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FOR NEXT WEEK

• Textbook Chapter 1: 1.1, 1.2, 1.3, 1.5, 1.8

• Textbook Chapter 2: 2.1(c), 2.3, 2.4, 2.5, 2.7

• Homework documents:

▪ phot301_homework_integration.pdf

▪ phot301_homework_solving_equations.pdf

▪ phot301_homework_fourier.pdf

• Reading (by Thursday 24 July 2025): Chapter 2 of Griffiths
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CLASSICAL VIEW

• Matter is described with particles

• Newton’s equation:

• Forces act on point masses

• The force is the gradient of the potential energy:

• Conservation of energy

= m = mF ⃗  a⃗ 
∂2r ⃗ 

∂t2

= −∇VF ⃗ 
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CLASSICAL VIEW

• Light is described by waves

• Maxwell’s equations

⎧

⎩
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

∇ ⋅ E ⃗ 

∇ ⋅ B⃗ 

∇ × E ⃗ 

∇ ×c2 B⃗ 

=
ρ

ϵ0

= 0

= −
∂B⃗ 

∂t

= +
J ⃗ 

ϵ0

∂E ⃗ 

∂t
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CLASSICAL VIEW

• Light is described by waves

• Maxwell’s equations

• If there are no charges or currents then  and  then:ρ = 0 = 0J ⃗ 

⎧
⎩⎨
⎪⎪⎪
⎪⎪⎪

−∇2E ⃗  1
c2

∂2E ⃗ 

∂t2

−∇2B⃗  1
c2

∂2B⃗ 

∂t2

= 0

= 0

Vector components  obey the wave equation:u := ,Ei Bi

u − = 0∇2 1
c2

∂u

∂t2
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CLASSICAL VIEW
Light and matter are treated different

• Light has wave-like behavior

• Matter exists of particles

Problems:

• Hydrogen atom: Electron should fall on nuclues

• Specific energy bands of atomic spectra?

• Electrons can tunnel through potential energy barriers

Quantum mechanics combines both
And solves everything?
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THE SCHRÖDINGER EQUATION

where

• Complex wave function: 

• Laplacian 

• potential energy: 

•  J s

iℏ = − Ψ + V Ψ
∂Ψ
∂t

ℏ2

2m
∇2

Ψ → Ψ(x, y, z, t)

= ∇ ⋅ ∇ = + +∇2 ∂ 2

∂ 2x2
∂ 2

∂y2
∂

∂z2

V → V (x, y, z, t)

ℏ = = 1.055 ×h
2π

10−34
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THE SCHRÖDINGER EQUATION
We will first consider 1D problems:

iℏ = − + V (x, t)Ψ(x, t)
∂Ψ(x, t)

∂t

ℏ2

2m

Ψ(x, t)∂2

∂x2

• The complex wave function  is not observable

• Probability to find particle in  at time  given by :

Ψ(x, t)

x t |Ψ(x, t)|2

P(x ∈ [a, b]) = |Ψ(x, t) dx∫ b

a

|2
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PROBABILISTIC VIEW

P(x ∈ [a, b]) = |Ψ(x, t) dx∫ b

a

|2

11Lecture 01: Introduction to the Schrodinger equation



PROBABILISTIC VIEW: MEASEREMENT PROBLEM
Copenhagen interpretation:

• Before measurement: probability according to 

• Measurement: Wave function collapses to a single state -function

• A�er measurement: -function spreads out again over time.

|Ψ(x, t)|2

⟶ δ

δ
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DOUBLE SLIT EXPERIMENTS:
Typical thought-experiment

• What happens if electron “particles” are fired through a double slit?

