
PHOT 301: Quantum Photonics
Homework problems 2

Michaël Barbier, Summer (2024-2025)

Problems

Here we list the problems with there final solutions so you can check whether you have
the corrects answers. Some problems ask you to prove a theorem, for these problems, I
write just some extra hints. The problems are from Griffiths 3rd edition. The problems
for this week:

• Chapter 2: 2.11, 2.13, 2.14, 2.17, 2.18, 2.25, (2.31, 2.34, 2.41, 2.53)

Since we didn’t reach the end of the Chapter this week, the last four exercises are post-
poned to week 3.

Problem 2.11

(a) Compute ⟨𝑥⟩, ⟨ ̂𝑝⟩, ⟨𝑥2⟩, and ⟨ ̂𝑝2⟩, for the states 𝜓0 (Equation 2.60) and 𝜓1 (Equation
2.63), by explicit integration. Comment: In this and other problems involving the
harmonic oscillator it simplifies matters if you introduce the variable 𝜉 ≡ √𝑚𝜔

ℏ 𝑥
and the constant 𝛼 ≡ (𝑚𝜔

𝜋ℏ )1/4.
(b) Check the uncertainty principle for these states.
(c) Compute ⟨ ̂𝑇 ⟩ and ⟨𝑉 ⟩ for these states. (No new integration allowed!) Is their sum

what you would expect?

Solution (2.11)

(a) ⟨𝑥⟩ = 0 and ⟨ ̂𝑝⟩ = 0 for both 𝜓0 and 𝜓1.

𝑛 = 0 ∶ ⟨𝑥2⟩ = ℏ
2𝑚𝜔 ⟨ ̂𝑝2⟩ = 𝑚ℏ𝜔

2
𝑛 = 1 ∶ ⟨𝑥2⟩ = 3ℏ

2𝑚𝜔 ⟨ ̂𝑝2⟩ = 3𝑚ℏ𝜔
2

(b) The eigenstates fulfill the uncertainty relation 𝜎𝑥𝜎𝑝 ≥ ℏ
2 :
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𝑛 = 0 ∶ 𝜎𝑥𝜎𝑝 = ℏ
2 = ℏ

2
𝑛 = 1 ∶ 𝜎𝑥𝜎𝑝 = 3ℏ

2 ≥ ℏ
2

(c) The results for the kinetic and potential energy are:

𝑛 = 0 ∶ ⟨ ̂𝑇 ⟩ = 1
4ℏ𝜔 ⟨𝑉 ⟩ = 1

4ℏ𝜔 ⟨ ̂𝑇 ⟩ + ⟨𝑉 ⟩ = 1
2ℏ𝜔 = 𝐸0

𝑛 = 1 ∶ ⟨ ̂𝑇 ⟩ = 3
4ℏ𝜔 ⟨𝑉 ⟩ = 3

4ℏ𝜔 ⟨ ̂𝑇 ⟩ + ⟨𝑉 ⟩ = 3
2ℏ𝜔 = 𝐸1

Problem 2.13

A Particle in the harmonic oscillator potential starts out in the state Ψ(𝑥, 0) = 𝐴[3𝜓0(𝑥)+
4𝜓1(𝑥)].

(a) Find 𝐴.
(b) Construct Ψ(𝑥, 𝑡) and |Ψ(𝑥, 𝑡)|2 . Don’t get too excited if |Ψ(𝑥, 𝑡)|2 oscillates at

exactly the classical frequency; what would it have been had I specified 𝜓2(𝑥),
instead of 𝜓1(𝑥)?

(c) Find ⟨𝑥⟩ and ⟨ ̂𝑝⟩. Check that Ehrenfest’s theorem (Equation 1.38) holds, for this
wave function.

(d) If you measured the energy of this particle, what values might you get, and with
what probabilities?

Solution (2.13)

(a) 𝐴 = 1/5.

(b) Ψ(𝑥, 𝑡) = 1
5 [3𝜓0𝑒−𝑖𝜔𝑡 + 4𝜓1𝑒−3𝑖𝜔𝑡/2] and |Ψ(𝑥, 𝑡)|2 = 1

25 [9𝜓2
0 + 16𝜓2

1 +
24𝜓0𝜓1 cos(𝜔𝑡)].
In case one picks 𝜓2 instead of 𝜓1 then the frequency would double 𝜔 ⟶ 2𝜔.

(c) ⟨𝑥⟩ = 24
25√ ℏ

2𝑚𝜔 cos(𝜔𝑡) and ⟨ ̂𝑝⟩ = −24
25√𝑚𝜔ℏ

2 sin(𝜔𝑡).

(d) Possible values for the energy are:

𝐸0 = 1
2ℏ𝜔, with probability |𝑐0|2 = 9/25,

𝐸1 = 3
2ℏ𝜔, with probability |𝑐1|2 = 16/25,
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Problem 2.14

In the ground state of the harmonic oscillator, what is the probability (correct to three
significant digits) of finding the particle outside the classically allowed region? Hint:
Classically, the energy of an oscillator is 𝐸 = 1

2𝑘𝑎2 = 1
2𝑚𝜔2𝑎2 , where 𝑎 is the amplitude.

