
PHOT 301: Quantum Photonics
Homework problems 4

Michaël Barbier, Summer (2024-2025)

Problems

Here we list the problems with there final solutions so you can check whether you have
the corrects answers. Some problems ask you to prove a theorem, for these problems, I
write just some extra hints. The problems are from Griffiths 3rd edition. The problems
for this week:

• Textbook Chapter 4: 4.1, 4.2 (you can check with the slides), 4.5, 4.13, 4.15, 4.17,
4.19, 4.21, 4.25, 4.26, 4.30, 4.34, 4.35, 4.37, 4.45, 4.52, 4.53, 4.54, 4.58

Problem 4.1

(a) Work out all of the canonical commutation relations for components of the
operators ̂𝑟 and ̂𝑝: [𝑥, 𝑦], [𝑥, ̂𝑝𝑦], [𝑥, ̂𝑝𝑥], [ ̂𝑝𝑦, ̂𝑝𝑧], and so on. Answer:

[𝑟𝑖, ̂𝑝𝑗] = −[ ̂𝑝𝑖, 𝑟𝑗] = 𝑖ℏ𝛿𝑖𝑗, [𝑟𝑖, 𝑟𝑗] = [ ̂𝑝𝑖, ̂𝑝𝑗] = 0,

where the indices stand for 𝑥, 𝑦, or 𝑧, and 𝑟𝑥 = 𝑥, 𝑟𝑦 = 𝑦, and 𝑟𝑧 = 𝑧.

(b) Confirm the three-dimensional version of Ehrenfest’s theorem,

𝑑⟨ ⃗𝑟⟩
𝑑𝑡 = ⟨ ̂⃗𝑝⟩, 𝑎𝑛𝑑 𝑚𝑑⟨ ̂⃗𝑝⟩

𝑑𝑡 = ⟨−∇𝑉 ⟩.

(Each of these, of course, stands for three equations—one for each component.)
Hint: First check that the “generalized” Ehrenfest theorem, Equation 3.73, is valid in
three dimensions.
(c) Formulate Heisenberg’s uncertainty principle in three dimensions. Answer:

𝜎𝑥𝜎𝑝𝑥
≥ ℏ/2, 𝜎𝑦𝜎𝑝𝑦

≥ ℏ/2, 𝜎𝑧𝜎𝑝𝑧
≥ ℏ/2,

but there is no restriction on, say, 𝜎𝑥𝜎𝑝𝑦
.
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Solution (4.1)

(a) Use a test function 𝑓 ≡ 𝑓(𝑥, 𝑦, 𝑧) to verify the commutator relations.
(b) Look at equation 3.62.

Problem 4.2

Use separation of variables in cartesian coordinates to solve the infinite cubical well (or
“particle in a box”):

𝑉 (𝑥, 𝑦, 𝑧) = { 0,𝑥, 𝑦, 𝑧 all between 0 and 𝑎;
∞,otherwise

(a) Find the stationary states, and the corresponding energies.
(b) Call the distinct energies 𝐸1, 𝐸2, 𝐸3, …, in order of increasing energy. Find 𝐸1, 𝐸2,

𝐸3, 𝐸4, 𝐸5, and 𝐸6. Determine their degeneracies (that is, the number of different
states that share the same energy). Comment: In one dimension degenerate bound
states do not occur (see Problem 2.44), but in three dimensions they are very
common.

(c) What is the degeneracy of 𝐸14, and why is this case interesting?

Solution (4.2)

(a) 𝜓𝑛𝑥,𝑛𝑦,𝑛𝑧
= √8/𝑎3 sin 𝑛𝑥𝜋𝑥

𝑎 sin 𝑛𝑦𝜋𝑦
𝑎 sin 𝑛𝑧𝜋𝑧

𝑎 and 𝐸𝑛𝑥,𝑛𝑦,𝑛𝑧
= ℏ2𝜋2

2𝑚𝑎2 (𝑛2
𝑥 + 𝑛2

𝑦 +
𝑛2

𝑧) = (𝑛2
𝑥 + 𝑛2

𝑦 + 𝑛2
𝑧)𝐸∞

1 .

(b) Expressing energies 𝐸𝑛 in units of 𝐸∞
1 = ℏ2𝜋2

2𝑚𝑎2 :

𝐸1 = 3, 𝐸2 = 6, 𝐸3 = 9, 𝐸4 = 11, 𝐸5 = 12, 𝐸6 = 14.

