
PHOT 301: Quantum Photonics
Homework problems 1

Michaël Barbier, Summer (2024-2025)

Problems

Here we list the problems with there final solutions so you can check whether you have
the corrects answers. Some problems ask you to prove a theorem, for these problems, I
write just some extra hints. The problems are from Griffiths 3rd edition. The problems
for this week:

• Chapter 1: 1.1, 1.2, 1.3, 1.5, 1.8
• Chapter 2: 2.1(c), 2.3, 2.4, 2.5, 2.7

Problem 1.1

For the distribution of ages in the example in Section 1.3.1:

(a) Compute ⟨𝑗2⟩ and ⟨𝑗⟩2.
(b) Determine Δ𝑗 for each 𝑗, and use Equation 1.11 to compute the standard deviation.
(c) Use your results in (a) and (b) to check Equation 1.12.

Solution (1.1)

(a) ⟨𝑗2⟩ = 459.6 and ⟨𝑗⟩2 = 441.
(b) Standard deviation 𝜎 = 4.3.
(c) 4.3 = ⟨(Δ𝑗)2⟩ =

√
18.6?

Problem 1.2

(a) Find the standard deviation of the distribution in Example 1.2.
(b) What is the probability that a photograph, selected at random, would show a dis-

tance x more than one standard deviation away from the average?
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Solution (1.2)

(a) Standard deviation 𝜎 = 2
3

√
5 ℎ.

(b) 1 − √1
3(1 + 2/

√
5) + √1

3(1 − 2/
√

5).

Problem 1.3

Consider the gaussian distribution

𝜌(𝑥) = 𝐴𝑒−𝜆(𝑥−𝑎)2,

where 𝐴, 𝑎, and 𝜆 are positive real constants. (The necessary integrals are inside the back
cover.)

(a) Use Equation 1.16 to determine 𝐴.
(b) Find ⟨𝑥⟩, ⟨𝑥2⟩, and 𝜎.
(c) Sketch the graph of 𝜌(𝑥).

Solution (1.3)

(a) 𝐴 = √𝜆/𝜋.
(b) ⟨𝑥⟩ = 𝑎, ⟨𝑥2⟩ = 1

2𝜆 + 𝑎2, and 𝜎 = 1√
2𝜆 .

(c) Bell curve at 𝑥 = 𝑎 and maximum 𝜌(𝑎) = 𝐴.

Problem 1.5

Consider the wave function

Ψ(𝑥, 𝑡) = 𝐴𝑒−𝜆|𝑥|𝑒−𝑖𝜔𝑡,

where 𝐴, 𝜆, and 𝜔 are positive real constants. (We’ll see in Chapter 2 for what potential
(V) this wave function satisfies the Schrödinger equation.) (a) Normalize Ψ. (b) Determine
the expectation values of 𝑥 and 𝑥2 . (c) Find the standard deviation of 𝑥. Sketch the
graph of |Ψ|2, as a function of 𝑥, and mark the points (⟨𝑥⟩+𝜎) and (⟨𝑥⟩−𝜎), to illustrate
the sense in which 𝜎 represents the “spread” in x. What is the robability that the particle
would be found outside this range?

Solution (1.5)

(a) 𝐴 =
√

𝜆.
(b) ⟨𝑥⟩ = 0, ⟨𝑥2⟩ = 1

2𝜆2 .
(c) 𝜎 = 1√

2𝜆 . 𝑃(|𝑥| > 𝜎) = 𝑒−𝜆.
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Problem 1.8

Suppose you add a constant 𝑉0 to the potential energy (by “constant” I mean independent
of 𝑥 as well as 𝑡). In classical mechanics this doesn’t change anything, but what about
quantum mechanics? Show that the wave function picks up a time-dependent phase
factor: exp(−𝑖𝑉0𝑡/ℏ). What effect does this have on the expectation value of a dynamical
variable?

Solution (1.8)

No effect.

Problem 2.1(c)

Prove theorem (c): If 𝑉 (𝑥) is an even function (that is, 𝑉 (−𝑥) = 𝑉 (𝑥)) then 𝜓(𝑥) can
always be taken to be either even or odd. Hint: If 𝜓(𝑥) satisfies Equation 2.5, for a given 𝐸,
so too does 𝜓(−𝑥), and hence also the even and odd linear combinations 𝜓(𝑥)±𝜓(−𝑥).

Partial solution (2.1c)

Prove via considering 𝜓±(𝑥) = 𝜓(𝑥) ± 𝜓(−𝑥) and 𝜓 can always be written as a linear
combination of them 𝜓±(𝑥).

Problem 2.3

Show that there is no acceptable solution to the (time-independent) Schrödinger equation
for the infinite square well with 𝐸 = 0 or 𝐸 < 0. (This is a special case of the general
theorem in Problem 2.2, but this time do it by explicitly solving the Schrödinger equation,
and showing that you cannot satisfy the boundary conditions.)

Solution (2.3)

• For 𝐸 = 0 the solution is 𝜓(𝑥) = 𝐴𝑥 + 𝐵, prove then that 𝐴 and 𝐵 are zero due to
the boundary conditions 𝜓(0) = 𝜓(𝑎) = 0.

• For 𝐸 < 0 the solution can be written as 𝜓(𝑥) = 𝐴 sinh(𝜅𝑥) + 𝐵 cosh(𝜅𝑥) (alter-
natively use 𝜓(𝑥) = 𝐴𝑒𝜅𝑥 + 𝐵𝑒−𝜅𝑥). Prove then that 𝐴 and 𝐵 are zero due to the
boundary conditions 𝜓(0) = 𝜓(𝑎) = 0.

