PHOT 301: Quantum Photonics
LECTURE 02

Michaél Barbier, Fall semester (2024-2025)

Lecture 02: The Time-Independent Schrodinger equation



OVERVIEW

Week 1

Week 2

Week 3

Week 4

Week 5

Week 6

Introduction & Required Mathematical Methods. Ch.1&Ch.2
Waves and Schrédinger's equation, Probability, Uncertainty and Time evolution. (up to the
Infinite square well. infinite well)

The harmonic oscillator, Creation and annihilation operators.

Free particle, 1D Bound states & Scattering/Transmission, Finite well

Quantum mechanics formalism: Functions and operators, uncertainty.

Approximation methods.

Angular momentum and the Hydrogen atom, Spin
Magnetic fields, The Pauli equation, Minimal Coupling, Aharonov Bohm

Perturbation: Fine Structure of Hydrogen, The Zeeman Effect

Identical particles, Periodic table, Molecular bonds, Periodic structures, Band
structure, Bloch functions
Time-dependent perturbation: Absorption, spontaneous emission, and stimulated

emission

Final exam
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FOR NEXT WEEK

e Textbook Chapter1:1.1,1.2,1.3,1.5,1.8
o Textbook Chapter2:2.1(c), 2.3, 2.4, 2.5,2.7

e Homework documents:
= phot301_homework_integration.pdf
= phot301_homework_solving_equations.pdf
= phot301_homework_fourier.pdf
e Reading (by Thursday 24 July 2025): Chapter 2 of Griffiths
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STATIONARY SOLUTIONS &
ENERGY LEVELS
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SOLVING THE 1D SCHRODINGER EQUATION

The Schrodinger equation was given by:

2 92
ihﬁ\I!(:c,t) ~ h® 0°¥(z,t)

ot 2m  Ox?

+ V(z,t)¥(x,t)

e The complex wave function ¥(x, t) is not observable
e Potentialenergy:V — V(z,y, 2,t)
e i= 2 =1.055x10"*Js

e Probability to find particle in z at time ¢ given by | ¥ (z, ¢)|*:

P(z € [a,b]):/ Uz, t)Pda
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SOLVING THE 1D SCHRODINGER EQUATION

e Wave function ¥(x, t) defines |¥(x, t)‘z

W (x, t1)]?
e How to calculate ¥(z,t = 0)? EA

e Evolution intime of ¥(x,t)?

. W (x, t2)|?
2
L 0Y(z,t) h? 0°9(x,t)

th Ot T o9m 02

t3 |LIJ(x’ t3)|2
+V(z,t)¥(z, 1)

>

X

How do we solve for given V(z, t) ?

Lecture 02: The Time-Independent Schrodinger equation



SOLVING THE 1D SCHRODINGER EQUATION

ih(’?\IJ(m,t) - h? 0°%(x,t)
Ot - 2m  Oz?

+ V(zx,t)¥(z,t)

How do we solve this equation for given V(z, t) ?

e Assume V(z,t) independent of time: V(x) + V (x, t)
e Solve by separation of the variables ¥ (z,t) = ¥(x)d(t)

2m
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SOLVING THE 1D SCHRODINGER EQUATION
O(p(z)d(t)) _  h* 9°(¢(x)9(t))

n20@00) R T |y ypae
= itp(e) 220 = g0) 1= THD |y @)@

Divide the equation by ¥ (x,t) = ¥(x)o(t)

o 1 0g(t) AT 1 0%Y(z)
R ot T emo@) oe2 V@

— the left hand side depends only on x and the right hand side only on £.

L1 0g() R 1 8%(a) B
imgb(t) ot 2m @) 0 + V(z) = constant F
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TIME-DEPENDENCE & STATIONARY EQUATION

L 100t W1 )
RS "ot T 2mu@ oz V@ =E

— System of 2 ordinary differential equations:

[ R? 1 d*Y(x) B
< - 2m p(z) da? TVi(z)=E
o1 de(t)
| "ow A

IF we can solve both equations = ¥(x, t) = ¥(x)®(t) is a solution
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TIME EVOLUTION

e Solving the equation for ¢(t)

1 dg(t) dp(t) _ i
o) a T 7 Ta — wPPW

1st order differential equation with general solution:
&(t) = Cexp(—iEt/h)
Full solution of the form (C is absorbed):
V(z,t) = ¢(x)9(t) = ¢(x) exp(—iEt/h)
Notice that the probability | ¥ (z, t)|* = |¢(z)|” is independent of ¢
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TIME-INDEPENDENT EQUATION
Time-independent Schrodinger equation (TISE):

h? d’i)(z)

9m  da?

+ V(z)y(z) = EyY(z)
Or we can write

h? d?
2m dzx?

Hy = Ev with Hamiltonian H = — + V(z)

The expectation value of His:

(H) = /\I!*ﬁ\I!d:z: — /\I!*E\Ifdm — E/\\If|2da: — E/\zpyzda: =y’
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GENERAL SOLUTION OF THE TDSE

e From the theory of differential equations:

= The general solution is a linear superposition of solutions
{n(2)} = Y1(2), 2 (), P3(), - ..