Degeneracies (number of states with the same energy):

𝑑1 = 1, 𝑑2 = 3, 𝑑3 = 3, 𝑑4 = 3, 𝑑5 = 1, 𝐸6 = 6.

(c) 𝑑14 = 4 whereas normally we expect 1 (𝑛𝑥 = 𝑛𝑦 = 𝑛𝑧), 3 (only two quantum
numbers the same), 6 (all three quantum numbers different 𝑛𝑥 ≠ 𝑛𝑦 ≠ 𝑛𝑧) from
combinatorial reasoning. Check for yourself why this is.
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Problem 4.5

Problem 4.5 Show that

Θ(𝜃) = 𝐴 ln[tan(𝜃/2)]

satisfies the 𝜃 equation (Equation 4.25), for 𝑙 = 𝑚 = 0. This is the unacceptable “second
solution”—what’s wrong with it?

Solution (4.5)

Θ blows up at 𝜃 = 0 and 𝜃 = 𝜋: Θ(𝜃) → ∞ and Θ(𝜋) → ∞. (show this)

Problem 4.15

(a) Find ⟨𝑟⟩ and ⟨𝑟2⟩ for an electron in the ground state of hydrogen. Express your
answers in terms of the Bohr radius.

(b) Find ⟨𝑥⟩ and ⟨𝑥2⟩ for an electron in the ground state of hydrogen. Hint: This
requires no new integration—note that 𝑟2 = 𝑥2 +𝑦2 +𝑧2, and exploit the symmetry
of the ground state.

(c) Find ⟨𝑥2⟩ in the state 𝑛 = 2, 𝑙 = 1, 𝑚 = 1. Hint: this state is not symmetrical in
𝑥, 𝑦, 𝑧. Use 𝑥 = 𝑟 sin 𝜃 cos 𝜙.

Solution (4.15)

(a) ⟨𝑟⟩ = 3
2𝑎 and ⟨𝑟2⟩ = 3𝑎2.

(b) ⟨𝑥⟩ = 0 and ⟨𝑥2⟩ = 𝑎2.

(c) ⟨𝑥2⟩ = 12𝑎2.

Problem 4.17

Calculate ⟨𝑧𝐻̂𝑧⟩, in the ground state of hydrogen. Hint: This takes two pages and six
integrals, or four lines and no integrals, depending on how you set it up. To do it the
quick way, start by noting that [𝑧, [𝐻̂, 𝑧]] = 2𝑧𝐻̂𝑧 − 𝐻̂𝑧2 − 𝑧2𝐻̂. The idea is to reorder
the operators in such a way that 𝐻̂ appears either to the left or to the right, because we
know (of course) what 𝐻̂𝜓100 is.

Solution (4.17)

⟨𝑧𝐻̂𝑧⟩ = 0.
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Problem 4.19

A hydrogenic atom consists of a single electron orbiting a nucleus with 𝑍 protons. (𝑍 = 1
would be hydrogen itself, 𝑍 = 2 is ionized helium, 𝑍 = 3 is doubly ionized lithium, and
so on.) Determine the Bohr energies 𝐸𝑛(𝑍), the binding energy 𝐸1(𝑍), the Bohr radius
𝑎(𝑍), and the Rydberg constant 𝑅(𝑍) for a hydrogenic atom. (Express your answers as
appropriate multiples of the hydrogen values.) Where in the electromagnetic spectrum
would the Lyman series fall (figure 4.10), for 𝑍 = 2 and 𝑍 = 3? Hint: There’s nothing
much to calculate here—in the potential (Equation 4.52) 𝑒2 ⟶ 𝑍𝑒2, so all you have to
do is make the same substitution in all the final results.

Solution (4.19)

Bohr energies 𝐸𝑛(𝑍) = 𝑍2𝐸𝑛,
Binding energy 𝐸1(𝑍) = 𝑍2𝐸1,
Bohr radius 𝑎(𝑍) = 𝑎/𝑍,
Rydberg constant 𝑅(𝑍) = 𝑍2𝑅. The Lyman series for 𝑍 = 2 falls in: 𝜆 ∈ [22.8, 30.4]
nm (ultraviolet).
The Lyman series for 𝑍 = 3 falls in: 𝜆 ∈ [10.1, 13.5] nm (also ultraviolet).