Problem 2.4

Calculate ⟨𝑥⟩, ⟨𝑥2⟩, ⟨𝑝⟩, ⟨𝑝2⟩, 𝜎𝑥, and 𝜎𝑝, for the nth stationary state of the infinite square
well. Check that the uncertainty principle is satisfied. Which state comes closest to the
uncertainty limit?
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Solution (2.4)

⟨𝑥⟩ = 𝑎
2, ⟨𝑥2⟩ = 𝑎2 (1

3 − 1
2𝜋2𝑛2 ) ,

⟨𝑝⟩ = 0, ⟨𝑝2⟩ = 2𝑚𝐸𝑛 = ℏ2𝜋2𝑛2

𝑎2 ,

𝜎𝑥 = 𝑎 √ 1
12 − 1

2𝜋2𝑛2 , 𝜎𝑝 = ℏ𝜋𝑛
𝑎

𝜎𝑥𝜎𝑝 = ℏ
2

√𝜋2𝑛2

3 − 2 > ℏ
2 , and smallest when in ground state 𝑛 = 1

Problem 2.5

A particle in the infinite square well has as its initial wave function an even mixture of
the first two stationary states:

Ψ(𝑥, 0) = 𝐴[𝜓1(𝑥) + 𝜓2(𝑥)].

(a) Normalize Ψ(𝑥, 0). (That is, find 𝐴. This is very easy, if you exploit the orthonor-
mality of 𝜓1(𝑥) and 𝜓2(𝑥). Recall that, having normalized Ψ at 𝑡 = 0, you can rest
assured that it stays normalized—if you doubt this, check it explicitly after doing
part (b).)

(b) Find Ψ(𝑥, 𝑡) and |Ψ(𝑥, 𝑡)|2. Express the latter as a sinusoidal function of time, as
in Example 2.1. To simplify the result, let 𝜔 ≡ 𝜋2ℏ

2𝑚𝑎2 .
(c) Compute ⟨𝑥⟩. Notice that it oscillates in time. What is the angular frequency of the

oscillation? What is the amplitude of the oscillation? (If your amplitude is greater
than 𝑎/2, go directly to jail.)

(d) Compute ⟨𝑝⟩. (As Peter Lorre would say, “Do it ze kveek vay, Johnny!”)
(e) If you measured the energy of this particle, what values might you get, and what

is the probability of getting each of them? Find the expectation value of ℋ. How
does it compare with 𝐸1 and 𝐸2?

Solution (2.5)

(a) 𝐴 = 1√
2 .

(b) Ψ(𝑥, 𝑡) = 1√𝑎 𝑒−𝑖𝜔𝑡 [sin 𝜋𝑥
𝑎 + sin 𝜋𝑥

𝑎 𝑒−𝑖3𝜔𝑡].
|Ψ(𝑥, 𝑡)|2 = 1

𝑎 [sin2 (𝜋𝑥
𝑎 ) + sin2 (2𝜋𝑥

𝑎 ) + 2 sin (𝜋𝑥
𝑎 ) sin (2𝜋𝑥

𝑎 ) cos(3𝜔𝑡)].
(c) ⟨𝑥⟩ = 𝑎

2 [1 − 32
9𝜋2 cos(3𝜔𝑡)], where the Amplitude is 𝑎

2
32

9𝜋2 < 𝑎
2 and the angular

frequency 3𝜔 = 3𝐸1/ℏ = 3ℏ𝜋2
2𝑚𝑎2

(d) ⟨𝑝⟩ = 8ℏ
3𝑎 sin(3𝜔𝑡).

(e) ⟨𝐻̂⟩ = 5
2 𝐸1 = 5

2
ℏ2𝜋2
2𝑚𝑎2
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Problem 2.7

A particle in the infinite square well has the initial wave function

Ψ(𝑥, 0) = { 𝐴𝑥, 0 ≤ 𝑥 ≤ 𝑎/2,
𝐴(𝑎 − 𝑥), 𝑎/2 ≤ 𝑥 ≤ 𝑎.

(a) Sketch Ψ(𝑥, 0), and determine the constant 𝐴.
(b) Find Ψ(𝑥, 𝑡).
(c) What is the probability that a measurement of the energy would yield the value 𝐸1

?
(d) Find the expectation value of the energy, using Equation 2.21.

Solution (2.7)

(a) The sketch is a isosceles triangle with base from 𝑥 = 0 to 𝑥 = 𝑎 and top 𝐴𝑎/2.
Normalization constant 𝐴 = 2

√
3√

𝑎3

(b) Ψ(𝑥, 𝑡) = ∑𝑛 𝑐𝑛𝜓𝑛(𝑥) 𝑒−𝑖𝑛2𝐸1𝑡/ℏ with 𝑐𝑛 = 4
√

6
𝑛2𝜋2 sin (𝑛𝜋

2 ). Notice that 𝑐𝑛 ≠ 0 only
when 𝑛 = 1, 3, 5, …. Therefore:

Ψ(𝑥, 𝑡) = √2
𝑎

4
√

6
𝜋2 ∑

𝑛=1,3,5,…

1
𝑛2 (−1)(𝑛−1)/2 sin (𝑛𝜋𝑥

𝑎 ) 𝑒−𝑖𝑛2𝐸1𝑡/ℏ

(c) 𝑃(𝐸1) = |𝑐1|2 = 16⋅6
𝜋4

(d) ⟨𝐻̂⟩ = 6ℏ2
𝑚𝑎2 .
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