed):

$$\Psi(x, t) = \psi(x)\phi(t) = \psi(x) \exp(-iEt/\hbar)$$

Notice that the probability $|\Psi(x, t)|^2 = |\psi(x)|^2$ is independent of t

TIME-INDEPENDENT EQUATION

Time-independent Schrodinger equation (TISE):

$$-\frac{\hbar^2}{2m} \frac{d^2\psi(x)}{dx^2} + V(x)\psi(x) = E\psi(x)$$

Or we can write

$$\hat{H}\psi = E\psi \quad \text{with Hamiltonian} \quad \hat{H} = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + V(x)$$

The expectation value of \hat{H} is:

$$\langle \hat{H} \rangle = \int \Psi^* \hat{H} \Psi dx = \int \Psi^* E \Psi dx = E \int |\Psi|^2 dx = E \int |\psi|^2 dx = E$$

GENERAL SOLUTION OF THE TDSE

- From the theory of differential equations:
 - The general solution is a **linear superposition** of solutions $\{\psi_n(x)\} = \psi_1(x), \psi_2(x), \psi_3(x), \dots$
 - Independent solutions
 - Separate energies $\{E_n\}$ for corresponding $\{\psi_n(x)\}$
 - Solutions form an **infinite and complete basis**

$$\Psi(x, t) = \sum_{n=1}^{\infty} c_n \psi_n(x) e^{-iE_n t/\hbar}$$

Notice: General probability $|\Psi(x, t)|^2$ does depend on time

GENERAL SOLUTION OF THE TDSE

$$\Psi(x, t) = \sum_{n=1}^{\infty} c_n \psi_n(x) e^{-iE_n t/\hbar}$$

One can proof that $|c_n|^2$ is the probability to measure energy as E_n (Griffith's Chapter 3):

$$\langle \hat{H} \rangle = \int \Psi^* \hat{H} \Psi dx = \sum_{n=1}^{\infty} |c_n|^2 E_n \quad \text{and} \quad \sum_{n=1}^{\infty} |c_n|^2 = 1$$

POTENTIAL ENERGY FUNCTION $V(x)$

$$\hat{H}\psi(x) = -\frac{\hbar^2}{2m} \frac{d^2\psi(x)}{dx^2} + V(x)\psi(x) = E\psi(x)$$

- Potential energy $V(x)$ is linked to force $F = -\frac{\partial V}{\partial x}$

⇒ if $V(x)$ is a constant corresponds to zero force

⇒ A linear $V(x)$ corresponds to a constant force

⇒ A parabolic $V(x)$ corresponds to a linear force (like a spring)

SQUARE POTENTIAL ENERGY WELL

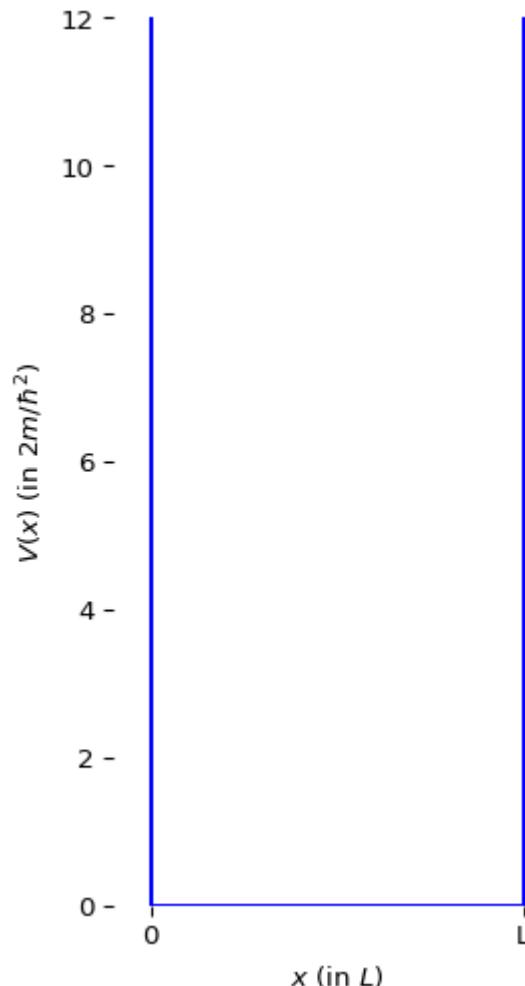
INFINITE WELL

- Inside the well a particle can exist
- Outside the well the potential is infinite

$$\begin{cases} V(x < 0) = \infty \\ V(0 < x < L) = 0 \\ V(x > L) = \infty \end{cases}$$

