PHOT 301: Quantum Photonics

LECTURE 02

Michaël Barbier, Fall semester (2024-2025)

Overview

For next week

  • Textbook Chapter 1: 1.1, 1.2, 1.3, 1.5, 1.8

  • Textbook Chapter 2: 2.1(c), 2.3, 2.4, 2.5, 2.7

  • Homework documents:

    • phot301_homework_integration.pdf
    • phot301_homework_solving_equations.pdf
    • phot301_homework_fourier.pdf
  • Reading (by Thursday 24 July 2025): Chapter 2 of Griffiths

Stationary Solutions & Energy levels

Solving the 1D Schrodinger equation

The Schrodinger equation was given by:

\[ i \hbar \frac{\partial \Psi(x,t)}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 \Psi(x,t)}{\partial x^2} + V(x,t) \Psi(x,t) \]

  • The complex wave function \(\Psi(x, t)\) is not observable
  • Potential energy: \(V \rightarrow V(x,y,z,t)\)
  • \(\hbar = \frac{h}{2\pi} = 1.055 \times 10^{-34}\) J s
  • Probability to find particle in \(x\) at time \(t\) given by \(|\Psi(x, t)|^2\):

\[ P(x \in [a,b]) = \int_a^b |\Psi(x, t)|^2 dx \]

Solving the 1D Schrodinger equation

  • Wave function \(\Psi(x, t)\) defines \(|\Psi(x, t)|^2\)
  • How to calculate \(\Psi(x, t=0)\)?
  • Evolution in time of \(\Psi(x, t)\)?

\[ \begin{aligned} i \hbar \frac{\partial \Psi(x,t)}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 \Psi(x,t)}{\partial x^2}\\ \\ \quad + V(x,t) \Psi(x,t)\quad\\ \end{aligned} \]

How do we solve for given \(V(x,t)\) ?

Solving the 1D Schrodinger equation

\[ i \hbar \frac{\partial \Psi(x,t)}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 \Psi(x,t)}{\partial x^2} + V(x,t) \Psi(x,t) \]

How do we solve this equation for given \(V(x,t)\) ?

  • Assume \(V(x, t)\) independent of time: \(V(x) \leftarrow V(x, t)\)
  • Solve by separation of the variables \(\Psi(x,t) = \psi(x) \phi(t)\)

\[ i \hbar \frac{\partial (\psi(x)\phi(t))}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2( \psi(x)\phi(t))}{\partial x^2} + V(x) \psi(x)\phi(t) \]

Solving the 1D Schrodinger equation

\[ i \hbar \frac{\partial (\psi(x)\phi(t))}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2( \psi(x)\phi(t))}{\partial x^2} + V(x) \psi(x)\phi(t) \]

\[ \Rightarrow i \hbar \psi(x) \frac{\partial \phi(t)}{\partial t} = -\phi(t)\frac{\hbar^2}{2m} \frac{\partial^2\psi(x)}{\partial x^2} + V(x) \psi(x)\phi(t) \]

Divide the equation by \(\Psi(x, t) = \psi(x) \phi(t)\)

\[ \Rightarrow i \hbar \frac{1}{\phi(t)} \frac{\partial \phi(t)}{\partial t} = -\frac{\hbar^2}{2m}\frac{1}{\psi(x)} \frac{\partial^2\psi(x)}{\partial x^2} + V(x) \]

\(\longrightarrow\) the left hand side depends only on \(x\) and the right hand side only on \(t\).

\[ \Rightarrow i \hbar \frac{1}{\phi(t)} \frac{\partial \phi(t)}{\partial t} = -\frac{\hbar^2}{2m}\frac{1}{\psi(x)} \frac{\partial^2\psi(x)}{\partial x^2} + V(x) = \textrm{constant } E \]

Time-dependence & Stationary equation

\[ i \hbar \frac{1}{\phi(t)} \frac{\partial \phi(t)}{\partial t} = -\frac{\hbar^2}{2m}\frac{1}{\psi(x)} \frac{\partial^2\psi(x)}{\partial x^2} + V(x) = E \]

