PHOT 301: Quantum Photonics
LECTURE 02
Michaël Barbier, Fall semester (2024-2025)
Textbook Chapter 1: 1.1, 1.2, 1.3, 1.5, 1.8
Textbook Chapter 2: 2.1(c), 2.3, 2.4, 2.5, 2.7
Homework documents:
Reading (by Thursday 24 July 2025): Chapter 2 of Griffiths
The Schrodinger equation was given by:
\[ i \hbar \frac{\partial \Psi(x,t)}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 \Psi(x,t)}{\partial x^2} + V(x,t) \Psi(x,t) \]
\[ P(x \in [a,b]) = \int_a^b |\Psi(x, t)|^2 dx \]
\[ \begin{aligned} i \hbar \frac{\partial \Psi(x,t)}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 \Psi(x,t)}{\partial x^2}\\ \\ \quad + V(x,t) \Psi(x,t)\quad\\ \end{aligned} \]
How do we solve for given \(V(x,t)\) ?
\[ i \hbar \frac{\partial \Psi(x,t)}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 \Psi(x,t)}{\partial x^2} + V(x,t) \Psi(x,t) \]
How do we solve this equation for given \(V(x,t)\) ?
\[ i \hbar \frac{\partial (\psi(x)\phi(t))}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2( \psi(x)\phi(t))}{\partial x^2} + V(x) \psi(x)\phi(t) \]
\[ i \hbar \frac{\partial (\psi(x)\phi(t))}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2( \psi(x)\phi(t))}{\partial x^2} + V(x) \psi(x)\phi(t) \]
\[ \Rightarrow i \hbar \psi(x) \frac{\partial \phi(t)}{\partial t} = -\phi(t)\frac{\hbar^2}{2m} \frac{\partial^2\psi(x)}{\partial x^2} + V(x) \psi(x)\phi(t) \]
Divide the equation by \(\Psi(x, t) = \psi(x) \phi(t)\)
\[ \Rightarrow i \hbar \frac{1}{\phi(t)} \frac{\partial \phi(t)}{\partial t} = -\frac{\hbar^2}{2m}\frac{1}{\psi(x)} \frac{\partial^2\psi(x)}{\partial x^2} + V(x) \]
\(\longrightarrow\) the left hand side depends only on \(x\) and the right hand side only on \(t\).
\[ \Rightarrow i \hbar \frac{1}{\phi(t)} \frac{\partial \phi(t)}{\partial t} = -\frac{\hbar^2}{2m}\frac{1}{\psi(x)} \frac{\partial^2\psi(x)}{\partial x^2} + V(x) = \textrm{constant } E \]
\[ i \hbar \frac{1}{\phi(t)} \frac{\partial \phi(t)}{\partial t} = -\frac{\hbar^2}{2m}\frac{1}{\psi(x)} \frac{\partial^2\psi(x)}{\partial x^2} + V(x) = E \]
\(\longrightarrow\) System of 2 ordinary differential equations:
\[ \left\{ \begin{aligned} {\color{blue}{-\frac{\hbar^2}{2m} \frac{1}{\psi(x)}\frac{d^2\psi(x)}{d x^2} + V(x) }} &{\color{blue}{= E}}\\ {\color{red}{i\hbar\frac{1}{\phi(t)}\frac{d \phi(t)}{d t}}} &{\color{red}{= E}}\\ \end{aligned} \right. \]
IF we can solve both equations \(\Longrightarrow\) \(\Psi(x,t) = \color{blue}{\psi(x)} \color{red}{\phi(t)}\) is a solution
\[ {\color{red}{i\hbar\frac{1}{\phi(t)}\frac{d \phi(t)}{d t}}} {\color{red}{= E}} \quad\Rightarrow\quad \frac{d \phi(t)}{d t}=-\frac{i}{\hbar}E \phi(t) \]
1st order differential equation with general solution:
\[ \phi(t) = C \exp(- i E t /\hbar) \]
Full solution of the form (C is absorbed):
\[ \Psi(x,t) = \psi(x) \phi(t) = \psi(x) \exp(- i E t /\hbar) \]