So the “classically allowed region” for an oscillator of energy 𝐸 extends from −√2𝐸/𝑚𝜔2

to √2𝐸/𝑚𝜔2. Look in a math table under “Normal Distribution” or “Error Function”
for the numerical value of the integral, or evaluate it by computer.

Solution (2.14)

𝑃outside = 0.157

Problem 2.17

Show that [𝐴𝑒𝑖𝑘𝑥 + 𝐵𝑒−𝑖𝑘𝑥] and [𝐶 cos 𝑘𝑥 + 𝐷 sin 𝑘𝑥] are equivalent ways of writing the
same function of 𝑥, and determine the constants 𝐶 and 𝐷 in terms of 𝐴 and 𝐵, and
vice versa. Comment: In quantum mechanics, when 𝑉 = 0, the exponentials represent
traveling waves, and are most convenient in discussing the free particle, whereas sines
and cosines correspond to standing waves, which arise naturally in the case of the infinite
square well.

Solution (2.17)

𝐶 = 𝐴 + 𝐵; 𝐷 = 𝑖(𝐴 − 𝐵) and 𝐴 = 1
2(𝐶 − 𝑖𝐷); 𝐵 = 1

2(𝐶 + 𝑖𝐷)

Problem 2.18

Find the probability current, 𝐽 (Problem 1.14) for the free particle wave function Equation
2.95. Which direction does the probability flow?

Solution (2.18)

𝐽 = ℏ𝑘
𝑚 |𝐴|2 which is in the positive x-direction.

Problem 2.25

Check that the bound state of the delta-function well (Equation 2.132) is orthogonal to
the scattering states (Equations 2.134 and 2.135)
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Solution (2.25)

For wave functions 𝑓(𝑥) and 𝑔(𝑥) to be orthogonal the integral ∫+∞
−∞ 𝑓∗(𝑥)𝑔(𝑥) 𝑑𝑥 becomes

0. We can write the integral as follows:

√𝑚𝛼
ℏ [∫

0

−∞
𝑒𝑚𝛼𝑥(𝐴𝑒𝑖𝑘𝑥 + 𝐵𝑒−𝑖𝑘𝑥) 𝑑𝑥 + ∫

+∞

0
𝑒−𝑚𝛼𝑥(𝐹𝑒𝑖𝑘𝑥 + 𝐺𝑒−𝑖𝑘𝑥) 𝑑𝑥]

Then by performing the integral and applying boundary conditions for the relations be-
tween 𝐴, 𝐵, 𝐹 , and 𝐺, the integral can shown to be zero.

Problem 2.31

The Dirac delta function can be thought of as the limiting case of a rectangle of area 1,
as the height goes to infinity and the width goes to zero. Show that the delta- function
well (Equation 2.117) is a “weak” potential (even though it is infinitely deep), in the
sense that 𝑧0 ⟶ 0. Determine the bound state energy for the delta-function potential,
by treating it as the limit of a finite square well. Check that your answer is consistent
with Equation 2.132. Also show that Equation 2.172 reduces to Equation 2.144 in the
appropriate limit.

Solution (2.31)

Start with the formula for 𝑧0 = 𝑎
ℏ√2𝑚𝑉0 for the finite well, then take the limit for the

width of the well 2𝑎 going to zero while the area 2𝑎𝑉0 is constant. Show that this limit
is zero.

Afterwards, notice that any “crossing” in the graphical representation of the trancendental
equation is at small 𝑧 because 𝑧0 is small. For small 𝑧 you can simplify the trancendental
equation resulting in energy 𝐸 = −𝑚𝛼2

2ℏ2 similar to the delta-function potential well.

Problem 2.34

Consider the “step” potential:

𝑉 (𝑥) = {0, 𝑥 ≤ 0, 𝑉0, 𝑥 > 0.

(a) Calculate the reflection coefficient, for the case 𝐸 < 𝑉 0, and comment on the
answer.

(b) Calculate the reflection coefficient for the case 𝐸 > 𝑉 0.
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(c) For a potential (such as this one) that does not go back to zero to the right of the
barrier, the transmission coefficient is not simply |𝐹 |2/|𝐴|2 (with 𝐴 the incident
amplitude and 𝐹 the transmitted amplitude), because the transmitted wave travels
at a different speed. Show that:

𝑇 = √𝐸 − 𝑉0
𝐸

|𝐹 |2
|𝐴|2 ,

for 𝐸 > 𝑉0. Hint: You can figure it out using Equation 2.99, or—more elegantly, but less
informatively—from the probability current (Problem 2.18). What is 𝑇 , for 𝐸 < 𝑉0?
(d) For 𝐸 > 𝑉0, calculate the transmission coefficient for the step potential, and check
that 𝑇 + 𝑅 = 1.

Solution (2.34)

Assume that the wave function before the step 𝜓(𝑥 ≤ 0) = 𝐴𝑒𝑖𝑘𝑥 + 𝐵𝑒−𝑖𝑘𝑥 and after the
step 𝜓(𝑥 ≥ 0) = 𝐹𝑒𝑖𝑘𝑥.

