PHOT 301: Quantum Photonics

Homework problems 4

Michaél Barbier, Summer (2024-2025)

Problems

Here we list the problems with there final solutions so you can check whether you have
the corrects answers. Some problems ask you to prove a theorem, for these problems, I
write just some extra hints. The problems are from Griffiths 3rd edition. The problems
for this week:

o Textbook Chapter 4: 4.1, 4.2 (you can check with the slides), 4.5, 4.13, 4.15, 4.17,
419, 4.21, 4.25, 4.26, 4.30, 4.34, 4.35, 4.37, 4.45, 4.52, 4.53, 4.54, 4.58

Problem 4.1

(a) Work out all of the canonical commutation relations for components of the
operators 7 and p: [z,y], [x,p,], [*,DP.], [Py, D.], and so on. Answer:

[T’mﬁj] = —[131'77“3'] = thd;, [7}';7“3'] = [@iaf’j] =0,

where the indices stand for z, y, or 2, and r, =, r, =y, and r, = 2.

(b) Confirm the three-dimensional version of Ehrenfest’s theorem,

a{F) _ d(p) _
e (p), and m-= = (=VV).

(Each of these, of course, stands for three equations—one for each component.)
Hint: First check that the “generalized” Ehrenfest theorem, Equation 3.73, is valid in

three dimensions.
(c¢) Formulate Heisenberg’s uncertainty principle in three dimensions. Answer:

0,0, > h/2, 0yOp, 2 h/2, 0,0, >h/2,

- p

but there is no restriction on, say, 0,0, .
Y



Solution (4.1)

(a) Use a test function f = f(x,y, 2z) to verify the commutator relations.
(b) Look at equation 3.62.

Problem 4.2

Use separation of variables in cartesian coordinates to solve the infinite cubical well (or
“particle in a box”):

0,x,y, z all between 0 and a;
Viz,y,2) =

oo,otherwise

(a) Find the stationary states, and the corresponding energies.

(b) Call the distinct energies E,, Ey, Fs, ..., in order of increasing energy. Find Ey, F,,
E;, E,, E;, and Eg4. Determine their degeneracies (that is, the number of different
states that share the same energy). Comment: In one dimension degenerate bound
states do not occur (see Problem 2.44), but in three dimensions they are very
common.

(c) What is the degeneracy of F,,, and why is this case interesting?

Solution (4.2)

_ 3 iy N s T TY . on Tz _ K2x2 9 2
(a) Ynynyim, = \/8/a3 sin 7= sin —== sin ~= and  E, . . =350 (n2 +n2 +
2\ _ (2 2 2\ o0
. . . . 0o ﬁ2ﬂ_2 .
(b) Expressing energies E,, in units of £ = 575

Degeneracies (number of states with the same energy):

dlzl, d2:37 d3:3, d4:3, d5:1, E6:6.

(¢) di4 = 4 whereas normally we expect 1 (n, = n, = n,), 3 (only two quantum
numbers the same), 6 (all three quantum numbers different n, # n, # n,) from
combinatorial reasoning. Check for yourself why this is.



Problem 4.5

Problem 4.5 Show that

O(0) = Alnftan(6/2)]

satisfies the 0 equation (Equation 4.25), for [ = m = 0. This is the unacceptable “second
solution”—what’s wrong with it?

Solution (4.5)

O blows up at § = 0 and § = 7: ©(f) — oo and O(7) — oco. (show this)

Problem 4.15

(a) Find {r) and (r?) for an electron in the ground state of hydrogen. Express your
answers in terms of the Bohr radius.

(b) Find (x) and (x2) for an electron in the ground state of hydrogen. Hint: This
requires no new integration—mnote that 2 = 22+ 3%+ 22, and exploit the symmetry
of the ground state.

(c) Find (x?) in the state n = 2,1 = 1,m = 1. Hint: this state is not symmetrical in
x,Yy,z. Use x = rsinf cos ¢.

Solution (4.15)
(a) (r) = 3a and (r?) = 3a>.
(b) {x) =0 and (z?) = a>.

(c) (z%) = 12a>.

Problem 4.17

Calculate (zﬁ z), in the ground state of hydrogen. Hint: This takes two pages and six
integrals, or four lines and no integrals, depending on how you set it up. To do it the
quick way, start by noting that [z, [H, z]] = 2:Hz — Hz? — 2> H. The idea is to reorder
the operators in such a way that H appears either to the left or to the right, because we
know (of course) what H1ygq is.