\(\longrightarrow\) System of 2 ordinary differential equations:

\[ \left\{ \begin{aligned} {\color{blue}{-\frac{\hbar^2}{2m} \frac{1}{\psi(x)}\frac{d^2\psi(x)}{d x^2} + V(x) }} &{\color{blue}{= E}}\\ {\color{red}{i\hbar\frac{1}{\phi(t)}\frac{d \phi(t)}{d t}}} &{\color{red}{= E}}\\ \end{aligned} \right. \]


IF we can solve both equations \(\Longrightarrow\) \(\Psi(x,t) = \color{blue}{\psi(x)} \color{red}{\phi(t)}\) is a solution

Time evolution

  • Solving the equation for \(\phi(t)\)

\[ {\color{red}{i\hbar\frac{1}{\phi(t)}\frac{d \phi(t)}{d t}}} {\color{red}{= E}} \quad\Rightarrow\quad \frac{d \phi(t)}{d t}=-\frac{i}{\hbar}E \phi(t) \]

1st order differential equation with general solution:

\[ \phi(t) = C \exp(- i E t /\hbar) \]

Full solution of the form (C is absorbed):

\[ \Psi(x,t) = \psi(x) \phi(t) = \psi(x) \exp(- i E t /\hbar) \]

Notice that the probability \(|\Psi(x, t)|^2 = |\psi(x)|^2\) is independent of \(t\)

Time-independent equation

Time-independent Schrodinger equation (TISE):

\[ \color{blue}{-\frac{\hbar^2}{2m} \frac{d^2\psi(x)}{d x^2} + V(x) \psi(x) = E \psi(x)} \]

Or we can write

\[ \hat{H} \psi = E \psi \quad \textrm{with Hamiltonian }\,\, \hat{H} = -\frac{\hbar^2}{2m} \frac{d^2}{d x^2} + V(x) \]

The expectation value of \(\hat{H}\) is:

\[ \langle \hat{H} \rangle = \int \Psi^* \hat{H} \Psi dx = \int \Psi^* E \Psi dx = E \int |\Psi|^2 dx = E \int |\psi|^2 dx = E \]

General Solution of the TDSE

  • From the theory of differential equations:
    • The general solution is a linear superposition of solutions \(\{\psi_n(x)\} = \psi_1(x), \psi_2(x), \psi_3(x), \dots\)
    • Independent solutions
    • Separate energies \(\{E_n\}\) for corresponding \(\{\psi_n(x)\}\)
    • Solutions form an infinite and complete basis

\[ \Psi(x, t) = \sum_{n = 1}^\infty c_n \psi_n(x) \, e^{-iE_n t/\hbar} \]

Notice: General probability \(|\Psi(x, t)|^2\) does depend on time

General Solution of the TDSE

\[ \Psi(x, t) = \sum_{n = 1}^\infty c_n \psi_n(x) \, e^{-iE_n t/\hbar} \]

One can proof that \(|c_n|^2\) is the probability to measure energy as \(E_n\) (Griffith’s Chapter 3):

\[ \langle \hat{H} \rangle = \int \Psi^* \hat{H} \Psi dx = \sum_{n = 1}^\infty |c_n|^2 E_n \quad \textrm{ and } \quad \sum_{n = 1}^\infty |c_n|^2 = 1 \]

Potential energy function V(x)

\[ \hat{H}\psi(x) = -\frac{\hbar^2}{2m} \frac{d^2\psi(x)}{d x^2} + V(x) \psi(x) = E \psi(x) \]

  • Potential energy \(V(x)\) is linked to force \(F = - \frac{\partial V}{\partial x}\)

\(\Longrightarrow\) if \(V(x)\) is a constant corresponds to zero force

\(\Longrightarrow\) A linear \(V(x)\) corresponds to a constant force

\(\Longrightarrow\) A parabolic \(V(x)\) corresponds to a linear force (like a spring)

Square potential energy well

Infinite well

  • Inside the well a particle can exist
  • Outside the well the potential is infinite

\[ \left\{ \begin{aligned} V(x < 0) & = \infty \\ V(0 < x < L) & = 0 \\ V(x > L) & = \infty \\ \end{aligned} \right. \]