Problem 4.21

The raising and lowering operators change the value of m by one unit:

𝐿+𝑓𝑚
𝑙 = (𝐴𝑚

𝑙 ) 𝑓𝑚+1
𝑙 , 𝐿−𝑓𝑚

𝑙 = (𝐵𝑚
𝑙 ) 𝑓𝑚−1

𝑙

where 𝐴𝑚
𝑙 and 𝐵𝑚

𝑙 are constants. Question: What are they, if the eigenfunctions are to
be normalized? Hint: First show that 𝐿∓ is the hermitian conjugate of 𝐿± (since 𝐿𝑥 and
𝐿𝑦 are observables, you may assume they are hermitian … but prove it if you like); then
use Equation 4.112. Answer:

𝐴𝑚
𝑙 = ℏ√𝑙(𝑙 + 1) − 𝑚(𝑚 + 1) = ℏ√(𝑙 − 𝑚)(𝑙 + 𝑚 + 1),

𝐵𝑚
𝑙 = ℏ√𝑙(𝑙 + 1) − 𝑚(𝑚 − 1) = ℏ√(𝑙 + 𝑚)(𝑙 − 𝑚 + 1).

Note what happens at the top and bottom of the ladder (i.e. when you apply 𝐿+ to 𝑓 𝑙
𝑙 or

𝐿− to 𝑓−𝑙
𝑙 ).

Solution (4.21)

Use Eq. 4.112: 𝐿∓𝐿± = 𝐿2 −𝐿2
𝑧 ∓ℏ𝐿𝑧 and work out: ⟨𝑓𝑚

𝑙 |𝐿∓𝐿±𝑓𝑚
𝑙 ⟩ to obtain the norms

squared ⟨𝐿+𝑓𝑚
𝑙 |𝐿+𝑓𝑚

𝑙 ⟩ and ⟨𝐿−𝑓𝑚
𝑙 |𝐿−𝑓𝑚

𝑙 ⟩.
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Problem 4.25

(a) What is 𝐿+𝑌 𝑙
𝑙 ? (No calculation allowed!)

(b) Use the result of (a), together with Equation 4.130 and the fact that 𝐿𝑧𝑌 𝑙
𝑙 = ℏ𝑙𝑌 𝑙

𝑙 ,
to determine 𝑌 𝑙

𝑙 (𝜃, 𝜙), up to a normalization constant.
(c) Determine the normalization constant by direct integration. Compare your final

answer to what you got in Problem 4.7.

Solution (4.25)

(a) 𝐿+𝑌 𝑙
𝑙 = 0 (why is this?)

(b) 𝑌 𝑙
𝑙 (𝜃, 𝜙) = 𝐴 (𝑒𝑖𝜙 sin 𝜃)

(c) 𝐴 = (−1)𝑙

2𝑙+1 𝑙!√
(2𝑙+1)!

𝜋 .

Problem 4.26

In Problem 4.4 you showed that

𝑌 1
2 (𝜃, 𝜙) = −√15/8𝜋 sin 𝜃 cos 𝜃 𝑒𝑖𝜙.

Apply the raising operator to find 𝑌 2
2 (𝜃, 𝜙). Use Equation 4.121 to get the normaliza-

tion.

Solution (4.26)

𝑌 2
2 = 1

4√ 15
2𝜋 (𝑒𝑖𝜙 sin 𝜃)2.

Problem 4.30

An electron is in the spin state

𝜒 = 𝐴 (3𝑖
4 ) .

(a) Determine the normalization constant A.

(b) Find the expectation values of 𝑆𝑥, 𝑆𝑦, and 𝑆𝑧.

(c) Find the “uncertainties” 𝜎𝑆𝑥
, 𝜎𝑆𝑦

, and 𝜎𝑆𝑧
. Note: These sigmas are standard

deviations, not Pauli matrices!

(d) Confirm that your results are consistent with all three uncertainty principles (Equa-
tion 4.100 and its cyclic permutations—only with 𝑆 in place of 𝐿, of course)
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Solution (4.30)

(a) 𝐴 = 1/5.

