PHOT 301: Quantum Photonics
LECTURE 19
Michaël Barbier, Fall semester (2024-2025)
\[ T(a) | \psi(x) \rangle = | \psi(x-a)\rangle, \]
\[ \begin{aligned} \psi(x-a) & = \psi(x) - a\, \frac{d}{dx} \psi(x) + a^2 \frac{d^2}{dx^2} \psi(x) - \dots\\ & = \left(e^{-a \frac{d}{dx}}\right) \psi(x)\\ & = T(a) \psi(x)\\ \end{aligned} \]
\[ T(a) = e^{-a \frac{d}{dx}} = e^{-a \frac{i}{\hbar}\,(-i \hbar \frac{d}{dx})} = e^{- i a \hat{p}/\hbar}\\ \]
For infinitesimal displacements \(\varepsilon \ll 1\), we obtain the translation generator
\[ T(\varepsilon) = e^{-i\varepsilon \hat{p}/\hbar} = 1 - i \varepsilon \hat{p}/\hbar \]
\[ R_z(\theta) = \begin{pmatrix} 1 & 0 & 0\\ 0 & \cos(\theta) &-\sin(\theta)\\ 0 & \sin(\theta) &\cos(\theta)\\ \end{pmatrix} \]
Likewise:
\[ R_x(\theta) = \begin{pmatrix} 1 & 0 & 0\\ 0 & \cos(\theta) &-\sin(\theta)\\ 0 & \sin(\theta) &\cos(\theta)\\ \end{pmatrix}, \qquad R_y(\theta) = \begin{pmatrix} \cos(\theta) & 0 &\sin(\theta)\\ 0 & 1 & 0\\ -\sin(\theta) & 0 &\cos(\theta)\\ \end{pmatrix} \]
Infinitesimal rotations \(\delta\theta \ll 1\)
\[ R_x(\theta) = \begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & -\delta\theta\\ 0 & \delta\theta & 1 \\ \end{pmatrix}, \quad R_y(\theta) = \begin{pmatrix} 1 & 0 & \delta\theta\\ 0 & 1 & 0\\ -\delta\theta & 0 & 1\\ \end{pmatrix}\\ \\ \quad R_z(\theta) = \begin{pmatrix} 1 & -\delta\theta & 0\\ \delta\theta & 1 & 0\\ 0 & 0 & 1\\ \end{pmatrix} \]
Infinitesimal rotations \(\delta\theta \ll 1\)
\[ R_x(\delta\theta) = \mathbb{1} + \delta\theta \begin{pmatrix} 0 & 0 & 0\\ 0 & 0 & -1\\ 0 & 1 & 0 \\ \end{pmatrix}, \quad R_y(\delta\theta) = \mathbb{1} + \delta\theta \begin{pmatrix} 0 & 0 & 1\\ 0 & 0 & 0\\ -1 & 0 & 0\\ \end{pmatrix}\\ \\ \quad R_z(\delta\theta) = \mathbb{1} + \delta\theta \begin{pmatrix} 0 & -1 & 0\\ 1 & 0 & 0\\ 0 & 0 & 0\\ \end{pmatrix} \]
\[ [\hat{L}_x, \hat{L}_y] = i\hbar \hat{L}_z, \qquad [\hat{L}_y, \hat{L}_z] = i\hbar \hat{L}_x, \qquad [\hat{L}_z, \hat{L}_x] = i\hbar \hat{L}_y, \qquad \]
\[ [\hat{L}_i, \hat{L}_j] = i\hbar \sum_k \epsilon_{ijk} \hat{L}_k \]
\[ \hat{\bf L}^2 | a,b \rangle = a | a,b \rangle \, \qquad \hat{L_z} | a,b \rangle = b | a,b \rangle \]
\[ \hat{\bf L}^2\, | a,\,b \rangle = a\, | a,\,b \rangle \, \qquad \hat{L_z}\, | a,\,b \rangle = b\, | a,\,b \rangle \]
\[ \hat{\bf L}^2 \left(\hat{L}_\pm \, | a,\,b \rangle \right) = \hat{L}_\pm \hat{\bf L}^2 \, | a,\,b \rangle = a \left(\hat{L}_\pm \, | a,\,b \rangle \right) \]
\[ [\hat{L}_z, \hat{L}_\pm] = \pm \hbar \hat{L}_\pm \]
\[ \hat{L}_z \hat{L}_\pm \, | a,\,b \rangle = \hat{L}_\pm \hat{L}_z \, | a,\,b \rangle + [\hat{L}_z \hat{L}_\pm] \, | a,\,b \rangle = (b \pm \hbar) \hat{L}_\pm \, | a,\,b \rangle \]
\[ \hat{L}_\pm \, | a,\,b \rangle = C_\pm(a,b) | a,\,b \pm \hbar \rangle \]
