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OVERVIEW

Week 1

Week 2

Week 3

Week 4

Week 5

Week 6

Introduction & Required Mathematical Methods. Ch.1&Ch.2
Waves and Schrédinger's equation, Probability, Uncertainty and Time evolution. (up to the
Infinite square well. infinite well)

The harmonic oscillator, Creation and annihilation operators.

Free particle, 1D Bound states & Scattering/Transmission, Finite well

Quantum mechanics formalism: Functions and operators, uncertainty.

Approximation methods.

Angular momentum and the Hydrogen atom, Spin
Magnetic fields, The Pauli equation, Minimal Coupling, Aharonov Bohm

Perturbation: Fine Structure of Hydrogen, The Zeeman Effect

Identical particles, Periodic table, Molecular bonds, Periodic structures, Band
structure, Bloch functions
Time-dependent perturbation: Absorption, spontaneous emission, and stimulated

emission

Final exam
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FOR NEXT WEEK

e Textbook Chapter1:1.1,1.2,1.3,1.5,1.8
o Textbook Chapter2:2.1(c), 2.3, 2.4, 2.5,2.7

e Homework documents:
= phot301_homework_integration.pdf
= phot301_homework_solving_equations.pdf
= phot301_homework_fourier.pdf
e Reading (by Thursday 24 July 2025): Chapter 2 of Griffiths
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CLASSICAL VIEW

e Matter is described with particles

e Newton’s equation:

F=ma=

%7

m —
ot

e Forces act on point masses

e The forceis the gradient of the potential energy:

F=-VV

e Conservation of energy

trajectory

x(t)

point mass

a(t)

m

v(t)

Ekin = E mv
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CLASSICAL VIEW

e Lightis described by waves

o Maxwell’s equations
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CLASSICAL VIEW

e Lightis described by waves

o Maxwell’s equations

e |f there are no charges or currents then p = 0 and J = 0 then:

L, 1 8%E

V2E — =0
< c2 Ot?
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Vector components u := FE;, B; obey the wave equation:
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CLASSICAL VIEW

Light and matter are treated different

e Light has wave-like behavior

e Matter exists of particles

Problems:

e Hydrogen atom: Electron should fall on nuclues
e Specific energy bands of atomic spectra?

e Electrons can tunnel through potential energy barriers

Quantum mechanics combines both
And solves everything?
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THE SCHRODINGER EQUATION

3\ h?
h—— = U4+ VU
ot 2mV i

where

e Complex wave function: ¥ — ¥(z,y, z, t)

. 2 2
e LaplacianV2 =V .V = 2 —I—é?—yz—l—a%z

0 x?
0 potentialenergy° V —-V(x,y,z2,t)
e A =4 =1.055x10%* Js
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THE SCHRODINGER EQUATION

We will first consider 1D problems:

,hf)\If(:c,t) - h? 0%W(z,t)
! o 2m  Ox?

+ V(z,t)¥(x,t)

e The complex wave function ¥(x, t) is not observable

e Probability to find particle in = at time ¢ given by |¥(z, t)\zz

b
P(z € [a,b]):/ Uz, t)Pda
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PROBABILISTIC VIEW

b
P(x € [a,b]):/ W (z,t)|*dx
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PROBABILISTIC VIEW: MEASEREMENT PROBLEM

Copenhagen interpretation:

e Before measurement: probability according to | ¥ (z, ¢)|°
e Measurement: Wave function collapses to a single state — o-function

e After measurement: d-function spreads out again over time.
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DOUBLE SLIT EXPERIMENTS:
Typical thought-experiment

e What happens if electron “particles” are fired through a double slit?

e What happens if light at low intensity (single photons) is used?
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DOUBLE SLIT EXPERIMENTS:

e Electrons arrive one by one

e probability to find an electron at coordinates (z, y, z) o |¥(x, y, 2) \2

e Higher electron densities diffraction pattern: o< |¥(z, y, Z)\2

e Similar to the intensity of electric waves: I < E?
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PROBABILITY AND EXPECTATION VALUES

Probability density function p(x):

Expectation value of (x) = / z p(x) dx

Expectation value of f(x) (f(z)) = /oo
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PROBABILITY AND EXPECTATION VALUES

Probability density function p(x):
Expectation value of x (x) = / z p(x) dx
Expectation value of f(x) (f(x)) = f(x) p(z) dz

Variance o ((Az)?) = /OO(:IJ —(z))* p(z) dz

Standard deviation o= 4/(x*) — (x)?
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NORMALIZATION OF THE WAVE FUNCTION

o |¥(z,t)|” is like the probability density p(z)

e The total probability to find a particle somewhere must be one:

/ W (z,t)|°de =1

o0

So wave function ¥(x, t):

e Is asolution of the Schrodinger equation

e Must be normalizable

©.0
= / W (z,t)|*dz exists and is finite
— 00
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NORMALIZATION OF THE WAVE FUNCTION

If U(x,t)is normalized att = 0 then it is always normalized.

Follows from the Schrodinger equation (see Griffiths page 15):

d 0.

N W (z,t)|°dz = 0
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EXPECTATION VALUES

What are the particle’s:

e position x?
e velocityv?or

e momentump = muv?

Calculate the expectation (average) values:

Expectation value of x (x) = / r |¥(x,

©.@)

d
Expectation value of p = muv m ;:? = —ih /
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POSITION AND MOMENTUM OPERATORS

Expectation values are calculated as

Position z (x) = / z |U(z,t)|* de = /
d(x) >~ _,o0v >
M t = —1ih U*— dx =
omentump m 7 1 /OO 5 x /OO
Position operator T =z
. . 0
Momentum operator p = —th—

ox
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SCHRODINGER EQUATION WITH OPERATORS

ov h* 02
h— = — v+ Ve
! ot 2m Ox i
We have the operators:
Position operator T =0
. . 0
Momentum operator p = —1th—
ox
Using operators in the Schrodinger equation:
0 1 0 p? A
h—0 = —[-ih— T+ VI =T+ VU= (T +V)¥ =
! ot 2m[ ! aw] i 2m i (T+V)
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CORRESPONDENCE PRINCIPLE

e Large systems: Quantum mechanics — classical physics

e Ehrenfest’s theorem:
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UNCERTAINTY RELATION: POSITION
VS. MOMENTUM

e de Broglie relation

p=~=—— (=hk)

e Think about a Gaussian wave pulse in Fourier analysis
= Sharp pulses in space are spread out in (momentum) k-space
= Sharp pulses in k-space are spread out in space

e Uncertainty of position vs. momentum

h

0,0, > —
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SUMMARY

e Quantum mechanics is governed by the Schrodinger equation

A B2
h— = —— VU 1L VU
‘ Ot sz *

Similar to our standard wave equation

But the wave function ¥(z, y, z, t) is complex-valued

Probability density to find a particle | ¥ (z, t)|* = ¥*(z, t) ¥(z, t)

“Real” quantities and measurements represented by operators acting on the

wave function
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