

Grading: Each quiz counts for 7.5% of your total grade.

Exam type: Closed-book, all questions can be answered **using only pen and paper**. Calculators, mobile phones, etc. are not allowed to be used during the exam.

The duration of the quiz is 1 hour.

Please fill in all questions listed below. Each of the questions is valued equally in the score calculation of the exam. Please tell if any question is unclear or ambiguous.

Question 1: Operators and Commutators

- (a) Calculate the commutator $[1/x, \hat{p}]$.
- (b) Show that e^{-x^2} is an eigenstate of the operator $\hat{Q} = -\frac{1}{x} \frac{d}{dx}$. Calculate its eigenvalue.

Question 2: Operators in finite dimensional space

Assume that the Hamiltonian operator \hat{H} of a two-level system is represented by the following matrix:

$$H = \begin{pmatrix} 1 & i\sqrt{3} \\ -i\sqrt{3} & -1 \end{pmatrix}, \quad |1\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad |2\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

- (a) Solve the (time-independent) eigenvalue equation $H|\psi\rangle = E|\psi\rangle$ to obtain eigenenergies E_n of the system.
- (b) Then calculate the normalized eigenstates $|\psi_n\rangle$. *Hint:* The eigenstate s should be superpositions of the basis vectors $|1\rangle$ and $|2\rangle$.

Question 3: Dirac notation

Consider the 3-dimensional space with orthonormal basis: $\{|1\rangle, |2\rangle, |3\rangle\}$. Further, kets $|\alpha\rangle$ and $|\beta\rangle$ are given by:

$$|\alpha\rangle = i|1\rangle + |2\rangle - |3\rangle, \quad |\beta\rangle = |1\rangle + |2\rangle$$

- (a) Show that $\langle\alpha|\beta\rangle = \langle\beta|\alpha\rangle^*$.
- (b) Compute the operator $\hat{A} = |\alpha\rangle\langle\beta|$. Represent the operator as a 3×3 matrix in the $\{|1\rangle, |2\rangle, |3\rangle\}$ basis and calculate its elements.