
PHOT 301: Quantum Photonics
Homework problems 3

Michaël Barbier, Summer (2024-2025)

Problems

Here we list the problems with there final solutions so you can check whether you have
the corrects answers. Some problems ask you to prove a theorem, for these problems, I
write just some extra hints. The problems are from Griffiths 3rd edition. The problems
for this week:

• Chapter 2: 2.31, 2.34, 2.41, 2.53 (please see the previous solutions file)
• Chapter 3: 3.1, 3.4, 3.7, 3.10, 3.12, 3.14, 3.19, 3.25, 3.26, 3.33, 3.44

Problem 3.1

(a) Show that the set of all square-integrable functions is a vector space (refer to
Section A.1 for the definition). Hint: The main point is to show that the sum of
two square-integrable functions is itself square-integrable. Use Equation 3.7. Is the
set of all normalized functions a vector space?

(b) Show that the integral in Equation 3.6 satisfies the conditions for an inner product
(Section A.2).

Solution (3.1)

(a) The set of all normalized functions does not form a vector space. Think about
simple counter-examples: which normalized function represents the zero-vector? Is
the sum of two normalized functions again a normalized function?

(b) Use the fact that integration is a linear operation.
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Problem 3.4

(a) Show that the sum of two hermitian operators is hermitian.

(b) Suppose 𝑄̂ is hermitian, and 𝛼 is a complex number. Under what condition (on 𝛼)
is 𝛼𝑄̂ hermitian?

(c) When is the product of two hermitian operators hermitian?

(d) Show that the position operator ̂𝑥 and the Hamiltonian operator 𝐻̂ = − ℏ2
2𝑚

𝑑2
𝑑𝑥2 +

𝑉 (𝑥) are hermitian.

Solution (3.4)

(b) When 𝛼 is real.

(c) The product of two operators ̂𝐴𝐵̂ is hermitian when they commute: [ ̂𝐴, 𝐵̂] = 0.

(d) To prove that ⟨𝐻̂𝑓|𝑔⟩ = ⟨𝑓|𝐻̂𝑔⟩, use integration by parts twice and make use of the
fact that 𝑓 and 𝑔 are zero at 𝑥 = ±∞ (the boundary integrals vanish).

Problem 3.7

(a) Suppose that 𝑓(𝑥) and 𝑔(𝑥) are two eigenfunctions of an operator 𝑄̂, with the same
eigenvalue 𝑞. Show that any linear combination of 𝑓 and 𝑔 is itself an eigenfunction
of 𝑄̂, with eigenvalue 𝑞.

(b) Check that 𝑓(𝑥) = exp(𝑥) and 𝑔(𝑥) = exp(−𝑥) are eigenfunctions of the operator
𝑑2/𝑑𝑥2, with the same eigenvalue. Construct two linear combinations of 𝑓 and 𝑔
that are orthogonal eigenfunctions on the interval (−1, 1).

Solution (3.7)

(a) Define ℎ(𝑥) = 𝑎𝑓(𝑥) + 𝑏𝑔(𝑥) and start with 𝑄̂ℎ(𝑥) = 𝑄̂(𝑎𝑓(𝑥) + 𝑏𝑔(𝑥)) = ….

(b) For the new orthogonal eigenfunctions: Try to make even and odd linear combina-
tions.

Problem 3.10

Is the ground state of the infinite square well an eigenfunction of momentum? If so, what
is its momentum? If not, why not? [For further discussion, see Problem 3.34.]
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Solution (3.10)

The ground state of the infinite square well is not an eigenfunction of the momentum
operator.

Problem 3.12

Find Φ(𝑝, 𝑡) for the free particle in terms of the function 𝜙(𝑘) introduced in Equation
2.101. Show that for the free particle |Φ(𝑝, 𝑡)|2 is independent of time. Comment: the
time independence of |Φ(𝑝, 𝑡)|2 for the free particle is a manifestation of momentum
conservation in this system.