Solution (4.17)

(zHz) = 0.



Problem 4.19

A hydrogenic atom consists of a single electron orbiting a nucleus with Z protons. (Z =1
would be hydrogen itself, Z = 2 is ionized helium, Z = 3 is doubly ionized lithium, and
so on.) Determine the Bohr energies E, (Z), the binding energy E,(Z), the Bohr radius
a(Z), and the Rydberg constant R(Z) for a hydrogenic atom. (Express your answers as
appropriate multiples of the hydrogen values.) Where in the electromagnetic spectrum
would the Lyman series fall (figure 4.10), for Z = 2 and Z = 37 Hint: There’s nothing
much to calculate here—in the potential (Equation 4.52) €2 — Ze?, so all you have to
do is make the same substitution in all the final results.

Solution (4.19)

Bohr energies E, (Z) = Z°E,,,

Binding energy E1(Z) = Z2E},

Bohr radius a(Z) = a/Z,

Rydberg constant R(Z) = Z?R. The Lyman series for Z = 2 falls in: \ € [22.8,30.4]
nm (ultraviolet).

The Lyman series for Z = 3 falls in: A € [10.1,13.5] nm (also ultraviolet).

Problem 4.21

The raising and lowering operators change the value of m by one unit:

L f™ =A™t L_fm = (B !

where A" and B[ are constants. Question: What are they, if the eigenfunctions are to
be normalized? Hint: First show that L is the hermitian conjugate of L (since L, and
L, are observables, you may assume they are hermitian .. but prove it if you like); then
use Equation 4.112. Answer:

AP = W11+ 1) —m(m+1) = h/(I —m)(I +m + 1),
B" =h/l(l+1)—m(m—1) =h/(+m)(l—m+1).

Note what happens at the top and bottom of the ladder (i.e. when you apply L to fll or
L_to fh).

Solution (4.21)

Use Eq. 4.112: L. L, = L?*— L2FhL, and work out: (f/"|L+L, f™) to obtain the norms
squared (L, f"[L, f) and (L f"[L° ).



Problem 4.25
(a) What is L, Y}'? (No calculation allowed!)
(b) Use the result of (a), together with Equation 4.130 and the fact that L,Y}! = AlY},
to determine Y}(6, ¢), up to a normalization constant.

(c¢) Determine the normalization constant by direct integration. Compare your final
answer to what you got in Problem 4.7.

Solution (4.25)
(a) L Y} =0 (why is this?)

(b) Y (0,0) = A(e'sind)

(C) A= (—1)! (21+1)! .

PIET T

Problem 4.26
In Problem 4.4 you showed that

Y3 (0,¢) = —\/15/87 sin  cos 0 .

Apply the raising operator to find Y£(6,¢). Use Equation 4.121 to get the normaliza-
tion.

Solution (4.26)

Y3 =1,/22 (e"sin 0)2.

Problem 4.30

An electron is in the spin state

31
x=A4A ( 4) .
(a) Determine the normalization constant A.

(b) Find the expectation values of S, S,, and S,.

(c) Find the “uncertainties” og , 0g , and og . Note: These sigmas are standard
x Y z
deviations, not Pauli matrices!

(d) Confirm that your results are consistent with all three uncertainty principles (Equa-
tion 4.100 and its cyclic permutations—only with S in place of L, of course)



Solution (4.30)
(a) A=1/5.

(b) (S,) =0, (S,) =—32h, and (S,) = —5h.

_h _ T __ 12
(C) O-Sm_i’ Og —%h, Usz—%h.

(d) Example: 05,05, = b.Eh>101(S,)| =% Lh, ie. right at the uncertainty limit.

NS

Show that og 0g and og o4 also fullfil the uncertainty principle.
Y z z x

Problem 4.34
Construct the spin matrices (S, S,, and S,) for a particle of spin 1. Hint: How many

eigenstates of S, are there? Determine the action of S, , S, and S_ on each of these
states. Follow the procedure used in the text for spin 1/2.

Solution (4.34)

If we choose the three spin states as:

S Y

Then we can write the spin matrices as:

A (O 1 0) i (0 —1 0) (1 0 0)
S.,=—11 0 1 S, =—11 0 -1 S,=h]|0 0 0 |.
T ’ Y ’ z

V2 010 V2 0 1 0 0 0 —1

Problem 4.35

In Example 4.3:

(a) If you measured the component of spin angular momentum along the x direction,
at time ¢, what is the probability that you would get +h/27?