• What happens if light at low intensity (single photons) is used?
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DOUBLE SLIT EXPERIMENTS:

• Electrons arrive one by one

• probability to find an electron at coordinates 

• Higher electron densities diffraction pattern: 

• Similar to the intensity of electric waves: 

(x, y, z) ∝ |Ψ(x, y, z)|2

∝ |Ψ(x, y, z)|2

I ∝ E2
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PROBABILITY AND EXPECTATION VALUES

Probability density function :ρ(x)

Expectation value of x

Expectation value of f(x)

⟨x⟩ = x ρ(x) dx∫ ∞

−∞

⟨f(x)⟩ = f(x) ρ(x) dx∫ ∞

−∞
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PROBABILITY AND EXPECTATION VALUES

Probability density function :ρ(x)

Expectation value of x

Expectation value of f(x)

Variance σ2

Standard deviation 

⟨x⟩ = x ρ(x) dx∫ ∞

−∞

⟨f(x)⟩ = f(x) ρ(x) dx∫ ∞

−∞

⟨(Δx ⟩ = (x − ⟨x⟩ ρ(x) dx)2 ∫ ∞

−∞
)2

= ⟨ ⟩ − ⟨xx2 ⟩2

σ = ⟨ ⟩ − ⟨xx2 ⟩2
− −−−−−−−−√

17Lecture 01: Introduction to the Schrodinger equation



NORMALIZATION OF THE WAVE FUNCTION

•  is like the probability density 

• The total probability to find a particle somewhere must be one:

|Ψ(x, t)|2 ρ(x)

|Ψ(x, t) dx = 1∫ ∞

−∞
|2

So wave function :

• Is a solution of the Schrodinger equation

• Must be normalizable

Ψ(x, t)

⟺ |Ψ(x, t) dx exists and is finite∫ ∞

−∞
|2
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NORMALIZATION OF THE WAVE FUNCTION

If  is normalized at  then it is always normalized.Ψ(x, t) t = 0

Follows from the Schrodinger equation (see Griffiths page 15):

|Ψ(x, t) dx = 0
d

dt
∫ ∞

−∞
|2
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EXPECTATION VALUES

What are the particle’s:

• position ?

• velocity  ? or

• momentum  ?

x

v

p = mv

Calculate the expectation (average) values:

Expectation value of x ⟨x⟩ = x |Ψ(x, t) dx∫ ∞

−∞
|2

Expectation value of p = mv m = −iℏ dx
d⟨x⟩
dt

∫ ∞

−∞
Ψ∗ ∂Ψ

∂x
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POSITION AND MOMENTUM OPERATORS

Expectation values are calculated as

Position x ⟨x⟩ = x |Ψ(x, t) dx = [x] Ψ dx∫ ∞

−∞
|2 ∫ ∞

−∞
Ψ∗

Momentum p m = −iℏ dx = [−iℏ ] Ψ dx
d⟨x⟩
dt

∫ ∞

−∞
Ψ∗ ∂Ψ

∂x
∫ ∞

−∞
Ψ∗ ∂

∂x

Position operator = xx̂

Momentum operator = −iℏp̂
∂

∂x
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SCHRODINGER EQUATION WITH OPERATORS

We have the operators:

iℏ = − Ψ + V Ψ
∂Ψ
∂t

ℏ2

2m

∂2

∂x

Position operator = xx̂

Momentum operator = −iℏp̂
∂

∂x

Using operators in the Schrodinger equation:

iℏ Ψ = [−iℏ Ψ + V Ψ = Ψ + V Ψ = ( + )Ψ = Ψ
∂
∂t

1
2m

∂
∂x

]2
p̂2

2m
T̂ V̂ Ĥ
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CORRESPONDENCE PRINCIPLE

• Large systems: Quantum mechanics classical physics

• Ehrenfest’s theorem:

⟶

m ⟨x⟩, ⟨p⟩ = −⟨ ⟩
d

dt

d

dt

∂V (x)
∂x
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UNCERTAINTY RELATION: POSITION
VS. MOMENTUM

• de Broglie relation

• Think about a Gaussian wave pulse in Fourier analysis

▪ Sharp pulses in space are spread out in (momentum) k-space

▪ Sharp pulses in k-space are spread out in space

• Uncertainty of position vs. momentum

p = = (= ℏk)
h

λ

2πℏ
λ

≥σxσp
ℏ
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SUMMARY

• Quantum mechanics is governed by the Schrodinger equation

iℏ = − Ψ + V Ψ
∂Ψ
∂t

ℏ2

2m
∇2

• Similar to our standard wave equation

• But the wave function  is complex-valuedΨ(x, y, z, t)

• Probability density to find a particle |Ψ(x, t) = (x, t) Ψ(x, t)|2 Ψ∗

• “Real” quantities and measurements represented by operators acting on the
wave function
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