Solution (3.12)

Fill in 𝑘 = 𝑝/ℏ in Eq. 2.101 and identify Φ(𝑝, 𝑡) from Eq. 3.55.

Problem 3.14

(a) Prove the following commutator identities:

[ ̂𝐴 + 𝐵̂, ̂𝐶] = [ ̂𝐴, ̂𝐶] + [𝐵̂, ̂𝐶]

[ ̂𝐴𝐵̂, ̂𝐶] = [ ̂𝐴, 𝐵̂] 𝐶 + [ ̂𝐴, ̂𝐶] 𝐵̂

(b) Show that

[𝑥𝑛, ̂𝑝] = 𝑖ℏ𝑛𝑥𝑛−1

(c) Show more generally that

[𝑓(𝑥), ̂𝑝] = 𝑖ℏ𝑑𝑓(𝑥)
𝑑𝑥 ,

for any function 𝑓(𝑥) that admits a Taylor series expansion.

(d) Show that for the simple harmonic oscillator:

[𝐻̂, ̂𝑎±] = ±ℏ𝜔 ̂𝑎±

Hint: Use Equation 2.54.
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Solution (3.14)

For (b) and (c) use a test function 𝑔(𝑥).
For (d): Express the Hamiltonian with ladder operators, and afterwards make use of Eq.
2.56.

Problem 3.19

Use Equation 3.73 (or Problem 3.18 (c) and (d)) to show that:

(a) For any (normalized) wave packet representing a free particle (𝑉 (𝑥) = 0), ⟨𝑥⟩ moves
at constant velocity (this is the quantum analog to Newton’s first law). Note: You
showed this for a gaussian wave packet in Problem 2.42, but it is completely general.

(b) For any (normalized) wave packet representing a particle in the harmonic oscillator
potential 𝑉 (𝑥) = 1

2𝑚𝜔2𝑥2, ⟨𝑥⟩ oscillates at the classical frequency. Note: You
showed this for a particular gaussian wave packet in Problem 2.49, but it is com-
pletely general.

Solution (3.19)

(a) From Eq. 1.38 (Ehrenfest’s theorem), one can show that ⟨ ̂𝑝⟩ should be a constant.
Apply then the generalized Ehrenfest’s theorem in Eq. 3.73, with the position
operator 𝑄̂ = ̂𝑥.

(b) In a similar manner as in (a) you can show that the expectation value for the position
operator in an harmonic oscillator equals:

𝑑⟨𝑥⟩
𝑑𝑥2 = −𝜔2⟨𝑥⟩

with known oscillating solutions: ⟨𝑥⟩ = 𝐴 sin(𝜔𝑡) + 𝐵 cos(𝜔𝑡)

Problem 3.25

The Hamiltonian for a certain two-level system is

𝐻̂ = 𝜖(|1⟩⟨1| − |2⟩⟨2| + |1⟩⟨2| + |2⟩⟨1|),

where |1⟩, |2⟩ is an orthonormal basis and 𝜖 is a number with the dimensions of energy.
Find its eigenvalues and eigenvectors (as linear combinations of |1⟩ and |2⟩). What is the
matrix 𝐻 representing 𝐻̂ with respect to this basis?
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Solution (3.25)

When using the vector representation in ℝ2, we can write the orthonormal basis-vectors
and the Hamiltonian matrix as follows:

𝐻 = 𝜖 (1 1
1 −1) , |1⟩ = (1

0) , |2⟩ = (0
1)

Write the linear combinations as |𝜓⟩ = 𝑐1|1⟩ + 𝑐2|2⟩. Eigenenergies 𝐸 = ±
√

2𝜖 and
eigenstates |𝜓±⟩ = 𝑐1[|1⟩ + (±

√
2 − 1)|2⟩]

Problem 3.26

Consider a three-dimensional vector space spanned by an orthonormal basis |1⟩, |2⟩, |3⟩.
Kets |𝛼⟩ and |𝛽⟩ are given by

|𝛼⟩ = 𝑖|1⟩ − 2|2⟩ − 𝑖|3⟩, |𝛽⟩ = 𝑖|1⟩ + 2|3⟩.