- Task: solve the stationary Schrodinger equation for $V(x)$

$$-\frac{\hbar^2}{2m} \frac{d^2\psi(x)}{dx^2} + V(x)\psi(x) = E\psi(x)$$



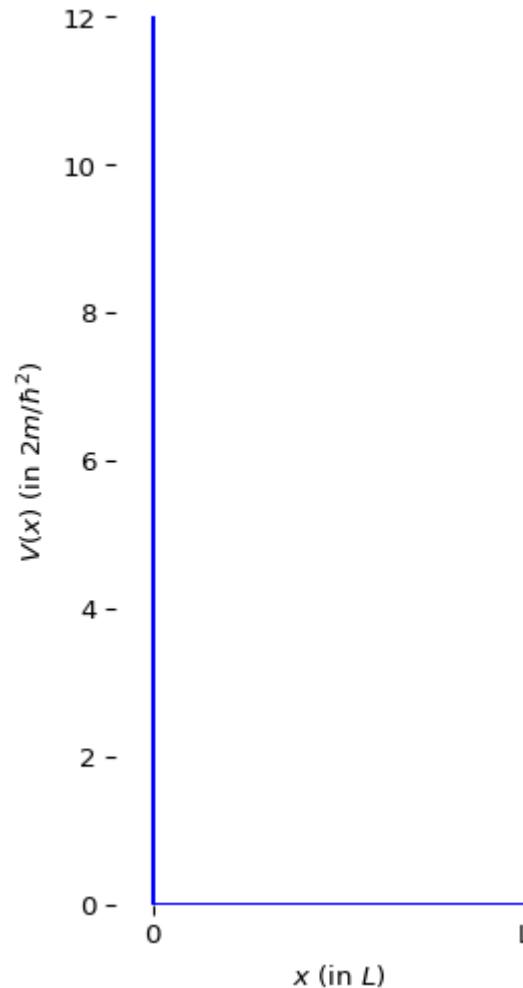
INFINITE WELL: SOLUTION IN THE WELL

- Particles outside would have infinite energy
- Wave function $\psi(x)$ should be zero outside
- Assume $\psi(0) = \psi(L) = 0 \leftarrow \psi(x)$ ctu
- Inside the well $V(x) = 0$:

$$-\frac{\hbar^2}{2m} \frac{d^2\psi(x)}{dx^2} = E\psi(x)$$

General solution:

