PHOT 301: Quantum Photonics
LECTURE 25
Michaël Barbier, Fall semester (2024-2025)
Classical description of matter:
How can we describe matter with Quantum mechanics?
Molecules consist of multiple atoms:
\[ \hat{H} = \frac{\hat{p}^2}{2m} + \hat{V}_1 + \hat{V}_2 \]
Eigenstates atomic orbitals:
\[ \begin{aligned} (\frac{\hat{p}^2}{2m} + \hat{V}_1) | 1 \rangle &= \varepsilon_0 \,| 1 \rangle\\ (\frac{\hat{p}^2}{2m} + \hat{V}_2) | 2 \rangle &= \varepsilon_0 \,| 2 \rangle\\ \end{aligned} \]
Assume Linear Combination of Atomic Orbitals:
\[ |\psi\rangle = \phi_1\, |1\rangle + \phi_2\, |2\rangle \]
with \(\phi_j\) amplitude of jth atom orbital and \(\langle 1| 2\rangle = 0\)
\[ \begin{aligned} \hat{H} |\psi\rangle &= E |\psi\rangle = \phi_1 E |1\rangle + \phi_2 E |2\rangle\\ \end{aligned} \]
Multiply to the left with bra’s \(\langle 1 |\) and \(\langle 2 |\)
\[ \begin{aligned} E \phi_1 = \phi_1 \langle 1|\hat{H}|1\rangle + \phi_2 \langle 1|\hat{H}|2\rangle\\ E \phi_2 = \phi_2 \langle 2|\hat{H}|1\rangle + \phi_2 \langle 2|\hat{H}|2\rangle\\ \end{aligned} \]
This gives us a new Hamiltonian
\[ \Longrightarrow \begin{pmatrix} \langle 1|\hat{H}|1\rangle & \langle 1|\hat{H}|2\rangle\\ \langle 2|\hat{H}|1\rangle & \langle 2|\hat{H}|2\rangle\\ \end{pmatrix} \begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix} = E \begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix} \]
\[ \Longrightarrow \begin{pmatrix} \langle 1|\hat{H}|1\rangle & \langle 1|\hat{H}|2\rangle\\ \langle 2|\hat{H}|1\rangle & \langle 2|\hat{H}|2\rangle\\ \end{pmatrix} \begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix} = E \begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix} \]
\[ \Longrightarrow \begin{pmatrix} E_0 & -t\\ -t & E_0\\ \end{pmatrix} \begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix} = E \begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix} \]
\[ E_\pm = E_0 \mp t, \quad \qquad \psi_\pm = \frac{1}{\sqrt{2}}(| 1\rangle \pm | 2 \rangle ) \]
\[ \begin{pmatrix} E_0 & -t\\ -t & E_0\\ \end{pmatrix} \begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix} = E \begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix} \]
\[ E_\pm = E_0 \mp t \]
\[ \psi_\pm = \frac{1}{\sqrt{2}}(| 1\rangle \pm | 2 \rangle ) \]
Lecture 25: Molecules and Tight-binding method