PHOT 301: Quantum Photonics
LECTURE 17
Michaël Barbier, Fall semester (2024-2025)
| Method | Approximates? | |
|---|---|---|
| 1 | Transfer matrix method | piece-wise constant \(V(x)\) |
| 2 | Finite basis method | limited \(\psi_n\), \(E_n\): Matrix-formalism |
| 3 | Finite difference method | discretizes wave function |
| 4 | Perturbation theory (stat.) | small perturbation known solutions |
| 5 | Time-dependent perturbation | small perturbation known solutions |
| 6 | Tight-binding approx. | electrons strongly bound (covalent) |
| 7 | Variational method | finding energy minima |
David Miller’s book Chapters 6 and 7
Steps to reach to the solutions:
\[ \hat{H} = \hat{H}_0 + \gamma\hat{H}_p(t), \qquad i\hbar \frac{\partial}{\partial t} | \Psi\rangle = \hat{H} | \Psi \rangle \]
\[ \hat{H}_0 |\psi_n\rangle = E_n |\psi_n\rangle \]
The time-dependent wave function can be expanded in \(\,|\psi_n\rangle\) with extra time factors
\[ |\Psi\rangle = \sum_n \, a_n(t) e^{-iE_nt/\hbar} \,| \psi_n \rangle \]
Notation: We will most of the time stop writing the time argument to simplify:
\[ a_n(t) = a^{(0)}_n + \gamma \, a^{(1)}_n + \gamma^2 \, a^{(2)}_n + \gamma^3 \, a^{(3)}_n + \dots \]
Notation: We write a little dot on top of a function to indicate a derivative to time:
\[ \frac{\partial a^{(j)}_q(t)}{\partial t} \equiv \dot{a}^{(j)}_q(t) \equiv \dot{a}^{(j)}_q \]
Notation: prime derivative notation for spacial derivatives (to \(x\)):
\[ f'(x) \equiv \frac{\partial f(x)}{\partial x} \qquad f''(x) \equiv \frac{\partial^2 f(x)}{\partial x^2} \]
Notation: shorter partial derivative notation (I will try to avoid to use it):
\[ \partial_x f(x) \equiv \frac{\partial f(x)}{\partial x} \qquad \partial_{x}^2 f(x) = \partial_{xx} f(x) \equiv \frac{\partial^2 f(x)}{\partial x \partial y} \qquad \partial_{xy} f(x) \equiv \frac{\partial^2 f(x)}{\partial x \partial y} \]
We know everything except of \(\,a_n(t)\), how to find them?
\[ \hat{H} = \hat{H}_0 + \gamma\hat{H}_p(t), \qquad i\hbar \frac{\partial}{\partial t} |\Psi\rangle = \hat{H} |\Psi \rangle \]
\[ i\hbar \frac{\partial}{\partial t} \sum_n \, a_n(t) e^{-iE_nt/\hbar} \,| \psi_n \rangle = \left(\hat{H}_0 + \gamma\hat{H}_p(t)\right) \sum_n \, a_n(t) e^{-iE_nt/\hbar} \,| \psi_n \rangle \]
\[ \begin{aligned} \Rightarrow \quad \sum_n \, \left( i\hbar\, \dot{a}_n(t) e^{-iE_nt/\hbar} + a_n(t) E_n e^{-iE_nt/\hbar}\right) \,| \psi_n \rangle &= \\ \qquad\qquad\qquad\qquad\left(\hat{H}_0 + \gamma\hat{H}_p(t)\right) &\sum_n \, a_n(t) e^{-iE_nt/\hbar} \,| \psi_n \rangle\\ \end{aligned} \]
\[ \begin{aligned} \sum_n \, \left( i\hbar\, \dot{a}_n(t) e^{-iE_nt/\hbar} + a_n(t) E_n e^{-iE_nt/\hbar}\right) \,| \psi_n \rangle = \qquad \qquad \qquad\qquad\qquad\\ \qquad\qquad\qquad\qquad\left(\hat{H}_0 + \gamma\hat{H}_p(t)\right) \sum_n \, a_n(t) e^{-iE_nt/\hbar} \,| \psi_n \rangle\\ \\ \Longrightarrow \quad \sum_n \, \left( i\hbar \dot{a}_n + a_n E_n \right) e^{-iE_nt/\hbar} \,| \psi_n \rangle = \sum_n \, a_n \left(E_n + \gamma\hat{H}_p(t)\right) e^{-iE_nt/\hbar} \,| \psi_n \rangle\\ \end{aligned} \]
\[ \Longrightarrow \quad \sum_n \, i\hbar \dot{a}_n e^{-iE_nt/\hbar} \,| \psi_n \rangle = \sum_n \, a_n \gamma\hat{H}_p(t) e^{-iE_nt/\hbar} \,| \psi_n \rangle\\ \]
\[ \sum_n \, i\hbar \dot{a}_n e^{-iE_nt/\hbar} \,| \psi_n \rangle = \sum_n \, a_n \gamma\hat{H}_p(t) e^{-iE_nt/\hbar} \,| \psi_n \rangle\\ \]