$$\psi(x) = A \cos(kx) + B \sin(kx)$$



INFINITE WELL: SOLUTION IN THE WELL

$$-\frac{\hbar^2}{2m} \frac{d^2\psi(x)}{dx^2} = E\psi(x)$$

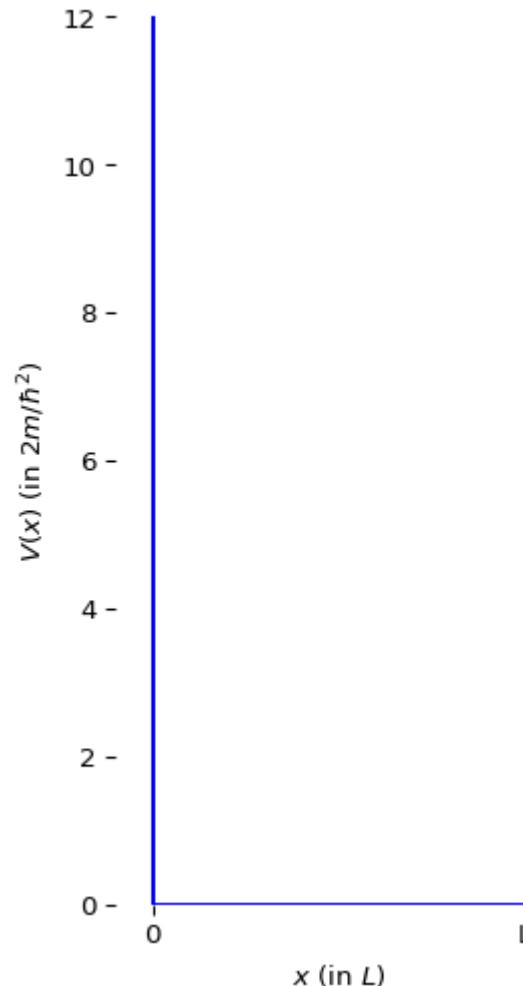
$$\psi(x) = A \cos(kx) + B \sin(kx)$$

- with A and B complex numbers
- $k = \sqrt{2mE/\hbar^2}$ a complex number

Apply BC's $\psi(0) = \psi(L) = 0$:

$$\psi(0) = 0 \quad \Rightarrow \quad A = 0$$

$$\psi(x) = B \sin(kx)$$



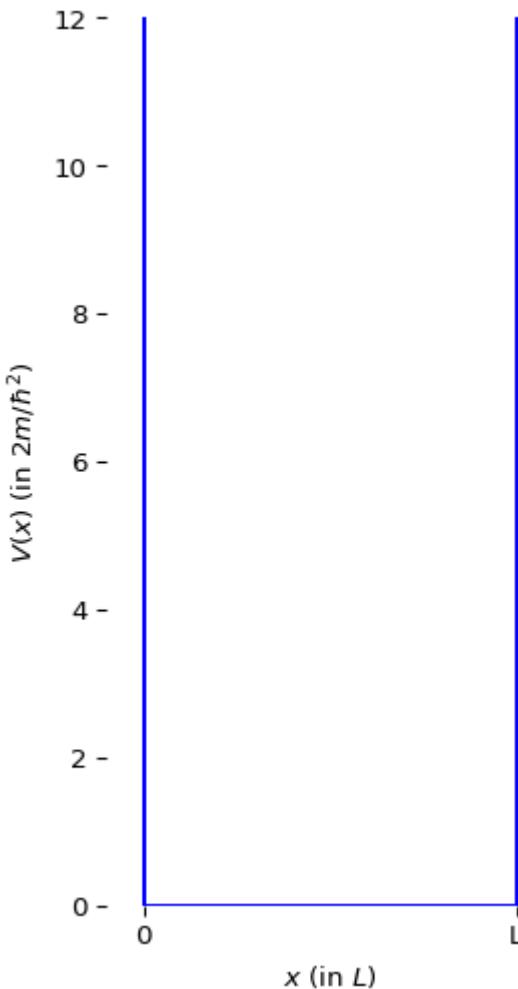
INFINITE WELL: ENERGIES

$$\psi(x) = B \sin(k x)$$

Apply the other BC: $\psi(L) = 0$:

$$k_n = \sqrt{2mE_n/\hbar^2} = n\pi/L$$

$$\Rightarrow \begin{cases} \psi_n(x) = A_n \sin\left(\frac{n\pi x}{L}\right) \\ E_n = \frac{\hbar^2 k_n^2}{2m} = \frac{\hbar^2}{2m} \left(\frac{n\pi}{L}\right)^2 \end{cases}$$