(b) Same question, but for the y component.

(c) Same, for the z component.



Solution (4.35)

1 + sin awcos(yByt)].
1 — sin o cos(yByt)].

N[ N
—_— —

Problem 4.37

(a) Apply S_ to |10) (Equation 4.175), and confirm that you get v/2h|1 — 1).
(b) Apply S, to |00) (Equation 4.176), and confirm that you get zero.

(c) Show that |11) and |1 — 1) (Equation 4.175) are eigenstates of S, with the appro-
priate eigenvalue.

Solution (4.37)

Applying operators S, to a state with two spins, e.g. | 11), can be split in applying one
operator to the first spin and another one to the second one: S, = S? + Sf).
Consider the line above Eq. 4.146: S_| 1) =h| ]) and S_| |) = 0.

Problem 4.45
(a) Derive Equation 4.199 from Equation 4.190.

(b) Derive Equation 4.211, starting with Equation 4.210.

Solution (4.45)

(a) Use the identities V- A = 0 and ¢ = 0 (see comments after Eq. 4.198).

(b) Apply (—ihV — gA) to both sides of Eq. 4.210.

Problem 4.52

(a) Construct the spatial wave function (1) for hydrogen in the state n = 3,1 = 2, m = 1.
Express your answer as a function of 7, 6, ¢, and a (the Bohr radius) only—mno
other variables (p, z, etc.) or functions (Y, v, etc.), or constants (A, ¢y, etc.), or
derivatives, allowed (7 is okay, and e, and 2, etc.).

(b) Check that this wave function is properly normalized, by carrying out the appropri-
ate integrals over r, 0, and ¢.

(c) Find the expectation value of r° in this state. For what range of s (positive and
negative) is the result finite?



Solution (4.52)

1

1 _
(a) 39y = ~ /R Bla? re /3

sin @ cos 6 e'?.

(b) (r*) = (s +6)! (%)S 7710 which is finite for s > —7.

Problem 4.53

(a) Construct the wave function for hydrogen in the state n = 4,1 = 3, m = 3. Express
your answer as a function of the spherical coordinates r, 6, and ¢.

(b) Find the expectation value of r in this state. (As always, look up any nontrivial
integrals.)

(c) If you could somehow measure the observable L2 + Lz on an atom in this state,
what value (or values) could you get, and what is the probability of each?

Solution (4.53)

_ 1 3 _—r/da o;n2 3
(a) ¢433——W7" e / S11n 96 ¢)

(b) (r) = 18a.

(¢) L3 + L2 = 3h? with probability 1.

Problem 4.54

What is the probability that an electron in the ground state of hydrogen will be found
inside the nucleus?

(a) First calculate the exact answer, assuming the wave function (Equation 4.80) is
correct all the way down to r = 0. Let b be the radius of the nucleus.

(b) Expand your result as a power series in the small number € = 2b/a, and show that
the lowest-order term is the cubic: P = (4/3)(b/a). This should be a suitable
approximation, provided that b < a (which it is).

(c) Alternatively, we might assume that t(r) is essentially constant over the (tiny)
volume of the nucleus, so that P ~ (4/3)7b3|(0)|2. Check that you get the same
answer this way.

(d) Use b~ 1071 m and a ~ 0.5 x 1071% m to get a numerical estimate for P. Roughly
speaking, this represents the “fraction of its time that the electron spends inside the
nucleus.”



Solution (4.54)

(a) 1— (1+242%) e/
3
(b) P=5(2)

() P=1.07 x 10714,

P
P

Problem 4.58

An electron is in the spin state

1—24
)
(a) Determine the constant A by normalizing .

(b) If you measured S, on this electron, what values could you get, and what is the
probability of each? What is the expectation value of S,?

(c) If you measured S, on this electron, what values could you get, and what is the
probability of each? What is the expectation value of 5,7

(d) If you measured S, on this electron, what values could you get, and what is the
probability of each? What is the expectation value of S,?

Solution (4.58)

(a) A=1/3.
(b) % with probability 3; —% with probability 3.
_ h
(¢) % with probability 13; —2 with probability
5 probability 73; —3 with probability |g.
__ 2h
(d) g with probability %; —g with probability %.
(S,) =3
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