With \(C_\pm(a,b)\) a normalization factor (still unknown)
\[ \|\hat{L}_\pm | a, b \rangle\|^2 = \langle a, b | \hat{L}^\dagger_\pm \hat{L}_\pm | a, b \rangle \geq 0 \]
We can rewrite \(\hat{L}^\dagger_\pm \hat{L}_\pm = \hat{L}_\mp \hat{L}_\pm\) as:
\[ \hat{L}_\mp \hat{L}_\pm = (\hat{L}_x \mp i\hat{L}_y)(\hat{L}_x \pm i\hat{L}_y) = \hat{L}^2_x + \hat{L}^2_y \pm i[\hat{L}_x, \hat{L}_y] = \hat{\bf L}^2 - \hat{L}_z^2 \mp \hbar \hat{L}_z \]
This lead to a relation between the eigenvalues
\[ \langle a, b | \hat{L}^\dagger_\pm \hat{L}_\pm | a, b \rangle = \langle a, b | \hat{\bf L}^2 - \hat{L}_z^2 \mp \hbar \hat{L}_z | a, b \rangle = (a - b^2 \mp \hbar b) \langle a, b | a, b \rangle \geq 0 \]
We will use \(a \geq 0\) and \(b \in \Re\) to find \(b\) and \(a\) values
\[ \begin{aligned} \langle a, b_\textrm{max} | \hat{L}^\dagger_+ \hat{L}_+ | a, b_\textrm{max} \rangle &= a - b_\textrm{max}^2 - \hbar b_\textrm{max} = 0\\ \langle a, b_\textrm{min} | \hat{L}^\dagger_- \hat{L}_- | a, b_\textrm{min} \rangle &= a - b_\textrm{min}^2 + \hbar b_\textrm{min} = 0 \end{aligned} \]
This both determines \(a\):
\[ \begin{aligned} a &= b_\textrm{max}^2 + \hbar b_\textrm{max}\\ a &= b_\textrm{min}^2 - \hbar b_\textrm{min} \end{aligned} \]
Resulting in \(b_\textrm{min} = - b_\textrm{max}\)
For any \(a\): starting from \(| a, b_\textrm{min}\rangle\) and move up the ladder with \(\hat{L}_+\) until \(| a, b_\textrm{max} \rangle\):
\[ b_\textrm{min}, \quad b_\textrm{min} + \hbar, \quad b_\textrm{min} + 2\hbar, \quad\dots\quad, \quad b_\textrm{min} + n\hbar = b_\textrm{max} \]
\[ a = m_\textrm{max}\hbar (m_\textrm{max}\hbar + \hbar) = l(l+1)\hbar^2 \]
\[ \boxed{\hat{\bf L}^2|l, m\rangle = l(l+1)\hbar^2|l, m\rangle} \qquad \qquad \boxed{\hat{L}_z |l, m\rangle = m \hbar|l, m\rangle} \]
\[ \boxed{\hat{\bf L}^2|l, m\rangle = l(l+1)\hbar^2|l, m\rangle, \qquad \qquad \hat{L}_z |l, m\rangle = m \hbar|l, m\rangle} \]
Using the previous definition of the ladder operator
\[ \begin{aligned} 1 = \langle l, m | \hat{L}^\dagger_\pm \hat{L}_\pm | l, m \rangle &= \langle l, m | \hat{\bf L}^2 - \hat{L}_z^2 \pm \hbar \hat{L}_z | l, m \rangle\\ \end{aligned} \]
Taking the square root of the norm results in:
\[ \boxed{\begin{aligned} \hat{L}_+ | l, m \rangle &= \sqrt{l(l+1) - m(m+1)} \hbar | l, m+1 \rangle\\ \hat{L}_- | l, m \rangle &= \sqrt{l(l+1) - m(m-1)} \hbar | l, m-1 \rangle\\ \end{aligned}} \]
Expressing the operators: \(\hat{\bf L}^2\), \(\hat{L}_z\), and \(\hat{L}_\pm\) with \(\hat{\bf L} = {\bf r} \times \hat{\bf p} = -i\hbar{\bf r} \times \nabla\)
The gradient \(\nabla\) in spherical coordinates:
\[ \nabla = \vec{e}_r\frac{\partial}{\partial r} + \vec{e}_\theta\frac{1}{r}\frac{\partial}{\partial \theta} + \vec{e}_\phi\frac{1}{r \sin\theta} \frac{\partial}{\partial \phi} \]