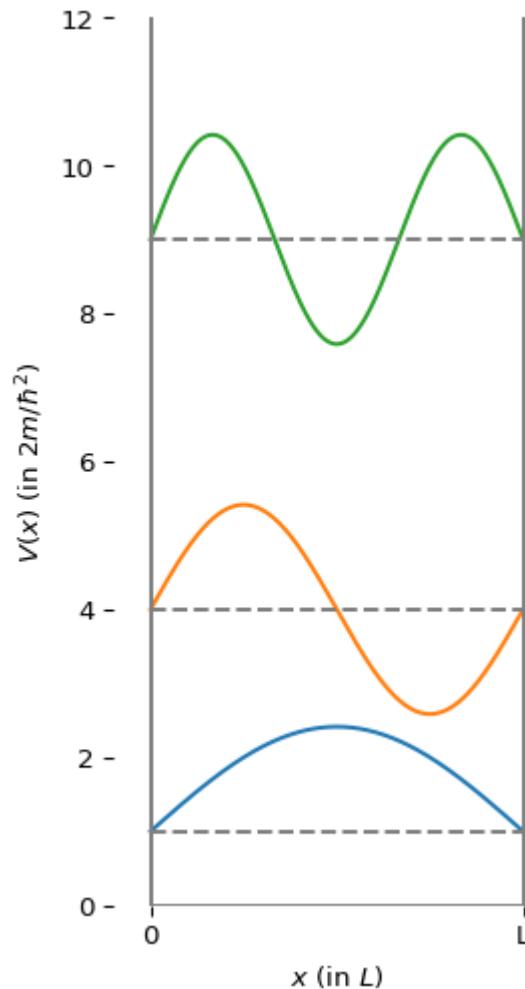
INFINITE WELL

$$\psi(x) = B \sin(k x)$$

Apply the other BC: $\psi(L) = 0$:

$$k_n = \sqrt{2mE_n/\hbar^2} = n\pi/L$$

$$\Rightarrow \begin{cases} \psi_n(x) = A_n \sin\left(\frac{n\pi x}{L}\right) \\ E_n = \frac{\hbar^2 k_n^2}{2m} = \frac{\hbar^2}{2m} \left(\frac{n\pi}{L}\right)^2 \end{cases}$$



INFINITE WELL: NORMALIZATION

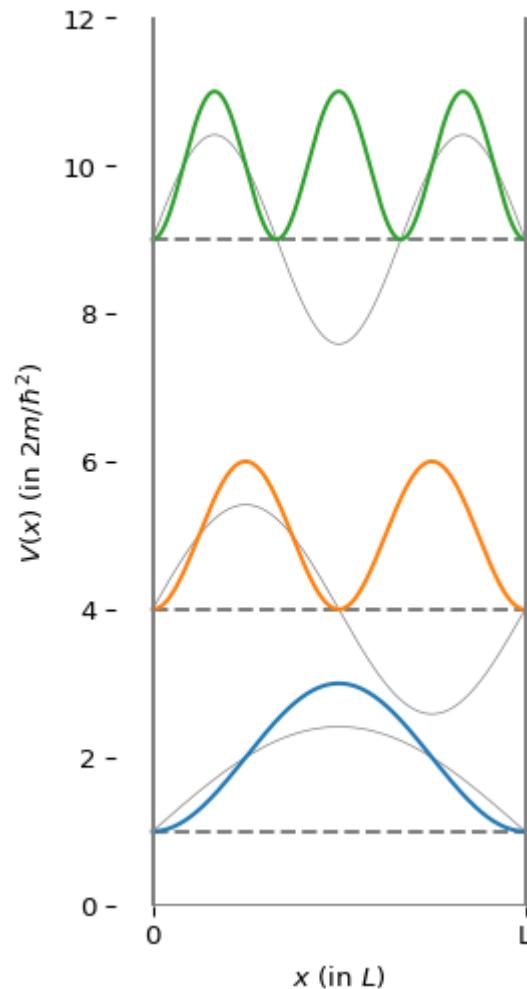
$$\psi_n(x) = A_n \sin\left(\frac{n\pi x}{L}\right)$$

- Obtain A_n from normalization $\int |\psi|^2 = 1$

$$1 = \int_0^L |A_n|^2 \left| \sin\left(\frac{n\pi x}{L}\right) \right|^2 dx = \frac{|A_n|^2 L}{2}$$