Notice that the probability \(|\Psi(x, t)|^2 = |\psi(x)|^2\) is independent of \(t\)
Time-independent Schrodinger equation (TISE):
\[ \color{blue}{-\frac{\hbar^2}{2m} \frac{d^2\psi(x)}{d x^2} + V(x) \psi(x) = E \psi(x)} \]
Or we can write
\[ \hat{H} \psi = E \psi \quad \textrm{with Hamiltonian }\,\, \hat{H} = -\frac{\hbar^2}{2m} \frac{d^2}{d x^2} + V(x) \]
The expectation value of \(\hat{H}\) is:
\[ \langle \hat{H} \rangle = \int \Psi^* \hat{H} \Psi dx = \int \Psi^* E \Psi dx = E \int |\Psi|^2 dx = E \int |\psi|^2 dx = E \]
\[ \Psi(x, t) = \sum_{n = 1}^\infty c_n \psi_n(x) \, e^{-iE_n t/\hbar} \]
Notice: General probability \(|\Psi(x, t)|^2\) does depend on time
\[ \Psi(x, t) = \sum_{n = 1}^\infty c_n \psi_n(x) \, e^{-iE_n t/\hbar} \]
One can proof that \(|c_n|^2\) is the probability to measure energy as \(E_n\) (Griffith’s Chapter 3):
\[ \langle \hat{H} \rangle = \int \Psi^* \hat{H} \Psi dx = \sum_{n = 1}^\infty |c_n|^2 E_n \quad \textrm{ and } \quad \sum_{n = 1}^\infty |c_n|^2 = 1 \]
\[ \hat{H}\psi(x) = -\frac{\hbar^2}{2m} \frac{d^2\psi(x)}{d x^2} + V(x) \psi(x) = E \psi(x) \]
\(\Longrightarrow\) if \(V(x)\) is a constant corresponds to zero force
\(\Longrightarrow\) A linear \(V(x)\) corresponds to a constant force
\(\Longrightarrow\) A parabolic \(V(x)\) corresponds to a linear force (like a spring)
\[ \left\{ \begin{aligned} V(x < 0) & = \infty \\ V(0 < x < L) & = 0 \\ V(x > L) & = \infty \\ \end{aligned} \right. \]
\[ -\frac{\hbar^2}{2m} \frac{d^2\psi(x)}{d x^2} + V(x) \psi(x) = E \psi(x) \]
\[ -\frac{\hbar^2}{2m} \frac{d^2 \psi(x)}{d x^2} = E \psi(x) \]
General solution:
\[ \psi(x) = A \cos(k x) + B \sin(k x) \]
\[ -\frac{\hbar^2}{2m} \frac{d^2 \psi(x)}{d x^2} = E \psi(x) \]
\[ \psi(x) = A \cos(k x) + B \sin(k x) \]
Apply BC’s \(\psi(0) = \psi(L) = 0\):
\[ \psi(0) = 0 \quad\Rightarrow\quad A = 0 \\ \]
\[ \psi(x) = B \sin(k\,x) \\ \]
\[ \psi(x) = B \sin(k\,x) \\ \]
Apply the other BC: \(\quad\psi(L) = 0\):
\[ k_n = \sqrt{2mE_n/\hbar^2} = n \pi / L \\ \]
\[ \Longrightarrow \left\{ \begin{aligned} \psi_n(x) &= A_n \sin\left(\frac{n\pi x}{L}\right)\\ E_n &= \frac{\hbar^2 k_n^2}{2m} = \frac{\hbar^2}{2m} \left( \frac{n\pi}{L} \right)^2 \end{aligned} \right. \]
\[ \psi(x) = B \sin(k\,x) \\ \]
Apply the other BC: \(\quad\psi(L) = 0\):
\[ k_n = \sqrt{2mE_n/\hbar^2} = n \pi / L \\ \]
\[ \Longrightarrow \left\{ \begin{aligned} \psi_n(x) &= A_n \sin\left(\frac{n\pi x}{L}\right)\\ E_n &= \frac{\hbar^2 k_n^2}{2m} = \frac{\hbar^2}{2m} \left( \frac{n\pi}{L} \right)^2 \end{aligned} \right. \]
\[ \begin{aligned} \psi_n(x) &= A_n \sin\left(\frac{n\pi x}{L}\right)\\ \end{aligned} \]
\[ 1 = \int_0^L |A_n|^2 \left|\sin\left(\frac{n\pi x}{L}\right)\right|^2 dx = \frac{|A_n|^2 L}{2} \]
\[ \Longrightarrow \quad |A_n|^2 = \frac{2}{L} \Rightarrow |A_n| = \sqrt{\frac{2}{L}} \]