(a) For energy 𝐸 < 𝑉0: 𝑅 = |𝐵|2/|𝐴|2 = 1

(b) For energy 𝐸 > 𝑉0: 𝑅 = (
√

𝐸−√𝐸−𝑉0)4

𝑉 2
0

(c) Consider that the phase velocity of the incident wave 𝑣𝑖 is different from the one
of the transmitted wave 𝑣𝑡, after the step (see Eq. 2.98), and the probability to
transmit is therefore also proportional to the ratio 𝑣𝑡/𝑣𝑖.
Alternatively use the probability current, see problem 2.18.

(d) Use the expression of (c) and apply continuity of 𝜓(𝑥) and its derivative 𝜓′(𝑥) to
extract:

𝑇 = 4
√

𝐸√𝐸 − 𝑉0(
√

𝐸 − √𝐸 − 𝑉0)2

𝑉 2
0

Then use the above 𝑇 , and 𝑅 from (b) to show that 𝑇 + 𝑅 = 1.

Problem 2.41

Find the allowed energies of the half harmonic oscillator

𝑉 (𝑥) =
⎧{
⎨{⎩

1
2𝑚𝜔2𝑥2, 𝑥 > 0,

∞, 𝑥 < 0.

(This represents, for example, a spring that can be stretched, but not compressed.) Hint:
This requires some careful thought, but very little actual calculation.
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Solution (2.41)

The allowed energies are corresponding to odd solutions:

𝐸𝑛 = (𝑛 + 1/2)ℏ𝜔, 𝑛 = 1, 3, 5, …

Problem 2.53

The Scattering Matrix. The theory of scattering generalizes in a pretty obvious way to
arbitrary localized potentials (Figure 2.21). To the left (Region I), 𝑉 (𝑥) = 0, so:

𝜓(𝑥) = 𝐴𝑒𝑖𝑘𝑥 + 𝐵𝑒−𝑖𝑘𝑥

To the right (Region III), V (x) is again zero, so

𝜓(𝑥) = 𝐹𝑒𝑖𝑘𝑥 + 𝐺𝑒−𝑖𝑘𝑥

In between (Region II), of course, I can’t tell you what 𝜓 is until you specify the potential,
but because the Schrödinger equation is a linear, second-order differential equation, the
general solution has got to be of the form

𝜓(𝑥) = 𝐶𝑓(𝑥) + 𝐷𝑔(𝑥),

where 𝑓(𝑥) and 𝑔(𝑥) are two linearly independent particular solutions. There will be four
boundary conditions (two joining Regions I and II, and two joining Regions II and III).
Two of these can be used to eliminate 𝐶 and 𝐷, and the other two can be “solved” for 𝐵
and 𝐹 in terms of 𝐴 and 𝐺:

𝐵 = 𝑆11𝐴 + 𝑆12𝐺, 𝐹 = 𝑆21𝐴 + 𝑆22𝐺.

The four coefficients 𝑆𝑖𝑗, which depend on 𝑘 (and hence on 𝐸), constitute a 2×2 matrix 𝑆,
called the scattering matrix (or 𝑆-matrix, for short). The 𝑆-matrix tells you the outgoing
amplitudes (𝐵 and 𝐹 ) in terms of the incoming amplitudes (𝐴 and 𝐺):

(𝐵
𝐹) = (𝑆11 𝑆12

𝑆21 𝑆22
) (𝐴

𝐺)

In the typical case of scattering from the left, 𝐺 = 0, so the reflection and transmission
coefficients are

𝑅𝑙 = |𝐵|2
|𝐴|2 ∣

𝐺=0
= |𝑆11|2, 𝑇𝑙 = |𝐹 |2

|𝐴|2 ∣
𝐺=0

= |𝑆21|2,

For scattering from the right, 𝐴 = 0, and
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𝑅𝑟 = |𝐹 |2
|𝐺|2 ∣

𝐴=0
= |𝑆22|2, 𝑇𝑟 = |𝐵|2

|𝐺|2 ∣
𝐴=0

= |𝑆12|2,

(a) Construct the S-matrix for scattering from a delta-function well (Equation 2.117).
(b) Construct the S-matrix for the finite square well (Equation 2.148). Hint: This

requires no new work, if you carefully exploit the symmetry of the problem

Solution (2.53)

(a) S-matrix for scattering from a delta-function well:

𝑆 = 1
1 − 𝑖𝛽 (𝑖𝛽 1

1 𝑖𝛽) .

(b) S-matrix for the finite square well:

𝑆 = 𝑒−2𝑖𝑘𝑎

cos(2𝑙𝑎) − 𝑖𝑘2+𝑙2
2𝑘𝑙 sin(2𝑙𝑎)

(𝑖 𝑙2−𝑘2
2𝑘𝑙 sin(2𝑙𝑎) 1

1 𝑖 𝑙2−𝑘2
2𝑘𝑙 sin(2𝑙𝑎)) .
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