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Inner/outer products, bra’s and kets

When we have a finite basis, i.e. our wavefunction lives in a finite 𝑛-dimensional Hilbert
space, then this space is bijective isometric with ℝ𝑛 and we can always represent the
wavefunction as a vector with 𝑛 components. For example:
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In matrix formalism a ket |𝑏⟩ is represented by a column vector and a bra ⟨𝑎| is a row
vector. We can transform a ket into a bra by taking the Hermitian adjoint, this means
transposing the vector and taking the complex conjugate of the elements:
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The inner product ⟨𝑎|𝑏⟩ becomes a matrix product of a row vector with a column vector,
while an outer product |𝑏⟩⟨𝑎| is a product of a column with a row vector (resulting in
a matrix). Assume in the following that kets |𝑎⟩ = (𝑎1, 𝑎2, 𝑎3)⟂ and |𝑏⟩ = (𝑏1, 𝑏2, 𝑏3)⟂
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Exercises on inner(outer) products, perform the below exercises with following defini-
tions:
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⟨𝑎|𝑐⟩ = ⟨𝑑|1⟩ = ⟨1|𝑐⟩ =

|𝑎⟩⟨𝑎|𝑐⟩ = |1⟩⟨𝑑| = ⟨𝑐|1⟩⟨1|𝑐⟩ =

|𝑑⟩⟨𝑏|2⟩ = |2⟩⟨1| = ⟨𝑎|𝑎⟩|𝑑⟩⟨𝑐| =

(|𝑎⟩ + |𝑏⟩)⟨𝑐| = ⟨2|1⟩⟨𝑏| − ⟨𝑑| = |1⟩†⟨𝑏|𝑏⟩∗ =

Projection operator

Using bra-ket notation the projection operator can be simple defined, for normalized |𝛼⟩
as an outer product:

̂𝑃𝛼 = |𝛼⟩⟨𝛼|

The projection operator projects any other vector |𝑏⟩ onto the direction of |𝛼⟩:

̂𝑃𝛼|𝑏⟩ = (⟨𝛼|𝑏⟩) |𝛼⟩

Exercises on the projection operator, perform the below exercises with following defini-
tions:
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̂𝑃𝛼|1⟩ = ̂𝑃𝛼|2⟩ =

̂𝑃𝛼|𝑎⟩ = ̂𝑃1|𝑐⟩ =

̂𝑃2 ̂𝑃1|1⟩ = ̂𝑃1 ̂𝑃𝛼|𝑐⟩ =

̂𝑃1 ̂𝑃2(|𝑎⟩ + |𝑏⟩ − |𝑐⟩) = ̂𝑃1(|𝑎⟩ + |𝑏⟩ − |𝑐⟩) =

̂𝑃1|𝑐⟩ + ̂𝑃2|𝑐⟩ = ⟨𝑏| ̂𝑃1|𝑏⟩ =

⟨1| ̂𝑃1|1⟩ = ⟨1| ̂𝑃𝛼|1⟩ =
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