$$\implies |A_n|^2 = \frac{2}{L} \Rightarrow |A_n| = \sqrt{\frac{2}{L}}$$

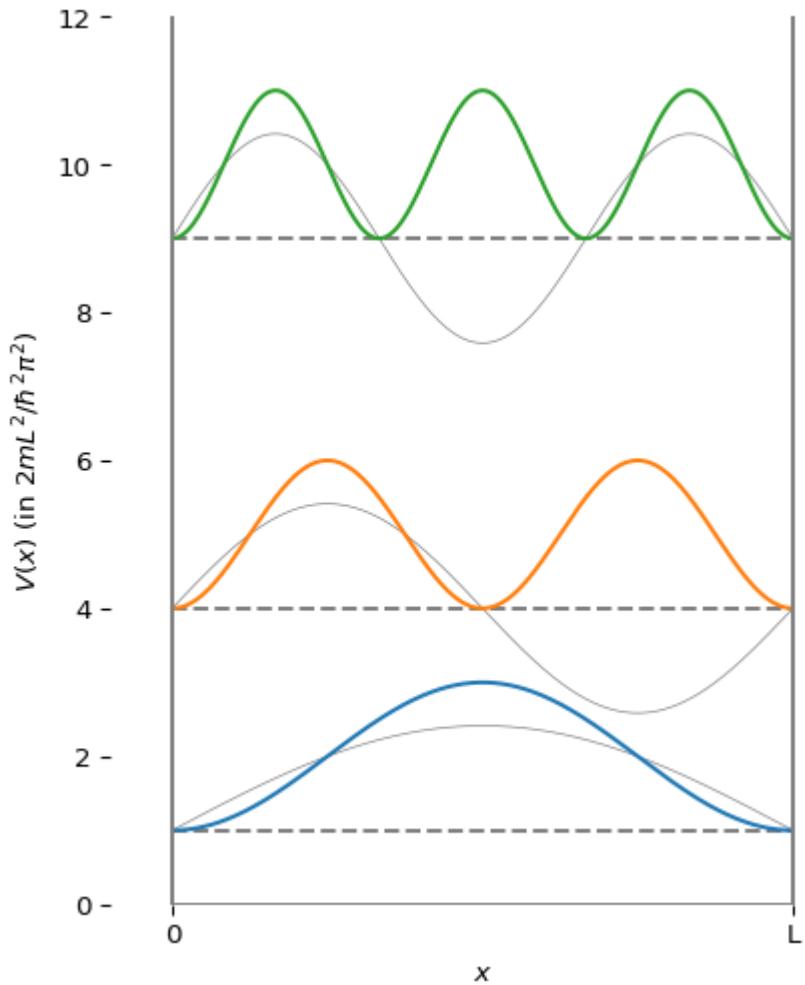
$$\psi_n(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi x}{L}\right)$$



INFINITE WELL: SUMMARY

$$\left\{ \begin{array}{l} \psi_n(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi x}{L}\right) \\ \\ E_n = \frac{\hbar^2 k_n^2}{2m} = \frac{\hbar^2}{2m} \left(\frac{n\pi}{L}\right)^2 \\ \\ n = 1, 2, 3, 4, \dots \end{array} \right.$$

Plot shows the wave function (ψ , grey), probability ($|\psi|^2$, color) for first 3 eigenstates



EIGENENERGIES AND EIGENSTATES

Eigenstates $\psi_n(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi x}{L}\right)$

Eigenenergies $E_n = \frac{\hbar^2 k_n^2}{2m} = \frac{\hbar^2}{2m} \left(\frac{n\pi}{L}\right)^2$

$$n = 1, 2, 3, 4, \dots$$

- Lowest state $n = 1$ we call ground state
- Higher states $n > 1$ are excited states
- Parity of wave functions is either:
 - Even ($n = 1, 3, 5, \dots$)
 - Odd ($n = 2, 4, 6, \dots$)

PROPERTIES

Eigenstates $\psi_n(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi x}{L}\right)$

The eigenstates are orthonormal:

$$\int \psi_m(x)^* \psi_n(x) dx = \delta_{nm}$$

Eigenstates form a complete basis

Every $f(x)$ we can expand as a series:

$$f(x) = \sum_{n=1}^{\infty} c_n \psi_n(x) = \sqrt{\frac{2}{L}} \sum_{n=1}^{\infty} c_n \sin\left(\frac{n\pi x}{L}\right)$$

PROPERTIES OF STATIONARY EIGENSTATES

ψ_n are orthonormal $\int \psi_m(x)^* \psi_n(x) dx = \delta_{mn}$

ψ_n form a complete basis $f(x) = \sum_{n=1}^{\infty} c_n \psi_n(x) \quad \forall f(x)$