= |ndependent solutions
= Separate energies { F,, } for corresponding {1, (x) }

= Solutions form an infinite and complete basis

©.@)

\Ij(xa t) — Z Cn¥n (CC) e_iEnt/h
n=1

Notice: General probability | ¥ (z, t)|* does depend on time
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GENERAL SOLUTION OF THE TDSE

©.@)

U(z,t) = Y catpn(x)e Bt/

n=1

One can proof that |c,, \2 is the probability to measure energy as E,, (Griffith’s
Chapter 3):

() /\If*ﬁ\l!dw =N Jen?E, and Y en? =1
n=1 n=1
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POTENTIAL ENERGY FUNCTION V(X)

: B2 d2y(z)
Ai(z) = 7~V L viayg(a) = By
e Potential energy V() is linked to force F' = —‘g—g

— if V() is a constant corresponds to zero force
— Alinear V() corresponds to a constant force

—> A parabolic V' (z) corresponds to a linear force (like a spring)
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SQUARE POTENTIAL ENERGY
WELL
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INFINITE WELL

e |Inside the well a particle can exist 2
e Qutside the well the potential is infinite -
V(e <0) =00 7
Vi0<z<L)=0 g,

V(x> L) =0 e

e Task: solve the stationary Schrodinger
equation for V' (x) N
A? d*y(x) °

+V(z)y(z) = Ey(z)

9m  da?
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INFINITE WELL: SOLUTION IN THE WELL

12 -

e Particles outside would have infinite energy
e Wave function ¥(x) should be zero outside -
e Assume(0) = ¥(L) = 0<+— Y(x) ctu
e Inside thewell V(z) = 0:

v(x) (in 2m/h?)

h2 d2gb(a:)
o — E 4-
2m  dz? ¥(z)
General solution: 2-
(z) = Acos(kz) + Bsin(kz) 5
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INFINITE WELL: SOLUTION IN THE WELL

12 -

h* d*y(z)
C2m  dx? Erj(z) 10-
Y(x) = Acos(kzr) + Bsin(kx) .

e with A and B complex numbers
e k= +/2mE/h? a complex number

Apply BC's 9(0) = (L) = 0 .-
P(0) =0 = A=0 o-

v(x) (in 2m/h?)

Y(x) = Bsin(kx)
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INFINITE WELL: ENERGIES

12 -

Y(z) = Bsin(kx)

10 -

Apply the other BC: (L) = O:

kn = \/2mE, /h? = /L

v(x) (in 2m/h?)

Yn(x) = A, sin(?)
I T 5 (mr)Z
" 2m N 2m L >0
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INFINITE WELL

12 -

Y(z) = Bsin(kx)

10 -

Apply the other BC: (L) = O:

kn = \/2mE, /h? = /L

v(x) (in 2m/h?)

Yn(x) = A, sin(?)
I T 5 (n7r)2
" 2m N 2m L > o
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INFINITE WELL: NORMALIZATION

12 -

N

(01—t ")
Y () sin{ — -
e Obtain A,, from normalizationf|1,b|2 =1 5

1 :/ A, | sin(w)‘ dr = An| >
0 L 2 .
2 2 2

A= 2 = |4, = )2
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INFINITE WELL: SUMMARY

f 12 -
2  /nTmx
r) =4/ —sin| —
(@) =ygem(T) L
\ no_ h’ki R <n7r)2 2 N
" 2m  2m\ L ¥ s
. n=1,234,...
Plot shows the wave function (1, grey), .
probability (|1 2 color) for first 3 i
eigenstates
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EIGENENERGIES AND EIGENSTATES

2
Eigenstates v, (x) = ‘/f sin(T

nmr

)

h2k2 h?
Eigenenergies FE, = o = o (TZT
n=123,4,...
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e Loweststatenn = 1 we call ground state
e Higherstatesn > 1 are excited states
e Parity of wave functionsis either:

= Even(n=1,3,9,...)

= Odd (n = 2,4,6,...)
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PROPERTIES

2
Eigenstates v, (x) = \' T Sin(nzw>

The eigenstates are orthonormal:

[ bnla) b(a)de = G,

Eigenstates form a complete basis
Every f(x) we can expand as a series:

flz) = i Cnthy () = \/% Y cpsin

00
n=1 n=1
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)
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PROPERTIES OF STATIONARY EIGENSTATES

1, are orthonormal / Vm ()" Yn(x) dz = S

0

Y, form a complete basis Z Cnn (T Vf(x)

n=1

Coefficients ¢, are given by ¢, = / Y, (x)* f(x) de

Proof of last property:

[mte) f@)dz = [vatay nfjcnwn@) da
- chfwm e fjcnamn = tm

Lt021ThTmIdpdtShdg r equatio n=1
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STATIONARY SOLUTION OF THE TISE
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For the infinite well 30-

Y(z) = \/%ilcn sin(%a)) .

Example state:

V(x)

C1 — 4/5,

co = 4/1—c =3/5, )

V(x)

n>2—>c¢c, =0

e How does the wave function (2, color)
and the probability (]¢\2, gray) look? x

e \What if we let time evolve?
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INFINITE WELL: SOLUTION OF THE TDSE
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Adding time evolution

0.
U(z,t) =)  cothn(z) e Hnt/7 g
n=1 N
o0 3
with ) e, =1 s
n=1
-1 —— Re(w)
Coefficients |¢,,|* give the probability — P
to measure energy as F,: s 2 L
o

= kO [+
©>0nce @ Loop o Reflect

(H) = /\IJ*I‘:’\I/dCL‘ = Z cn|° E,,
n=1

But (2) = [2¥* ¥ dz is not
constant!
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EXPAND A FUNCTION IN EIGENSTATES
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2.5

e Suppose we have a certain wave function

f(z) = A((L/2)* — (z — L/2)Y), withz € [0,L]

1.5 -

=
9 S
=

e Normalization constant A = \/% (%)

e Since f(0) = f(L) = 0we canexpand f(x) in
eigenstates of the infinite well

0.5 1

004 F
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A MORE COMPLEX EXAMPLE

Ammonia Sl
state —d

0 Inversion state

Ammonia molecule has two possible geometries

e The ammonia molecule N H3 has two possible geometries
e Experiments tell that IV Hj3 flips between states

e Possible by quantum tunneling
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