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OVERVIEW
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FOR NEXT WEEK

• Textbook Chapter 1: 1.1, 1.2, 1.3, 1.5, 1.8

• Textbook Chapter 2: 2.1(c), 2.3, 2.4, 2.5, 2.7

• Homework documents:

▪ phot301_homework_integration.pdf

▪ phot301_homework_solving_equations.pdf

▪ phot301_homework_fourier.pdf

• Reading (by Thursday 24 July 2025): Chapter 2 of Griffiths
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STATIONARY SOLUTIONS &
ENERGY LEVELS
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SOLVING THE 1D SCHRODINGER EQUATION
The Schrodinger equation was given by:

iℏ = − + V (x, t)Ψ(x, t)
∂Ψ(x, t)

∂t

ℏ2

2m

Ψ(x, t)∂2

∂x2

• The complex wave function  is not observable

• Potential energy: 

•  J s

• Probability to find particle in  at time  given by :

Ψ(x, t)

V → V (x, y, z, t)

ℏ = = 1.055 ×h
2π

10−34

x t |Ψ(x, t)|2

P(x ∈ [a, b]) = |Ψ(x, t) dx∫ b

a

|2
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SOLVING THE 1D SCHRODINGER EQUATION

• Wave function  defines 

• How to calculate ?

• Evolution in time of ?

How do we solve for given  ?

Ψ(x, t) |Ψ(x, t)|2

Ψ(x, t = 0)

Ψ(x, t)

iℏ = −
∂Ψ(x, t)

∂t

ℏ2

2m

Ψ(x, t)∂2

∂x2

+V (x, t)Ψ(x, t)

V (x, t)
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SOLVING THE 1D SCHRODINGER EQUATION

How do we solve this equation for given  ?

iℏ = − + V (x, t)Ψ(x, t)
∂Ψ(x, t)

∂t

ℏ2

2m

Ψ(x, t)∂2

∂x2

V (x, t)

• Assume  independent of time: 

• Solve by separation of the variables 

V (x, t) V (x) ← V (x, t)

Ψ(x, t) = ψ(x)ϕ(t)

iℏ = − + V (x)ψ(x)ϕ(t)
∂(ψ(x)ϕ(t))

∂t

ℏ2

2m

(ψ(x)ϕ(t))∂2

∂x2
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SOLVING THE 1D SCHRODINGER EQUATION

iℏ = − + V (x)ψ(x)ϕ(t)
∂(ψ(x)ϕ(t))

∂t

ℏ2

2m

(ψ(x)ϕ(t))∂2

∂x2

⇒ iℏψ(x) = −ϕ(t) + V (x)ψ(x)ϕ(t)
∂ϕ(t)

∂t

ℏ2

2m

ψ(x)∂2

∂x2

Divide the equation by Ψ(x, t) = ψ(x)ϕ(t)

⇒ iℏ = − + V (x)
1

ϕ(t)
∂ϕ(t)

∂t

ℏ2

2m

1
ψ(x)

ψ(x)∂2

∂x2

 the le� hand side depends only on  and the right hand side only on .⟶ x t

⇒ iℏ = − + V (x) = constant E
1

ϕ(t)
∂ϕ(t)

∂t

ℏ2

2m

1
ψ(x)

ψ(x)∂2

∂x2
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TIME-DEPENDENCE & STATIONARY EQUATION

iℏ = − + V (x) = E
1

ϕ(t)
∂ϕ(t)

∂t

ℏ2

2m

1
ψ(x)

ψ(x)∂2

∂x2

 System of 2 ordinary differential equations:⟶

⎧
⎩⎨
⎪⎪⎪
⎪⎪⎪

− + V (x)
ℏ2

2m

1
ψ(x)

ψ(x)d2

dx2

iℏ
1

ϕ(t)
dϕ(t)

dt

= E

= E

IF we can solve both equations  is a solution⟹ Ψ(x, t) = ψ(x)ϕ(t)
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TIME EVOLUTION

• Solving the equation for ϕ(t)

iℏ = E ⇒ = − Eϕ(t)
1

ϕ(t)
dϕ(t)

dt

dϕ(t)
dt

i

ℏ

1st order differential equation with general solution:

ϕ(t) = C exp(−iEt/ℏ)

Full solution of the form (C is absorbed):

Ψ(x, t) = ψ(x)ϕ(t) = ψ(x) exp(−iEt/ℏ)