Coefficients c_n are given by $c_n = \int \psi_n(x)^* f(x) dx$

Proof of last property:

$$\begin{aligned} \int \psi_m(x)^* f(x) dx &= \int \psi_n(x)^* \sum_{n=1}^{\infty} c_n \psi_n(x) dx \\ &= \sum_{n=1}^{\infty} c_n \int \psi_m(x)^* \psi_n(x) dx = \sum_{n=1}^{\infty} c_n \delta_{mn} = c_m \end{aligned}$$

STATIONARY SOLUTION OF THE TISE

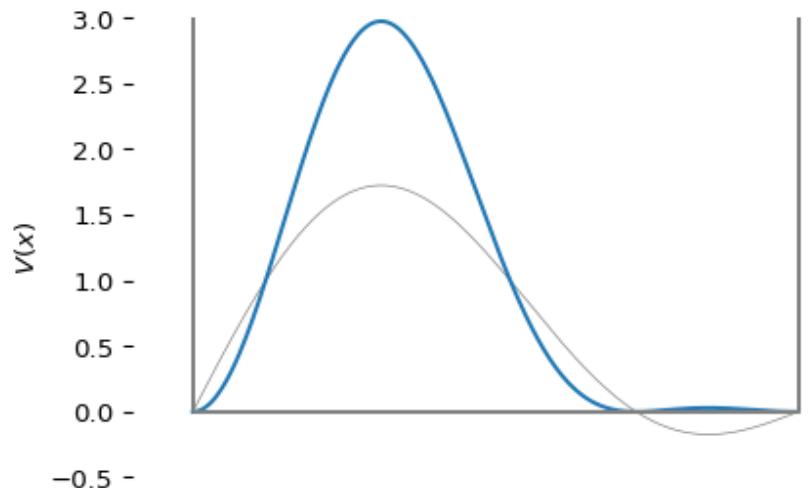
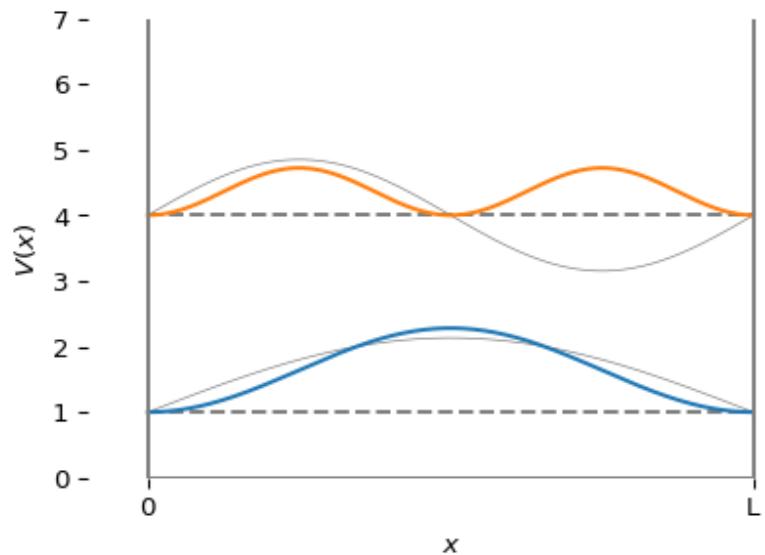
For the infinite well

$$\psi(x) = \sqrt{\frac{2}{L}} \sum_{n=1}^{\infty} c_n \sin\left(\frac{n\pi}{L}x\right)$$

Example state:

$$\begin{cases} c_1 = 4/5, \\ c_2 = \sqrt{1 - c_1^2} = 3/5, \\ n > 2 \rightarrow c_n = 0 \end{cases}$$

- How does the wave function (ψ , color) and the probability ($|\psi|^2$, gray) look?
- What if we let time evolve?