(b) ⟨𝑆𝑥⟩ = 0, ⟨𝑆𝑦⟩ = −12
25ℏ, and ⟨𝑆𝑧⟩ = − 7

50ℏ.

(c) 𝜎𝑆𝑥
= ℏ

2 , 𝜎𝑆𝑦
= 7

50ℏ, 𝜎𝑆𝑧
= 12

25ℏ.

(d) Example: 𝜎𝑆𝑥
𝜎𝑆𝑦

= ℏ
2 ⋅ 7

50ℏ ≥ ℏ
2 |⟨𝑆𝑥⟩| = ℏ

2 ⋅ 7
50ℏ, i.e. right at the uncertainty limit.

Show that 𝜎𝑆𝑦
𝜎𝑆𝑧

and 𝜎𝑆𝑧
𝜎𝑆𝑥

also fullfil the uncertainty principle.

Problem 4.34

Construct the spin matrices (𝑆𝑥, 𝑆𝑦, and 𝑆𝑧) for a particle of spin 1. Hint: How many
eigenstates of 𝑆𝑧 are there? Determine the action of 𝑆𝑧 , 𝑆+, and 𝑆− on each of these
states. Follow the procedure used in the text for spin 1/2.

Solution (4.34)

If we choose the three spin states as:

𝜒+ = ⎛⎜
⎝

1
0
0
⎞⎟
⎠

, 𝜒0 = ⎛⎜
⎝

0
1
0
⎞⎟
⎠

, 𝜒− = ⎛⎜
⎝

0
0
1
⎞⎟
⎠

,

Then we can write the spin matrices as:

𝑆𝑥 = ℏ√
2

⎛⎜
⎝

0 1 0
1 0 1
0 1 0

⎞⎟
⎠

, 𝑆𝑦 = 𝑖ℏ√
2

⎛⎜
⎝

0 −1 0
1 0 −1
0 1 0

⎞⎟
⎠

, 𝑆𝑧 = ℏ ⎛⎜
⎝

1 0 0
0 0 0
0 0 −1

⎞⎟
⎠

.

Problem 4.35

In Example 4.3:

(a) If you measured the component of spin angular momentum along the 𝑥 direction,
at time 𝑡, what is the probability that you would get +ℏ/2?

(b) Same question, but for the 𝑦 component.

(c) Same, for the 𝑧 component.
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Solution (4.35)

(a) 𝑃 (𝑥)
+ (𝑡) = 1

2 [1 + sin 𝛼 cos(𝛾𝐵0𝑡)].
(b) 𝑃 (𝑦)

+ (𝑡) = 1
2 [1 − sin 𝛼 cos(𝛾𝐵0𝑡)].

(c) 𝑃 (𝑧)
+ (𝑡) = cos2 𝛼

2 .

Problem 4.37

(a) Apply 𝑆− to |10⟩ (Equation 4.175), and confirm that you get
√

2ℏ|1 − 1⟩.
(b) Apply 𝑆± to |00⟩ (Equation 4.176), and confirm that you get zero.
(c) Show that |11⟩ and |1 − 1⟩ (Equation 4.175) are eigenstates of 𝑆2, with the appro-

priate eigenvalue.

Solution (4.37)

Applying operators 𝑆± to a state with two spins, e.g. | ↑↑⟩, can be split in applying one
operator to the first spin and another one to the second one: 𝑆± = 𝑆(1)

± + 𝑆(2)
± .

Consider the line above Eq. 4.146: 𝑆−| ↑⟩ = ℏ| ↓⟩ and 𝑆−| ↓⟩ = 0.

Problem 4.45

(a) Derive Equation 4.199 from Equation 4.190.

(b) Derive Equation 4.211, starting with Equation 4.210.

Solution (4.45)

(a) Use the identities ∇ ⋅ ⃗𝐴 = 0 and 𝜑 = 0 (see comments after Eq. 4.198).

(b) Apply (−𝑖ℏ∇ − 𝑞 ⃗𝐴) to both sides of Eq. 4.210.

Problem 4.52

(a) Construct the spatial wave function (𝜓) for hydrogen in the state 𝑛 = 3, 𝑙 = 2, 𝑚 = 1.
Express your answer as a function of 𝑟, 𝜃, 𝜙, and 𝑎 (the Bohr radius) only—no
other variables (𝜌, 𝑧, etc.) or functions (𝑌 , 𝑣, etc.), or constants (𝐴, 𝑐0, etc.), or
derivatives, allowed (𝜋 is okay, and 𝑒, and 2, etc.).