Notice that the probability  is independent of |Ψ(x, t) = |ψ(x)|2 |2 t

10Lecture 02: The Time-Independent Schrodinger equation



TIME-INDEPENDENT EQUATION
Time-independent Schrodinger equation (TISE):

− + V (x)ψ(x) = Eψ(x)
ℏ2

2m

ψ(x)d2

dx2

Or we can write

ψ = Eψ with Hamiltonian  = − + V (x)Ĥ Ĥ
ℏ2

2m

d2

dx2

The expectation value of  is:Ĥ

⟨ ⟩ = ∫ Ψdx = ∫ EΨdx = E ∫ |Ψ dx = E ∫ |ψ dx = EĤ Ψ∗Ĥ Ψ∗ |2 |2
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GENERAL SOLUTION OF THE TDSE

• From the theory of differential equations:

▪ The general solution is a linear superposition of solutions

▪ Independent solutions

▪ Separate energies  for corresponding 

▪ Solutions form an infinite and complete basis

Notice: General probability  does depend on time

{ (x)} = (x), (x), (x), …ψn ψ1 ψ2 ψ3

{ }En { (x)}ψn

Ψ(x, t) = (x)∑
n=1

∞

cnψn e−i t/ℏEn

|Ψ(x, t)|2
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GENERAL SOLUTION OF THE TDSE

One can proof that  is the probability to measure energy as  (Griffith’s
Chapter 3):

Ψ(x, t) = (x)∑
n=1

∞

cnψn e−i t/ℏEn

|cn|2 En

⟨ ⟩ = ∫ Ψdx = |  and  | = 1Ĥ Ψ∗Ĥ ∑
n=1

∞

cn|2En ∑
n=1

∞

cn|2
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POTENTIAL ENERGY FUNCTION V(X)

• Potential energy  is linked to force 

 if  is a constant corresponds to zero force

 A linear  corresponds to a constant force

 A parabolic  corresponds to a linear force (like a spring)

ψ(x) = − + V (x)ψ(x) = Eψ(x)Ĥ
ℏ2

2m

ψ(x)d2

dx2

V (x) F = − ∂V
∂x

⟹ V (x)

⟹ V (x)

⟹ V (x)
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SQUARE POTENTIAL ENERGY
WELL

15Lecture 02: The Time-Independent Schrodinger equation



INFINITE WELL

• Inside the well a particle can exist

• Outside the well the potential is infinite

⎧
⎩⎨
⎪
⎪

V (x < 0)
V (0 < x < L)

V (x > L)

= ∞
= 0
= ∞

• Task: solve the stationary Schrodinger
equation for V (x)

− + V (x)ψ(x) = Eψ(x)
ℏ2

2m

ψ(x)d2

dx2

16Lecture 02: The Time-Independent Schrodinger equation



Lecture 02: The Time-Independent Schrodinger equation



INFINITE WELL: SOLUTION IN THE WELL

• Particles outside would have infinite energy

• Wave function  should be zero outsideψ(x)

• Assume  ctuψ(0) = ψ(L) = 0 ⟵ ψ(x)

• Inside the well :V (x) = 0

− = Eψ(x)
ℏ2

2m

ψ(x)d2

dx2

General solution:

ψ(x) = A cos(kx) + B sin(kx)
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INFINITE WELL: SOLUTION IN THE WELL

− = Eψ(x)
ℏ2

2m

ψ(x)d2

dx2

ψ(x) = A cos(kx) + B sin(kx)

• with  and  complex numbers

•  a complex number

A B

k = 2mE/ℏ2− −−−−−−√

Apply BC’s :ψ(0) = ψ(L) = 0

ψ(0) = 0 ⇒ A = 0

ψ(x) = B sin(k x)
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INFINITE WELL: ENERGIES

ψ(x) = B sin(k x)

Apply the other BC: :ψ(L) = 0

= = nπ/Lkn 2m /En ℏ2
− −−−−−−−√

⟹

⎧
⎩⎨
⎪⎪
⎪⎪

(x)ψn

En

= sin( )An
nπx

L

= =
ℏ2k2

n

2m

ℏ2

2m
( )nπ

L

2
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INFINITE WELL

Apply the other BC: :

ψ(x) = B sin(k x)