INFINITE WELL: SOLUTION OF THE TDSE

Adding time evolution

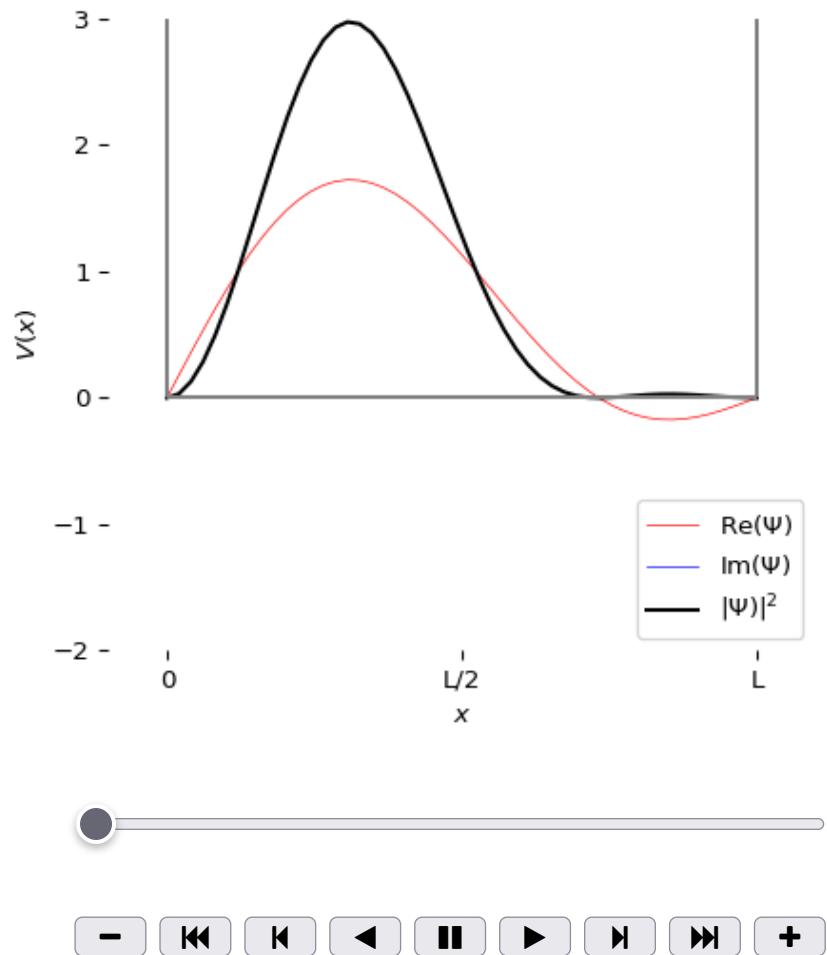
$$\Psi(x, t) = \sum_{n=1}^{\infty} c_n \psi_n(x) e^{-i E_n t / \hbar}$$

with $\sum_{n=1}^{\infty} |c_n|^2 = 1$

Coefficients $|c_n|^2$ give the probability to measure energy as E_n :

$$\langle \hat{H} \rangle = \int \Psi^* \hat{H} \Psi dx = \sum_{n=1}^{\infty} |c_n|^2 E_n$$

But $\langle \hat{x} \rangle = \int x \Psi^* \Psi dx$ is not constant!



Once Loop Reflect

EXPAND A FUNCTION IN EIGENSTATES

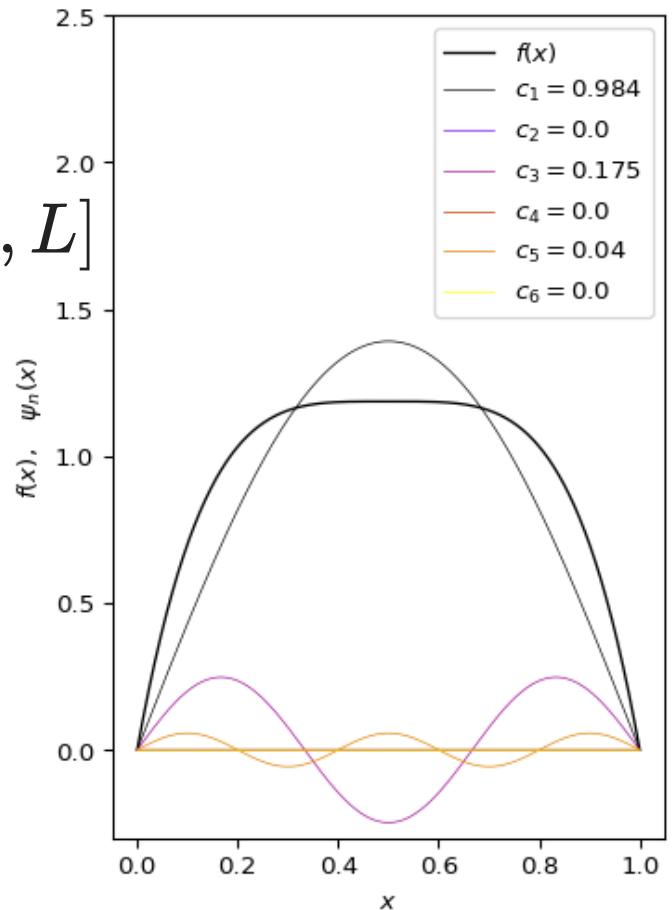
- Suppose we have a certain wave function

