

Grading: Each quiz counts for 7.5% of your total grade.

Exam type: Closed-book, all questions can be answered **using only pen and paper**. Calculators, mobile phones, etc. are not allowed to be used during the exam.

The duration of the quiz is 1 hour.

Please fill in all questions listed below. Each of the questions is valued equally in the score calculation of the exam. Please tell if any question is unclear or ambiguous.

Question 1: Wave functions

Consider the wave function $\psi(x)$ defined with $x \in \mathbb{R}$:

$$\psi(x) = Axe^{-x^2/2}$$

with A a normalization constant.

- (a) First calculate the normalization constant A of the wave function.
- (b) Then calculate the expectation value $\langle x^2 \rangle$.

Question 2: Coefficient expansion

Assume a particle in an infinite well of width L has following wave function at time zero:

$$\Psi(x, 0) = \psi(x) = A \sin\left(\frac{\pi x}{L}\right) \cos\left(\frac{\pi x}{L}\right)$$

- (a) Calculate the normalization constant A .
- (b) The wave function at time zero $\psi(x)$ can be expanded in the stationary states of the infinite well given by $\psi_n(x) = \sqrt{2/L} \sin(n\pi x/L)$. Prove that only one coefficient in the expansion $\psi(x) = \sum_{n=1}^{\infty} c_n \psi_n(x)$ is nonzero (and calculate its value).

Question 3: Infinite well

Assume a particle in an infinite well is in a superposition state $\psi(x) = c_2 \psi_2(x) + c_3 \psi_3(x)$ (at time equal to zero) and has energy $E = 6E_1^{\infty}$, where $E_1^{\infty} = \frac{\hbar^2 \pi^2}{2mL^2}$.

- (a) Express the energy values E_2 and E_3 in energy units of E_1^{∞} .
- (b) Calculate the values of the coefficients c_2 and c_3 .

Hints for questions 2 and 3: The expansion $\psi(x) = \sum_{n=1}^{\infty} c_n \psi_n(x)$ has coefficients:

$$c_n = \int_0^L \psi_n^* \psi dx, \quad \text{where} \quad \sum_{n=1}^{\infty} |c_n|^2 = 1 \quad \text{and} \quad E = \sum_{n=1}^{\infty} |c_n|^2 E_n$$