ψ(L) = 0

= = nπ/Lkn 2m /En ℏ2
− −−−−−−−√

⟹

⎧
⎩⎨
⎪⎪
⎪⎪

(x)ψn

En

= sin( )An
nπx

L

= =
ℏ2k2

n

2m

ℏ2

2m
( )nπ

L

2
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INFINITE WELL: NORMALIZATION

(x)ψn = sin( )An
nπx

L

• Obtain  from normalization An ∫ |ψ = 1|2

1 = | dx =∫ L

0
An|2 sin( )∣

∣
nπx

L
∣
∣
2 | LAn|2

2

⟹ | = ⇒ | | =An|2
2
L

An
2
L

−−√

(x) = sin( )ψn
2
L

−−√ nπx

L
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INFINITE WELL: SUMMARY

Plot shows the wave function ( , grey),
probability ( , color) for first 3
eigenstates

⎧

⎩
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

(x)ψn

En

n

= sin( )2
L

−−√ nπx

L

= =
ℏ2k2

n

2m

ℏ2

2m
( )nπ

L

2

= 1, 2, 3, 4, …

ψ

|ψ|2
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EIGENENERGIES AND EIGENSTATES

Eigenstates

Eigenenergies

n

(x) = sin( )ψn
2
L

−−√ nπx

L

= =En
ℏ2k2

n

2m

ℏ2

2m
( )nπ

L

2

= 1, 2, 3, 4, …

23Lecture 02: The Time-Independent Schrodinger equation



• Lowest state  we call ground staten = 1

• Higher states  are excited statesn > 1

• Parity of wave functions is either:

▪ Even ( )n = 1, 3, 5, …

▪ Odd ( )n = 2, 4, 6, …
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PROPERTIES

Eigenstates (x) = sin( )ψn
2
L

−−√ nπx

L

The eigenstates are orthonormal:

∫ (x (x)dx =ψm )∗ ψn δnm

Eigenstates form a complete basis
Every  we can expand as a series:f(x)

f(x) = (x) = sin( )∑
n=1

∞

cnψn
2
L

−−√ ∑
n=1

∞

cn
nπx

L
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PROPERTIES OF STATIONARY EIGENSTATES

Proof of last property:

 are orthonormalψn

 form a complete basisψn

Coefficients   are given bycn

∫ (x (x) dx =ψm )∗ ψn δmn

f(x) = (x) ∀f(x)∑
n=1

∞

cnψn

= ∫ (x f(x) dxcn ψn )∗

∫ (x f(x) dxψm )∗ = ∫ (x (x) dxψn )∗ ∑
n=1

∞

cnψn

= ∫ (x (x) dx = =∑
n=1

∞

cn ψm )∗ ψn ∑
n=1

∞

cnδmn cm
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STATIONARY SOLUTION OF THE TISE
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For the infinite well

Example state:

• How does the wave function ( , color)
and the probability ( , gray) look?

• What if we let time evolve?

ψ(x) = sin( x)2
L

−−√ ∑
n=1

∞

cn
nπ

L

⎧
⎩⎨
⎪⎪
⎪⎪

= 4/5,c1

= = 3/5,c2 1 − c2
1

− −−−−√
n > 2 ⟶ = 0cn

ψ

|ψ|2
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INFINITE WELL: SOLUTION OF THE TDSE
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Adding time evolution

       

Once Loop Reflect

Ψ(x, t) = (x)∑
n=1

∞

cnψn e−i t/ℏEn

with  | = 1∑
n=1

∞

cn|2

Coefficients  give the probability
to measure energy as :

|cn|2

En

⟨ ⟩ = ∫ Ψdx = |Ĥ Ψ∗Ĥ ∑
n=1

∞

cn|2En

But  is not
constant!

⟨ ⟩ = ∫ x Ψ dxx̂ Ψ∗


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EXPAND A FUNCTION IN EIGENSTATES
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• Suppose we have a certain wave function

• Normalization constant 

• Since  we can expand  in
eigenstates of the infinite well

f(x) = A ((L/2 − (x − L/2 ), with x ∈ [0, L])4 )4

A = 64
45 ( )L

2
9− −−−−−√

f(0) = f(L) = 0 f(x)

f(x) = sin( x)2
L

−−√ ∑
n=1

∞

cn
nπ

L

with = (x f(x) dxcn ∫ L

0
ψn )∗
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A MORE COMPLEX EXAMPLE

Ammonia molecule has two possible geometries

• The ammonia molecule  has two possible geometriesNH3

• Experiments tell that  flips between statesNH3

• Possible by quantum tunneling
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