
PHOT 301: Quantum Photonics
Homework: Solving Systems of Equations

Michaël Barbier, Summercourse (2024-2025)

A system of equations

Examples of systems of equations:

⎧{
⎨{⎩

4𝑥 − 𝑦 + 3𝑧 = 5
12𝑥 + 𝑦 + 𝑧 = −2

2𝑥 − 1𝑧 = 1

⎧{
⎨{⎩

2𝑥2 − 𝑥 + 2 = 0
3𝑥2 + 𝑥 = 0
2𝑥 − 1 = 0

{ sin(𝑥) + 5 cos(𝑥) = 3
2 sin(𝑥) − 2 cos(𝑥) = 1

Where you can imagine that we have independent variables 𝑥, 𝑦, 𝑧, or polynomials in 𝑥
or linear independent functions sin(𝑥), cos(𝑥). We can convert each of these systems of
equations in independent variables to matrix equations:

⎛⎜
⎝

4 −1 3
12 1 1
2 0 −1

⎞⎟
⎠

⎛⎜
⎝

𝑥
𝑦
𝑧
⎞⎟
⎠

= ⎛⎜
⎝

5
−2
1

⎞⎟
⎠

, ⎛⎜
⎝

2 −1 2
3 1 0
0 2 −1

⎞⎟
⎠

⎛⎜
⎝

𝑥2

𝑥
1

⎞⎟
⎠

= ⎛⎜
⎝

0
0
0
⎞⎟
⎠

, (1 5
2 −2) (sin(𝑥)

cos(𝑥)) = (3
1)

In general we can write a system of equations with coefficients 𝑎𝑖𝑗 for the 𝑖th equation
and 𝑗 corresponding to the variable 𝑥𝑗. The values on the right-hand-side are denoted 𝑏𝑖.
This system of equations corresponds then to a matrix system 𝐴 ⃗𝑥 = ⃗𝑏:

⎧{
⎨{⎩

𝑎11𝑥1 + 𝑎12𝑥2 + 𝑎13𝑥3 = 𝑏1
𝑎21𝑥1 + 𝑎22𝑥2 + 𝑎23𝑥3 = 𝑏2
𝑎31𝑥1 + 𝑎32𝑥2 + 𝑎33𝑥3 = 𝑏3

⇔ ⎛⎜
⎝

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

⎞⎟
⎠

⎛⎜
⎝

𝑥1
𝑥2
𝑥3

⎞⎟
⎠

= ⎛⎜
⎝

𝑏1
𝑏2
𝑏3

⎞⎟
⎠
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Solving a system of equations

Suppose a simple example system in two variables:

{ 2𝑥 − 𝑦 = 1
3𝑥 + 𝑦 = −2 Solutions: 𝑥 = −1

5, 𝑦 = −7
5

There are multiple ways to solve a system of equations:

Solving via substitution:

{ 2𝑥 − 𝑦 = 1
3𝑥 + 𝑦 = −2 ⇒ { 𝑦 = 2𝑥 − 1

3𝑥 + (2𝑥 − 1) = −2 ⇒ {𝑦 = 2𝑥 − 1
5𝑥 = −1 ⇒

⎧{
⎨{⎩

𝑦 = −2
5 − 1

𝑥 = −1
5

⇒
⎧{
⎨{⎩

𝑦 = −7
5

𝑥 = −1
5

which gives the solutions above. We can also solve the system by using the matrix nota-
tion:

(2 −1
3 1 ) (𝑥

𝑦) = ( 1
−2) ⇒ (𝑥

𝑦) = (2 −1
3 1 )

−1
( 1

−2)

Solving using the inverse matrix:

(2 −1
3 1 ) (𝑥

𝑦) = ( 1
−2) ⇒ (𝑥

𝑦) = (2 −1
3 1 )

−1
( 1

−2) =
( 1 1

−3 2)

5 ( 1
−2) = 1

5 (−1
−7)

Where we used the definition of the inverse of a 2 × 2 matrix:

(𝑎 𝑏
𝑐 𝑑)

−1
= 1

𝑎𝑑 − 𝑐𝑑 ( 𝑑 −𝑏
−𝑐 𝑎 )

Solving via Cramer’s rule:

Cramer’s rule uses the definition of the general inverse to simplify and directly solve the
system (we color-coded the columns to better understand what is going on):

(𝑎11 𝑎12
𝑎21 𝑎22

) (𝑥
𝑦) = (𝑏1

𝑏2
) ⇒ 𝑥 =

∣𝑏1 𝑎12
𝑏2 𝑎22

∣

∣𝑎11 𝑎12
𝑎21 𝑎22

∣
, 𝑦 =

∣𝑎11 𝑏1
𝑎21 𝑏2

∣

∣𝑎11 𝑎12
𝑎21 𝑎22

∣

The extension to larger systems is similar:

2



⎛⎜
⎝

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

⎞⎟
⎠

⎛⎜
⎝

𝑥
𝑦
𝑧
⎞⎟
⎠

= ⎛⎜
⎝

𝑏1
𝑏2
𝑏3

⎞⎟
⎠

⇒ 𝑥 =
∣
𝑏1 𝑎12 𝑎13
𝑏2 𝑎22 𝑎13
𝑏3 𝑎32 𝑎33

∣

det[𝐴] , 𝑦 =
∣
𝑎11 𝑏1 𝑎13
𝑎21 𝑏2 𝑎23
𝑎31 𝑏3 𝑎33

∣

det[𝐴] 𝑧 =
∣
𝑎11 𝑎12 𝑏1
𝑎21 𝑎22 𝑏2
𝑎31 𝑎32 𝑏3

∣

det[𝐴]

where

det[𝐴] = ∣
𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

∣

Solving via Gaussian elimination

Gaussian elimination is based on applying three elementary row operations:

• Swapping two rows (e.g. 𝑅1 ↔ 𝑅2),
• Multiplying a row by a nonzero number (e.g. 2𝑅3),
• Adding a multiple of one row to another row (e.g. 𝑅2 − 3 𝑅1).

Using these operations one can bring a matrix always in the form of a upper triangular
matrix (echelon form) and from there in a reduced row echelon form where the
leading nonzero elements are equal to one. Let’s take the following system of equations
as example:

⎛⎜
⎝

4 −1 3
12 1 1
2 0 −1

⎞⎟
⎠

⎛⎜
⎝

𝑥
𝑦
𝑧
⎞⎟
⎠

= ⎛⎜
⎝

5
−2
1

⎞⎟
⎠

,

To solve it we first bring it in the augmented matrix form, basically we add the right-
hand-side ⃗𝑏 as an extra column:

⎡⎢
⎣

4 −1 3 5
12 1 1 −2
2 0 −1 1

⎤⎥
⎦

Then we use the above three rules to transform the matrix into an upper triangular matrix.
We start with the first column:

⎡⎢
⎣

4 −1 3 5
12 1 1 −2
2 0 −1 1

⎤⎥
⎦

𝑅2−3 𝑅1−−−−−→ ⎡⎢
⎣

4 −1 3 5
0 4 −8 −17
2 0 −1 1

⎤⎥
⎦

𝑅3− 1
2 𝑅1−−−−−→ ⎡⎢

⎣

4 −1 3 5
0 4 −8 −17
0 1/2 −5/2 −3/2

⎤⎥
⎦
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Then we continue with the second column:

𝑅2↔𝑅3−−−−→ ⎡⎢
⎣

4 −1 3 5
0 1/2 −5/2 −3/2
0 4 −8 −17

⎤⎥
⎦

𝑅3−8 𝑅2−−−−−→ ⎡⎢
⎣

4 −1 3 5
0 1/2 −5/2 −3/2
0 0 2 −5

⎤⎥
⎦

Ending up with a upper triangular matrix form. This could now be solved by substitution,
but we can also continue to the reduced row echelon form:

1
4 𝑅1−−−→ ⎡⎢

⎣

1 −1/4 3/4 5/4
0 1/2 −5/2 −3/2
0 0 2 −5

⎤⎥
⎦

2 𝑅2−−→ ⎡⎢
⎣

1 −1/4 3/4 5/4
0 1 −5 −3
0 0 2 −5

⎤⎥
⎦

1
2 𝑅3−−−→ ⎡⎢

⎣

1 −1/4 3/4 5/4
0 1 −5 −3
0 0 1 −5/2

⎤⎥
⎦

𝑅1+ 1
4 𝑅2−−−−−→ ⎡⎢

⎣

1 0 −1/2 1/2
0 1 −5 −3
0 0 1 −5/2

⎤⎥
⎦

𝑅2+5 𝑅3−−−−−→ ⎡⎢
⎣

1 0 −1/2 1/2
0 1 0 −14
0 0 1 −5/2

⎤⎥
⎦

𝑅1+ 1
2 𝑅3−−−−−→ ⎡⎢

⎣

1 0 0 −3/4
0 1 0 −14
0 0 1 −5/2

⎤⎥
⎦

Resulting in the solution: 𝑥 = −3/4, 𝑦 = −14, and 𝑧 = −5/2.

Obtaining the inverse matrix via Gaussian elimination

Above we saw that applying the appropriate sequence of elementary row operations we
can reach to the unit matrix for the first 3 columns (representing matrix 𝐴 in 𝐴𝑥 = 𝑏).
Thereby 𝑏 was transformed along and we obtained the values for the solution 𝑥 = −3/4,
𝑦 = −14, and 𝑧 = −5/2.

If we put now instead of 𝑏 the unit matrix 𝟙 then we can find the inverse matrix. The
idea is that we apply the same sequence of elementary matrices 𝐸𝑗 to both 𝐴 and 𝟙 in
the equation 𝐴𝑥 = 𝟙𝑏:

(𝐸𝑁 … 𝐸1)𝐴 𝑥 = (𝐸𝑁 … 𝐸1)𝟙 𝑏
⇒ 𝟙 𝑥 = (𝐸𝑁 … 𝐸1) 𝑏
⇒ 𝐴−1𝐴 𝑥 = 𝐴−1𝟙 𝑏

We can use the following augmented matrix to perform the elementary row operations on
both 𝐴 and the unit matrix:

⎡⎢
⎣

4 −1 3 1 0 0
12 1 1 0 1 0
2 0 −1 0 0 1

⎤⎥
⎦
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