\[ \psi_n(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi x}{L}\right) \]
\[ \left\{ \begin{aligned} \psi_n(x) &= \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi x}{L}\right)\\ &\\ E_n &= \frac{\hbar^2 k_n^2}{2m} = \frac{\hbar^2}{2m} \left( \frac{n\pi}{L} \right)^2\\ &\\ n &= 1, 2, 3, 4, \dots\\ \end{aligned} \right. \]
Plot shows the wave function (\(\psi\), grey), probability (\(|\psi|^2\), color) for first 3 eigenstates
\[ \begin{aligned} \textrm{Eigenstates} \quad &\psi_n(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi x}{L}\right)\\ &\\ \textrm{Eigenenergies} \quad &E_n = \frac{\hbar^2 k_n^2}{2m} = \frac{\hbar^2}{2m} \left( \frac{n\pi}{L} \right)^2\\ &\\ n &= 1, 2, 3, 4, \dots\\ \end{aligned} \]
\[ \begin{aligned} \textrm{Eigenstates} \quad &\psi_n(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi x}{L}\right)\\ \end{aligned} \]
The eigenstates are orthonormal:
\[ \int \psi_m(x)^*\, \psi_n(x) dx = \delta_{nm} \]
Eigenstates form a complete basis
Every \(f(x)\) we can expand as a series:
\[ f(x) = \sum_{n=1}^\infty c_n \psi_n(x) = \sqrt{\frac{2}{L}} \sum_{n=1}^\infty c_n \sin\left(\frac{n\pi x}{L}\right) \]
\[ \begin{aligned} \psi_n \textrm{ are orthonormal}\quad & \int \psi_m(x)^* \, \psi_n(x) \, dx = \delta_{mn}\\ \psi_n \textrm{ form a complete basis}\quad & f(x) = \sum_{n = 1}^\infty c_n \psi_n(x) \qquad \forall f(x)\\ \textrm{Coefficients $c_n$ are given by}\quad & c_n = \int \psi_n(x)^* \, f(x) \, dx\\ \end{aligned} \]
Proof of last property:
\[ \begin{aligned} \int \psi_m(x)^* \, f(x) \, dx & = \int \psi_n(x)^* \, \sum_{n = 1}^\infty c_n \psi_n(x) \, dx\\ & = \sum_{n = 1}^\infty c_n \int \psi_m(x)^* \, \psi_n(x) \, dx = \sum_{n = 1}^\infty c_n \delta_{mn} = c_m \end{aligned} \]
For the infinite well
\[ \psi(x) = \sqrt{\frac{2}{L}} \sum_{n = 1}^\infty c_n \sin\left(\frac{n\pi}{L} x\right) \]
Example state: \[ \left\{ \begin{aligned} & c_1 = 4/5,\\ & c_2 = \sqrt{1 - c_1^2} = 3/5,\\ & n > 2 \longrightarrow c_n = 0\\ \end{aligned} \right. \]
Adding time evolution
\[ \begin{aligned} \Psi(x, t) & = \sum_{n = 1}^\infty c_n \psi_n(x) \, e^{-iE_n t/\hbar}\\ & \textrm{with }\sum_{n = 1}^\infty |c_n|^2 = 1\\ \end{aligned} \]
Coefficients \(|c_n|^2\) give the probability to measure energy as \(E_n\):
\[ \langle \hat{H} \rangle = \int \Psi^* \hat{H} \Psi dx = \sum_{n = 1}^\infty |c_n|^2 E_n \]
But \(\langle \hat{x} \rangle = \int x \Psi^* \Psi \, dx\) is not constant!
\[ f(x) = A\,((L/2)^4 - (x-L/2)^4), \,\, \textrm{with } x \in [0, L] \]
\[ \begin{aligned} f(x) &= \sqrt{\frac{2}{L}} \sum_{n = 1}^\infty c_n \sin\left(\frac{n\pi}{L} x\right)\\ &\textrm{with} \quad c_n = \int_0^L \psi_n(x)^* \, f(x) \, dx\\ \end{aligned} \]
Ammonia molecule has two possible geometries
Lecture 02: The Time-Independent Schrodinger equation