(b) Check that this wave function is properly normalized, by carrying out the appropri-
ate integrals over 𝑟, 𝜃, and 𝜙.

(c) Find the expectation value of 𝑟𝑠 in this state. For what range of 𝑠 (positive and
negative) is the result finite?
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Solution (4.52)

(a) 𝜓321 = − 1√𝜋
1

81𝑎7/2 𝑟2𝑒−𝑟/3𝑎 sin 𝜃 cos 𝜃 𝑒𝑖𝜙.

(b) ⟨𝑟𝑠⟩ = (𝑠 + 6)! (3𝑎
2 )𝑠 1

720 which is finite for 𝑠 > −7.

Problem 4.53

(a) Construct the wave function for hydrogen in the state 𝑛 = 4, 𝑙 = 3, 𝑚 = 3. Express
your answer as a function of the spherical coordinates 𝑟, 𝜃, and 𝜙.

(b) Find the expectation value of 𝑟 in this state. (As always, look up any nontrivial
integrals.)

(c) If you could somehow measure the observable 𝐿2
𝑥 + 𝐿2

𝑦 on an atom in this state,
what value (or values) could you get, and what is the probability of each?

Solution (4.53)

(a) 𝜓433 = − 1
6144√𝜋𝑎9/2 𝑟3 𝑒−𝑟/4𝑎 sin2 𝜃 𝑒𝑖3𝜙.

(b) ⟨𝑟⟩ = 18𝑎.

(c) 𝐿2
𝑥 + 𝐿2

𝑦 = 3ℏ2 with probability 1.

Problem 4.54

What is the probability that an electron in the ground state of hydrogen will be found
inside the nucleus?

(a) First calculate the exact answer, assuming the wave function (Equation 4.80) is
correct all the way down to 𝑟 = 0. Let 𝑏 be the radius of the nucleus.

(b) Expand your result as a power series in the small number 𝜖 ≡ 2𝑏/𝑎, and show that
the lowest-order term is the cubic: 𝑃 ≈ (4/3) (𝑏/𝑎)3. This should be a suitable
approximation, provided that 𝑏 ≪ 𝑎 (which it is).

(c) Alternatively, we might assume that 𝜓(𝑟) is essentially constant over the (tiny)
volume of the nucleus, so that 𝑃 ≈ (4/3)𝜋𝑏3|𝜓(0)|2. Check that you get the same
answer this way.

(d) Use 𝑏 ≈ 10−15 m and 𝑎 ≈ 0.5×10−10 m to get a numerical estimate for 𝑃 . Roughly
speaking, this represents the “fraction of its time that the electron spends inside the
nucleus.”
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Solution (4.54)

(a) 𝑃 = 1 − (1 + 2𝑏
𝑎 + 2 𝑏2

𝑎2 ) 𝑒−2𝑏/𝑎.

(b) 𝑃 = 4
3 ( 𝑏

𝑎)3
.

(c) 𝑃 = 1.07 × 10−14.

Problem 4.58

An electron is in the spin state

𝜒 = 𝐴 (1 − 2𝑖
2 ) .

(a) Determine the constant 𝐴 by normalizing 𝜒.

(b) If you measured 𝑆𝑧 on this electron, what values could you get, and what is the
probability of each? What is the expectation value of 𝑆𝑧?

(c) If you measured 𝑆𝑥 on this electron, what values could you get, and what is the
probability of each? What is the expectation value of 𝑆𝑥?

(d) If you measured 𝑆𝑦 on this electron, what values could you get, and what is the
probability of each? What is the expectation value of 𝑆𝑦?

Solution (4.58)

(a) 𝐴 = 1/3.

(b) ℏ
2 with probability 5

9 ; −ℏ
2 with probability 4

9 .
⟨𝑆𝑧⟩ = ℏ

18 .

(c) ℏ
2 with probability 13

18 ; −ℏ
2 with probability 5

18 .
⟨𝑆𝑥⟩ = 2ℏ

9 .

(d) ℏ
2 with probability 17

18 ; −ℏ
2 with probability 1

18 .
⟨𝑆𝑦⟩ = 4ℏ

9 .
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