PHOT 301: Quantum Photonics

Homework: Finite dimensional spaces and Dirac bra-ket notation

Michaél Barbier, Summercourse (2024-2025)

Inner/outer products, bra’s and kets

When we have a finite basis, i.e. our wavefunction lives in a finite n-dimensional Hilbert
space, then this space is bijective isometric with R™ and we can always represent the
wavefunction as a vector with n components. For example:
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In matrix formalism a ket |b) is represented by a column vector and a bra (al| is a row
vector. We can transform a ket into a bra by taking the Hermitian adjoint, this means
transposing the vector and taking the complex conjugate of the elements:
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The inner product (a|b) becomes a matrix product of a row vector with a column vector,
while an outer product |b){a| is a product of a column with a row vector (resulting in
a matrix). Assume in the following that kets |a) = (a;,ay,a3)" and [b) = (by, by, bs)*
exist:
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Exercises on inner(outer) products, perform the below exercises with following defini-
tions:
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Projection operator

Using bra-ket notation the projection operator can be simple defined, for normalized |a)
as an outer product:

The projection operator projects any other vector |b) onto the direction of |a):
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Exercises on the projection operator, perform the below exercises with following defini-

tions:
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