\[ \Longrightarrow\boxed{\begin{aligned} \hat{L}_z & = - i \hbar \frac{\partial}{\partial\phi}, \quad \hat{L}_\pm = \hbar e^{\pm i\phi} \left[\pm \frac{\partial}{\partial \theta} + i \cot \theta \frac{\partial}{\partial \phi}\right]\\ &\\ \hat{\bf L}^2 &= -\hbar^2 \left[ \frac{1}{\sin\theta} \frac{\partial \sin \theta \frac{\partial}{\partial \theta}}{\partial \theta} + \frac{1}{\sin^2\theta} \frac{\partial^2}{\partial \phi^2}\right] \end{aligned}} \]
\[ \boxed{\begin{aligned} \hat{L}_z & = - i \hbar \frac{\partial}{\partial\phi}, \quad \hat{L}_\pm = \hbar e^{\pm i\phi} \left[\pm \frac{\partial}{\partial \theta} + i \cot \theta \frac{\partial}{\partial \phi}\right]\\ \end{aligned}} \]
\[ \begin{aligned} \hat{L}_z Y_{lm}(\theta, \phi) = - i \hbar \frac{\partial}{\partial\phi}Y_{lm}(\theta, \phi) = m\hbar Y_{lm}(\theta, \phi) \end{aligned} \]
Separation of the variables:
\[ Y_{lm}(\theta, \phi) = F(\theta) \, e^{im\phi}, \quad \textrm{with} -l \leq m \leq l \]
\[ \boxed{\begin{aligned} \hat{L}_z & = - i \hbar \frac{\partial}{\partial\phi}, \quad \hat{L}_\pm = \hbar e^{\pm i\phi} \left[\pm \frac{\partial}{\partial \theta} + i \cot \theta \frac{\partial}{\partial \phi}\right]\\ \end{aligned}} \]
\[ \begin{aligned} 0 = \langle \theta, \phi | \hat{L}_+ | l,l\rangle &= \hbar e^{i\phi} \left[\frac{\partial}{\partial \theta} + i \cot \theta \frac{\partial}{\partial \phi}\right] e^{il\phi} F(\theta)\\ & = \hbar e^{i(l+1)\phi} \left[\frac{\partial}{\partial \theta} - l \cot \theta\right] F(\theta)\\ \end{aligned} \]
\[ \Rightarrow \frac{\partial }{\partial \theta}F(\theta) = l \cot \theta F(\theta)\quad \Rightarrow \quad F(\theta) = C \sin^l(\theta) \]
The lower states with \(m < l\) are generated by applying \(\hat{L}_-\)
\[ \begin{aligned} Y_{lm}(\theta, \phi) = C \hat{L}_-^{(l-m)} \left[\sin^l \theta e^{il\phi}\right] = C \left[\frac{\partial}{\partial \theta} + i \cot \theta \frac{\partial}{\partial \phi}\right] \left[\sin^l \theta e^{il\phi}\right] \end{aligned} \]
The solutions are the spherical harmonics:
\[ \begin{aligned} Y_{lm}(\theta, \phi) = (-1)^{m+|m|} \left[ \frac{2l + 1}{4\pi} \,\frac{(l - |m|)!}{(l + |m|)!} \right]^{1/2} P^{|m|}_l(\cos\theta) e^{im\phi} \end{aligned} \]
with the associated Legendre polynomials
\[ P^{m}_l(x) = \frac{(1-x^2)^m/2}{2^l l!} \frac{d^{m+l}}{dx^{m+l}}(x^2 - 1)^l \]
Common basis of eigenstates of angular momentum:
\[ \boxed{\hat{\bf L}^2|l, m\rangle = l(l+1)\hbar^2|l, m\rangle} \qquad \qquad \boxed{\hat{L}_z |l, m\rangle = m \hbar|l, m\rangle} \]
\[ \begin{aligned} Y_{lm}(\theta, \phi) = (-1)^{m+|m|} \left[ \frac{2l + 1}{4\pi} \,\frac{(l - |m|)!}{(l + |m|)!} \right]^{1/2} P^{|m|}_l(\cos\theta) e^{im\phi} \end{aligned} \]
