PHOT 301: Quantum Photonics

LECTURE 25

Michaël Barbier, Fall semester (2024-2025)

Quantum Mechanics of Matter

Types of Matter

  • Materials:
    • single atoms,
    • molecules,
    • crystalline materials,
    • amorphous materials
  • Materials can consist of many atoms

Classical description of matter:

  • Continuum approximation: volumes with properties
    • Electric/heat conductivity
    • Elasticity, mass, etc.

How can we describe matter with Quantum mechanics?

Matter: Single Atoms

  • Materials:
    • single atoms,
    • molecules,
    • crystalline materials,
    • amorphous materials
  • Materials consist of many atoms

Matter: Multiple Atoms

  • Materials:
    • single atoms,
    • molecules,
    • crystalline materials,
    • amorphous materials
  • Materials can consist of many atoms
  • Describing electrons in matter:
    • (Relative) positions of the nuclei
    • Positions of the electrons
    • Interactions between all nuclei and all electrons

Matter: Multiple Atoms

  • Materials:
    • single atoms,
    • molecules,
    • crystalline materials,
    • amorphous materials
  • Materials can consist of many atoms
  • Describing electrons in matter:
    • (Relative) positions of the nuclei
    • Positions of the electrons
    • Interactions between all nuclei and all electrons

Matter: Molecules

  • Materials:
    • single atoms,
    • molecules,
    • crystalline materials,
    • amorphous materials


  • Covalent bonds
  • Electronic interactions
  • Configuration in space
  • Vibrations

Molecules consist of multiple atoms:

Matter: Large molecules

  • Materials:
    • single atoms,
    • molecules,
    • crystalline materials,
    • amorphous materials


  • Covalent bonds
  • Electronic interactions
  • Configuration in space
  • Vibrations

Covalent bonds

  • Superposition of orbitals: \(sp^2\)-hybridization
    • Orbitals in the plane
    • s-orbital is now symmetric with p-orbitals
  • Improved orbital overlap/access to all electrons


  • \(\sigma\)-bonds: Strong overlap between \(sp^2\)-hybridized orbitals
  • \(\pi\)-bonds: Less overlap between \(p_z\)-orbitals but also in the plane

Tight-binding / LCAO

  • Tight-binding method assumes electrons close to nuclei
  • Wave functions are Linear Combinations of Atomic Orbitals (LCAO)
  • Example of a molecule with two atoms:

\[ \hat{H} = \frac{\hat{p}^2}{2m} + \hat{V}_1 + \hat{V}_2 \]

Eigenstates atomic orbitals:

\[ \begin{aligned} (\frac{\hat{p}^2}{2m} + \hat{V}_1) | 1 \rangle &= \varepsilon_0 \,| 1 \rangle\\ (\frac{\hat{p}^2}{2m} + \hat{V}_2) | 2 \rangle &= \varepsilon_0 \,| 2 \rangle\\ \end{aligned} \]

Tight-binding / LCAO

Assume Linear Combination of Atomic Orbitals:

\[ |\psi\rangle = \phi_1\, |1\rangle + \phi_2\, |2\rangle \]

with \(\phi_j\) amplitude of jth atom orbital and \(\langle 1| 2\rangle = 0\)

\[ \begin{aligned} \hat{H} |\psi\rangle &= E |\psi\rangle = \phi_1 E |1\rangle + \phi_2 E |2\rangle\\ \end{aligned} \]

Multiply to the left with bra’s \(\langle 1 |\) and \(\langle 2 |\)

\[ \begin{aligned} E \phi_1 = \phi_1 \langle 1|\hat{H}|1\rangle + \phi_2 \langle 1|\hat{H}|2\rangle\\ E \phi_2 = \phi_2 \langle 2|\hat{H}|1\rangle + \phi_2 \langle 2|\hat{H}|2\rangle\\ \end{aligned} \]

This gives us a new Hamiltonian

\[ \Longrightarrow \begin{pmatrix} \langle 1|\hat{H}|1\rangle & \langle 1|\hat{H}|2\rangle\\ \langle 2|\hat{H}|1\rangle & \langle 2|\hat{H}|2\rangle\\ \end{pmatrix} \begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix} = E \begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix} \]

Tight-binding / LCAO

\[ \Longrightarrow \begin{pmatrix} \langle 1|\hat{H}|1\rangle & \langle 1|\hat{H}|2\rangle\\ \langle 2|\hat{H}|1\rangle & \langle 2|\hat{H}|2\rangle\\ \end{pmatrix} \begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix} = E \begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix} \]

  • The diagonal elements \(\langle j|\hat{H}|j\rangle = E_0\) represent the onsite energy
  • The off-diagonal elements \(\langle 1|\hat{H}|2\rangle = -t\) represent the hopping term

\[ \Longrightarrow \begin{pmatrix} E_0 & -t\\ -t & E_0\\ \end{pmatrix} \begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix} = E \begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix} \]

  • This eigenvalue equation has eigenvalues/eigenstates:

\[ E_\pm = E_0 \mp t, \quad \qquad \psi_\pm = \frac{1}{\sqrt{2}}(| 1\rangle \pm | 2 \rangle ) \]

Tight-binding

\[ \begin{pmatrix} E_0 & -t\\ -t & E_0\\ \end{pmatrix} \begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix} = E \begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix} \]

\[ E_\pm = E_0 \mp t \]

\[ \psi_\pm = \frac{1}{\sqrt{2}}(| 1\rangle \pm | 2 \rangle ) \]