  • Task: solve the stationary Schrodinger equation for \(V(x)\)

\[ -\frac{\hbar^2}{2m} \frac{d^2\psi(x)}{d x^2} + V(x) \psi(x) = E \psi(x) \]

Infinite well: Solution in the well

  • Particles outside would have infinite energy
  • Wave function \(\psi(x)\) should be zero outside
  • Assume \(\psi(0) = \psi(L) = 0\) \(\longleftarrow\) \(\psi(x)\) ctu
  • Inside the well \(V(x) = 0\):

\[ -\frac{\hbar^2}{2m} \frac{d^2 \psi(x)}{d x^2} = E \psi(x) \]

General solution:

\[ \psi(x) = A \cos(k x) + B \sin(k x) \]

Infinite well: Solution in the well

\[ -\frac{\hbar^2}{2m} \frac{d^2 \psi(x)}{d x^2} = E \psi(x) \]

\[ \psi(x) = A \cos(k x) + B \sin(k x) \]

  • with \(A\) and \(B\) complex numbers
  • \(k = \sqrt{2mE / \hbar^2}\) a complex number

Apply BC’s \(\psi(0) = \psi(L) = 0\):

\[ \psi(0) = 0 \quad\Rightarrow\quad A = 0 \\ \]

\[ \psi(x) = B \sin(k\,x) \\ \]

Infinite well: Energies

\[ \psi(x) = B \sin(k\,x) \\ \]

Apply the other BC: \(\quad\psi(L) = 0\):

\[ k_n = \sqrt{2mE_n/\hbar^2} = n \pi / L \\ \]

\[ \Longrightarrow \left\{ \begin{aligned} \psi_n(x) &= A_n \sin\left(\frac{n\pi x}{L}\right)\\ E_n &= \frac{\hbar^2 k_n^2}{2m} = \frac{\hbar^2}{2m} \left( \frac{n\pi}{L} \right)^2 \end{aligned} \right. \]

Infinite well

\[ \psi(x) = B \sin(k\,x) \\ \]

Apply the other BC: \(\quad\psi(L) = 0\):

\[ k_n = \sqrt{2mE_n/\hbar^2} = n \pi / L \\ \]

\[ \Longrightarrow \left\{ \begin{aligned} \psi_n(x) &= A_n \sin\left(\frac{n\pi x}{L}\right)\\ E_n &= \frac{\hbar^2 k_n^2}{2m} = \frac{\hbar^2}{2m} \left( \frac{n\pi}{L} \right)^2 \end{aligned} \right. \]

Infinite well: Normalization

\[ \begin{aligned} \psi_n(x) &= A_n \sin\left(\frac{n\pi x}{L}\right)\\ \end{aligned} \]

  • Obtain \(A_n\) from normalization \(\int|\psi|^2 = 1\)

\[ 1 = \int_0^L |A_n|^2 \left|\sin\left(\frac{n\pi x}{L}\right)\right|^2 dx = \frac{|A_n|^2 L}{2} \]

\[ \Longrightarrow \quad |A_n|^2 = \frac{2}{L} \Rightarrow |A_n| = \sqrt{\frac{2}{L}} \]

\[ \psi_n(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi x}{L}\right) \]

Infinite well: summary

\[ \left\{ \begin{aligned} \psi_n(x) &= \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi x}{L}\right)\\ &\\ E_n &= \frac{\hbar^2 k_n^2}{2m} = \frac{\hbar^2}{2m} \left( \frac{n\pi}{L} \right)^2\\ &\\ n &= 1, 2, 3, 4, \dots\\ \end{aligned} \right. \]


Plot shows the wave function (\(\psi\), grey), probability (\(|\psi|^2\), color) for first 3 eigenstates

Eigenenergies and eigenstates

\[ \begin{aligned} \textrm{Eigenstates} \quad &\psi_n(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi x}{L}\right)\\ &\\ \textrm{Eigenenergies} \quad &E_n = \frac{\hbar^2 k_n^2}{2m} = \frac{\hbar^2}{2m} \left( \frac{n\pi}{L} \right)^2\\ &\\ n &= 1, 2, 3, 4, \dots\\ \end{aligned} \]