$$f(x) = A ((L/2)^4 - (x - L/2)^4), \text{ with } x \in [0, L]$$

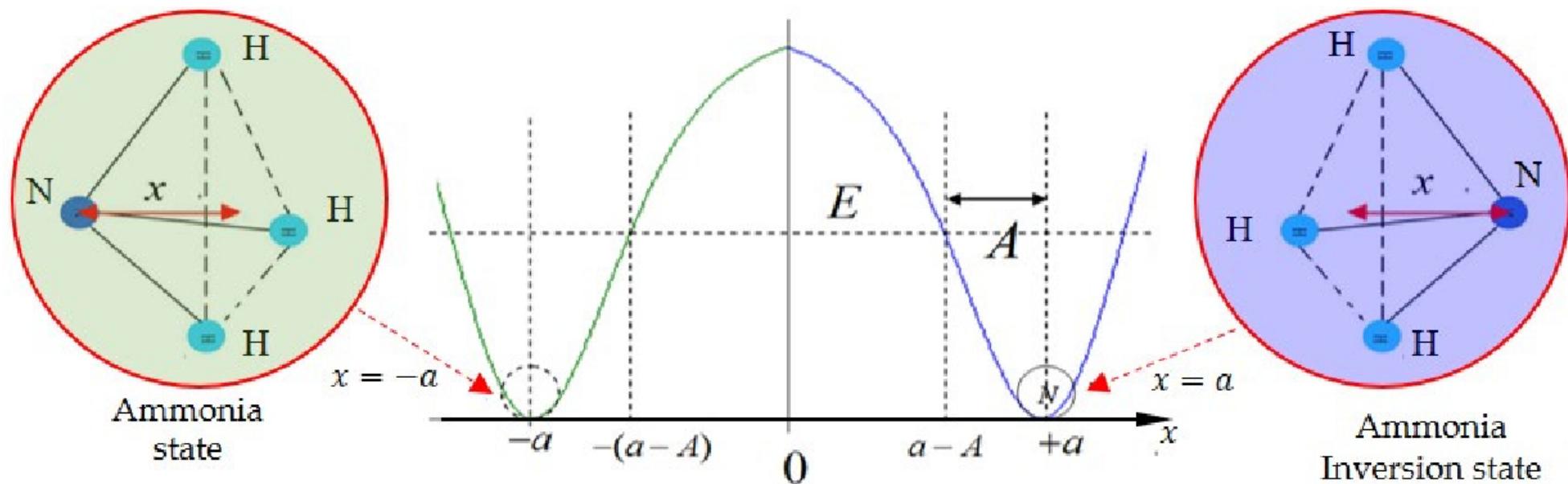
- Normalization constant $A = \sqrt{\frac{64}{45} \left(\frac{L}{2}\right)^9}$
- Since $f(0) = f(L) = 0$ we can expand $f(x)$ in eigenstates of the infinite well

$$f(x) = \sqrt{\frac{2}{L}} \sum_{n=1}^{\infty} c_n \sin\left(\frac{n\pi}{L}x\right)$$

with $c_n = \int_0^L \psi_n(x)^* f(x) dx$



A MORE COMPLEX EXAMPLE



Ammonia molecule has two possible geometries

- The ammonia molecule NH_3 has two possible geometries
- Experiments tell that NH_3 flips between states
- Possible by quantum tunneling