(a) Construct ⟨𝛼| and ⟨𝛽| (in terms of the dual basis ⟨1|, ⟨2|, ⟨3|).
(b) Find ⟨𝛼|𝛽⟩ and �𝛽|𝛼�, and confirm that ⟨𝛽|𝛼⟩ = ⟨𝛼|𝛽⟩∗.
(c) Find all nine matrix elements of the operator ̂𝐴 ≡ |𝛼⟩⟨𝛽|, in this basis, and construct

the matrix 𝐴. Is it hermitian?

Solution (3.26)

(a) ⟨𝛼| = −𝑖⟨1| − 2⟨2| + 𝑖⟨3|; ⟨𝛽| = −𝑖⟨1| + 2⟨3|.

(b) ⟨𝛼|𝛽⟩ = 1 + 2𝑖 and ⟨𝛽|𝛼⟩ = 1 − 2𝑖 = ⟨𝛼|𝛽⟩∗

(c) The matrix 𝐴 is not Hermitian and is given by:

⎛⎜
⎝

1 0 2𝑖
2𝑖 0 −4
−1 0 −2𝑖

⎞⎟
⎠

Problem 3.33

Sequential measurements. An operator ̂𝐴, representing observable 𝐴, has two (normal-
ized) eigenstates 𝜓1 and 𝜓2, with eigenvalues 𝑎1 and 𝑎2, respectively. Operator 𝐵̂, rep-
resenting observable 𝐵̂, has two (normalized) eigenstates 𝜑1 and 𝜑2, with eigenvalues 𝑏1
and 𝑏2. The eigenstates are related by

𝜓1 = (3𝜑1 + 4𝜑2)/5, 𝜓2 = (4𝜑1 − 3𝜑2)/5.
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(a) Observable 𝐴 is measured, and the value 𝑎1 is obtained. What is the state of the
system (immediately) after this measurement?

(b) If 𝐵 is now measured, what are the possible results, and what are their probabilities?

(c) Right after the measurement of 𝐵, 𝐴 is measured again. What is the probability
of getting 𝑎1? (Note that the answer would be quite different if I had told you the
outcome of the 𝐵 measurement.)

Solution (3.33)

(a) 𝜓1

(b) 𝑏1 with probability 9/25, and 𝑏2 with probability 16/25.

(c) Probability to get 𝑎1 right after the measurement of 𝐵: ( 9
25)2 + (16

25)2 = 337
625 .

Problem 3.44

The Hamiltonian for a certain three-level system is represented by the matrix

𝐻 = ⎛⎜
⎝

𝑎 0 𝑏
0 𝑐 0
𝑏 0 𝑎

⎞⎟
⎠

where 𝑎, 𝑏, and 𝑐 are real numbers.

(a) If the system starts out in the state

|𝑆(0)⟩ = ⎛⎜
⎝

0
1
0
⎞⎟
⎠

,

what is |𝑆(𝑡)⟩?

(b) If the system starts out in the state

|𝑆(0)⟩ = ⎛⎜
⎝

1
0
0
⎞⎟
⎠

,

what is |𝑆(𝑡)⟩?

6



Solution (3.44)

(a) |𝑆(0)⟩ is an eigenvector and

|𝑆(𝑡)⟩ = 𝑒−𝑖𝑐𝑡/ℏ ⎛⎜
⎝

0
1
0
⎞⎟
⎠

.

(b) |𝑆(0)⟩ is a combination of eigenvectors and

|𝑆(𝑡)⟩ = 𝑒−𝑖𝑎𝑡/ℏ ⎛⎜
⎝

cos(𝑏𝑡/ℏ)
0

−𝑖 sin(𝑏𝑡/ℏ)
⎞⎟
⎠

.
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