\[ \Longrightarrow \quad \sum_n \, i\hbar \dot{a}_n e^{-iE_nt/\hbar} \, \langle \psi_q | \psi_n \rangle = \sum_n \, a_n \gamma e^{-iE_nt/\hbar} \langle \psi_q |\hat{H}_p(t) \,| \psi_n \rangle\\ \]
\[ \Longrightarrow \quad i\hbar \dot{a}_q e^{-iE_qt/\hbar} = \sum_n \, a_n \gamma e^{-iE_nt/\hbar} \langle \psi_q |\hat{H}_p(t) \,| \psi_n \rangle\\ \]
\[ \Longrightarrow \quad \dot{a}_q = \frac{1}{i\hbar}\sum_n \, a_n \gamma e^{-i(E_n-E_q)t/\hbar} \langle \psi_q |\hat{H}_p(t) \,| \psi_n \rangle\\ \]
Now we will make the actual approximation using \(\gamma\) (perturbation)
Power series of the expansion coefficients \(a_n(t)\) in \(\gamma\)
\[ a_n(t) = a^{(0)}_n(t) + \gamma \, a^{(1)}_n(t) + \gamma^2 \, a^{(2)}_n(t) + \gamma^3 \, a^{(3)}_n(t) + \dots \]
Notation: We will stop writing the time argument to simplify:
\[ a_n(t) = a^{(0)}_n + \gamma \, a^{(1)}_n + \gamma^2 \, a^{(2)}_n + \gamma^3 \, a^{(3)}_n + \dots \]
Notation: We write a little dot on top of a function to indicate a derivative to time:
\[ \frac{\partial a^{(j)}_q(t)}{\partial t} \equiv \dot{a}^{(j)}_q(t) \equiv \dot{a}^{(j)}_q \]
Notation: prime derivative notation for spacial derivatives (to \(x\)):
\[ f'(x) \equiv \frac{\partial f(x)}{\partial x} \qquad f''(x) \equiv \frac{\partial^2 f(x)}{\partial x^2} \]
\[ \dot{a}_q = \frac{1}{i\hbar}\sum_n \, a_n \gamma e^{-i(E_n-E_q)t/\hbar} \langle \psi_q |\hat{H}_p(t) \,| \psi_n \rangle\\ \]
Power series of the expansion coefficients \(a_n(t)\) in \(\gamma\)
\[ a_n(t) = a^{(0)}_n + \gamma \, a^{(1)}_n + \gamma^2 \, a^{(2)}_n + \gamma^3 \, a^{(3)}_n + \dots \]
Derivative to time \(\quad\longrightarrow\quad\) time-derivatives of the power series coefficients
\[ \dot{a}_n(t) = \dot{a}^{(0)}_n + \gamma \, \dot{a}^{(1)}_n + \gamma^2 \, \dot{a}^{(2)}_n + \gamma^3 \, \dot{a}^{(3)}_n + \dots \]
\[ \dot{a}^{(0)}_q + \gamma \, \dot{a}^{(1)}_q + \gamma^2 \, \dot{a}^{(2)}_q + \dots = \qquad \qquad \qquad\qquad\qquad \qquad \qquad \qquad \qquad \\ \qquad\frac{1}{i\hbar}\sum_n \, \left(a^{(0)}_n + \gamma \, a^{(1)}_n + \gamma^2 \, a^{(2)}_n + \dots\right) \gamma e^{-i(E_n-E_q)t/\hbar} \langle \psi_q |\hat{H}_p(t) \,| \psi_n \rangle\\ \]
\[ \dot{a}^{(0)}_q + \gamma \, \dot{a}^{(1)}_q + \gamma^2 \, \dot{a}^{(2)}_q + \dots = \qquad \qquad \qquad\qquad\qquad \qquad \qquad \qquad \qquad \\ \qquad\frac{1}{i\hbar}\sum_n \, \left(a^{(0)}_n + \gamma \, a^{(1)}_n + \gamma^2 \, a^{(2)}_n + \dots\right) \gamma e^{-i(E_n-E_q)t/\hbar} \langle \psi_q |\hat{H}_p(t) \,| \psi_n \rangle\\ \]
Equate order 0 in \(\gamma\) lead to zero right hand side.
\[ \frac{a^{(0)}_q(t)}{\partial t} \equiv \dot{a}^{(0)}_q(t) \equiv \dot{a}^{(0)}_q = 0 \]
\[ \dot{a}^{(0)}_q + \gamma \, \dot{a}^{(1)}_q + \gamma^2 \, \dot{a}^{(2)}_q + \dots = \qquad \qquad \qquad\qquad\qquad \qquad \qquad \qquad \qquad \\ \qquad\frac{1}{i\hbar}\sum_n \, \left(a^{(0)}_n + \gamma \, a^{(1)}_n + \gamma^2 \, a^{(2)}_n + \dots\right) \gamma e^{-i(E_n-E_q)t/\hbar} \langle \psi_q |\hat{H}_p(t) \,| \psi_n \rangle\\ \]
\[ \, \dot{a}^{(1)}_q = \frac{1}{i\hbar}\sum_n \, a^{(0)}_n \gamma e^{i\omega_{qn}t} \langle \psi_q |\hat{H}_p(t) \,| \psi_n \rangle\\ \]
\[ \, \dot{a}^{(p+1)}_q = \frac{1}{i\hbar}\sum_n \, a^{(p)}_n \gamma e^{i\omega_{qn}t} \langle \psi_q |\hat{H}_p(t) \,| \psi_n \rangle\\ \]
For examples: Chapter 7 of David Miller’s book.
Lecture 17: Time-dependent perturbation theory