with the associated Legendre polynomials
\[ P^{m}_l(x) = \frac{(1-x^2)^m/2}{2^l l!} \frac{d^{m+l}}{dx^{m+l}}(x^2 - 1)^l \]
\[ \begin{aligned} Y_{lm}(\theta, \phi) = (-1)^{m+|m|} \left[ \frac{2l + 1}{4\pi} \,\frac{(l - |m|)!}{(l + |m|)!} \right]^{1/2} P^{|m|}_l(\cos\theta) e^{im\phi} \end{aligned} \]
\[ P^{m}_l(x) = \frac{(1-x^2)^m/2}{2^l l!} \frac{d^{m+l}}{dx^{m+l}}(x^2 - 1)^l \]
Lower order \(P^{m}_l(z)\) polynomials:
| \(l\) | \(m=-2\) | \(m=-1\) | \(m=0\) | \(m=1\) | \(m=2\) |
|---|---|---|---|---|---|
| 0 | \(1\) | ||||
| 1 | \(-\frac{1}{2}(1-x^2)^{1/2}\) | \(x\) | \((1-x^2)^{1/2}\) | ||
| 2 | \(\frac{1}{8}(1 - x^2)\) | \(-\frac{1}{2}x(1 - x^2)^{1/2}\) | \(\frac{1}{2}(3x^2 - 1)\) | \(3x(1 - x^2)^{1/2}\) | \(3(1 - x^2)\) |
\[ \begin{aligned} Y_{lm}(\theta, \phi) = (-1)^{m+|m|} \left[ \frac{2l + 1}{4\pi} \,\frac{(l - |m|)!}{(l + |m|)!} \right]^{1/2} P^{|m|}_l(\cos\theta) e^{im\phi} \end{aligned} \]
Angular momentum eigenfunction in spherical and carthesian coordinates
\[ \begin{aligned} Y_{l,m} & \qquad Y_{l,m}(\theta, \phi) & Y_{l,m}(x, y, z) \\ Y_{0,0} & \qquad \frac{1}{\sqrt{4\pi}} \qquad & \frac{1}{\sqrt{4\pi}}\\ & & \\ Y_{1,-1} & \qquad \sqrt{\frac{3}{8\pi}}\, \sin\theta \, e^{-i\phi} & \sqrt{\frac{3}{8\pi}}\,\frac{x - iy}{r}\\ Y_{1,0} & \qquad \frac{1}{\sqrt{4\pi}}\, \cos\theta \qquad & \frac{1}{\sqrt{4\pi}}\frac{z}{r}\\ Y_{1,1} & \qquad \sqrt{\frac{3}{8\pi}}\, \sin\theta \, e^{i\phi} & -\sqrt{\frac{3}{8\pi}}\,\frac{x + iy}{r}\\ \end{aligned} \]
\[ \begin{aligned} Y_{lm}(\theta, \phi) = (-1)^{m+|m|} \left[ \frac{2l + 1}{4\pi} \,\frac{(l - |m|)!}{(l + |m|)!} \right]^{1/2} P^{|m|}_l(\cos\theta) e^{im\phi} \end{aligned} \]
Use the identities \(\,\,\cos(m\phi) = \frac{e^{im\phi} + e^{-im\phi}}{2}\,\,\) and \(\,\,\sin(m\phi) = \frac{e^{im\phi} - e^{-im\phi}}{2i}\,\):
\[ \left\{ \begin{aligned} Y_x(\theta, \phi) &= \Re\{Y_{lm}\} = (-1)^{m+|m|} \left[ \frac{2l + 1}{4\pi} \,\frac{(l - |m|)!}{(l + |m|)!} \right]^{1/2} P^{|m|}_l(\cos\theta)\, \cos(m\phi)\\ Y_y(\theta, \phi) &= \Im\{Y_{lm}\} = (-1)^{m+|m|} \left[ \frac{2l + 1}{4\pi} \,\frac{(l - |m|)!}{(l + |m|)!} \right]^{1/2} P^{|m|}_l(\cos\theta)\, \sin(m\phi) \end{aligned} \right. \]
\[ \begin{aligned} Y_{l,m} & \qquad Y_{l,m}(\theta, \phi) & Y_{l,m}(x, y, z) \\ Y_{0,0} & \qquad \frac{1}{\sqrt{4\pi}} \qquad & \frac{1}{\sqrt{4\pi}}\\ & & \\ Y_{1,-1} & \qquad \sqrt{\frac{3}{8\pi}}\, \sin\theta \, e^{-i\phi} & \sqrt{\frac{3}{8\pi}}\,\frac{x - iy}{r}\\ Y_{1,0} & \qquad \frac{1}{\sqrt{4\pi}}\, \cos\theta \qquad & \frac{1}{\sqrt{4\pi}}\frac{z}{r}\\ Y_{1,1} & \qquad \sqrt{\frac{3}{8\pi}}\, \sin\theta \, e^{i\phi} & -\sqrt{\frac{3}{8\pi}}\,\frac{x + iy}{r}\\ \end{aligned} \]