  • Lowest state \(n = 1\) we call ground state
  • Higher states \(n > 1\) are excited states
  • Parity of wave functions is either:
    • Even (\(n = 1, 3, 5, \dots\))
    • Odd (\(n = 2, 4, 6, \dots\))

Properties

\[ \begin{aligned} \textrm{Eigenstates} \quad &\psi_n(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi x}{L}\right)\\ \end{aligned} \]

The eigenstates are orthonormal:

\[ \int \psi_m(x)^*\, \psi_n(x) dx = \delta_{nm} \]

Eigenstates form a complete basis
Every \(f(x)\) we can expand as a series:

\[ f(x) = \sum_{n=1}^\infty c_n \psi_n(x) = \sqrt{\frac{2}{L}} \sum_{n=1}^\infty c_n \sin\left(\frac{n\pi x}{L}\right) \]

Properties of stationary eigenstates

\[ \begin{aligned} \psi_n \textrm{ are orthonormal}\quad & \int \psi_m(x)^* \, \psi_n(x) \, dx = \delta_{mn}\\ \psi_n \textrm{ form a complete basis}\quad & f(x) = \sum_{n = 1}^\infty c_n \psi_n(x) \qquad \forall f(x)\\ \textrm{Coefficients $c_n$ are given by}\quad & c_n = \int \psi_n(x)^* \, f(x) \, dx\\ \end{aligned} \]

Proof of last property:

\[ \begin{aligned} \int \psi_m(x)^* \, f(x) \, dx & = \int \psi_n(x)^* \, \sum_{n = 1}^\infty c_n \psi_n(x) \, dx\\ & = \sum_{n = 1}^\infty c_n \int \psi_m(x)^* \, \psi_n(x) \, dx = \sum_{n = 1}^\infty c_n \delta_{mn} = c_m \end{aligned} \]

Stationary solution of the TISE

For the infinite well

\[ \psi(x) = \sqrt{\frac{2}{L}} \sum_{n = 1}^\infty c_n \sin\left(\frac{n\pi}{L} x\right) \]

Example state: \[ \left\{ \begin{aligned} & c_1 = 4/5,\\ & c_2 = \sqrt{1 - c_1^2} = 3/5,\\ & n > 2 \longrightarrow c_n = 0\\ \end{aligned} \right. \]

  • How does the wave function (\(\psi\), color) and the probability (\(|\psi|^2\), gray) look?
  • What if we let time evolve?

Infinite well: solution of the TDSE

Adding time evolution

\[ \begin{aligned} \Psi(x, t) & = \sum_{n = 1}^\infty c_n \psi_n(x) \, e^{-iE_n t/\hbar}\\ & \textrm{with }\sum_{n = 1}^\infty |c_n|^2 = 1\\ \end{aligned} \]

Coefficients \(|c_n|^2\) give the probability to measure energy as \(E_n\):

\[ \langle \hat{H} \rangle = \int \Psi^* \hat{H} \Psi dx = \sum_{n = 1}^\infty |c_n|^2 E_n \]

But \(\langle \hat{x} \rangle = \int x \Psi^* \Psi \, dx\) is not constant!

Expand a function in eigenstates

  • Suppose we have a certain wave function

\[ f(x) = A\,((L/2)^4 - (x-L/2)^4), \,\, \textrm{with } x \in [0, L] \]

  • Normalization constant \(A = \sqrt{\frac{64}{45} \left(\frac{L}{2}\right)^9}\)
  • Since \(f(0) = f(L) = 0\) we can expand \(f(x)\) in eigenstates of the infinite well

\[ \begin{aligned} f(x) &= \sqrt{\frac{2}{L}} \sum_{n = 1}^\infty c_n \sin\left(\frac{n\pi}{L} x\right)\\ &\textrm{with} \quad c_n = \int_0^L \psi_n(x)^* \, f(x) \, dx\\ \end{aligned} \]

A more complex example

Ammonia molecule has two possible geometries

  • The ammonia molecule \(NH_3\) has two possible geometries
  • Experiments tell that \(NH_3\) flips between states
  • Possible by quantum tunneling