PHOT 301: Quantum Photonics
LECTURE 13-15

Michaél Barbier, Fall semester (2024-2025)

Lecture 13-15: Approximations PART Il



APPROXIMATIONS

Method Approximates?
1 Transfer matrix method piece-wise constant V()
2 Finite basis method limited v,,, E,,: Matrix-formalism
3  Finite difference method discretizes wave function
4 Perturbation theory (stat.) small perturbation known solutions
5 Time-dependent perturbation small perturbation known solutions
6 Tight-binding approx. electrons strongly bound (covalent)
7  Variational method finding energy minima

Usage of simple examples to compare over approximations

e Infinite square well with E-field (David Miller’s book section 2.11)
e More on approximation methods: see Chapter 6 of David Miller’s book

e Analytic solution vs. perturbation vs. finite basis method vs. Finite difference
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INFINITE WELL WITH E-FIELD



A CONSTANT ELECTRIC FIELD

e The potential for a constant electric field: V(z) = eE z

e The time-independent Schrodinger equation:

R: d(a) | o
oo T ebup(z) = By(z)
+00 +00 +00 T
\/% sin (nLLx) C Ai(z,) + D Bi(z,)
V(x) =0 N V() = ebx
0 L 0 L
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A CONSTANT ELECTRIC FIELD

A2 d%¢(a)

29m  dx?

+eBxi(z) = Ej(z)

Rewrite the equation to clarify its form:

d*y(z) 2meFE E
dr?2 = R2 (.’13 o cE )"P(m)
= c(z — d)y(z)

Wherec = 2™¢E andd = £
h eE

This looks very much like the (solvable) Airy equation:

d” f ()
dz?

= zf(2)

—— we need to find a suitable substitution for z
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SUITABLE SUBSTITUTION FOR Z(X)

Assume a linear form for z = ax + [ and rewrite the Airy equation

d*P(z)  d*f(z) (dz
de?2 dz? (dw

) = o’2f(2) = (&’z + Ba?) f(2)

But we have also:

d*¢P(z)  2m ~ B
e _ﬁ(E —eEz)Y(x) = c(x — d)

— c(z — d) = (o’ + Bo’)
— = c/3 B:—cl/gd

~

1/3
2mely E
:>z:a:1:—|—ﬂzcl/3(:v—d):( TZ; ) (a:— E’)
e
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AIRY EQUATION SOLUTIONS
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Lecture 13-15: Approximations PART Il



BOUNDARY CONDITIONS

2
I _2f), @) = £(2) = CAi(2) + DBi(2)
z=0— 2z =—c/3d C' Ai(zy) + DBi(zy) =0
x=L— z; =c3(L —d) C Ai(z) + DBi(z1) =0

(w) mien) (0) = (o)

Inverse cannot exist —— determinant is zero:

", (Ai(zo) Bi(z)

Ai(zr) Bi(zL)) = Ai(29) Bi(zg) — Ai(21) Bi(z) = 0

— Numerically solutions z (E), 21, (F)
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DIMENSIONLESS UNITS

Simplify formula and units

+00 + o0
( o — —c1/3d o 2m€E 1/3 E
b R ek
< 1
~\ 1/3 E
2mekl E N DO SRR
_ oL/3 _
2z, =c ' (L —d) = L — —
=m0 = (557) (5= 5)
In units of E7° = 27’;7;22,
E VL €E~'L
EHS:—OO VL%I/L:—OO: =
El E1 El

2 2
T\ 3 T\ 3
L L
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CHOICE OF UNITS

For comparison with the infinite well: energy unit E7°

2 2
w3 w3
zo=—|—1| e zr=|— | (vp —¢)
VL VL

Alternative: energy unit vy,

2
3

20 = —T3E, ZL:T('%(l—é)

eigenenergies: Solve determinant equation

eigenstates: Fill in eigenenergies in boundary conditions
(constants C', D)
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EIGENENERGIES & EIGENSTATES

1. Numerically solve determinant equation for eigenenergies E,,,

2. Use E, in boundary conditions to obtain ), (x)
3. Normalize by fOL ()| *dz = 1

Eigenenergies F,, : Ai(z9) Bi(z) — Ai(z1) Bi(z9) = 0
Eigenstates ¥, (z) = C' Ai(z) + D Bi(z) : C T Az

Remember that z scales with energy
f g g (2meE B BY (m
- - h2 eE) \us
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FINAL SOLUTION

3.0

2.5
2.0

1.5
1.0

Determinant

0.5
0.0
—0.5

12.5-
10.0-

7.51

g (invy)

5.0{
2.5

0.0

0

5

10
g (in v,)

15 0.00 0.25

e Eigenenergies ¢,, have zero determinant: find roots

e Fillin &, to get eigenstates 1, ()
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FINITE BASIS APPROXIMATION



FINITE BASIS APPROXIMATION

Steps to reach to the solutions:

1. Expand the solution in a known basis

2. Limit the amount of energy levels —> matrix algebra

3. Solve the eigenvalue equations for eigenenergies & eigenstates

+ oo

+ oo

—

+ oo

C Ai(z,) + D Bi(z,)

Superposition
known basis
eigenstates

-
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DIMENSIONLESS HAMILTONIAN

The dimensionless Hamiltonian for infinite well is obtained by:

° z:w/L,EH E/EOO,

o electric field vy, in units of Vi, / E°

; 1 d , ; 1 d
H_——zd—zz—l—l/L(Z—]./Z) with HO:_Fd—zz

Compute the elements of the Hamiltonian (matrix)

Hon === [6n(@) zn(@)dz + [ 01z = 1/20n(2)n(2)d2

With 1, (2) = v/2sin(nmz)
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HAMILTONIAN: OVERLAP INTEGRALS

A d?
Hon = WnlHl0) = =5 [ (@) 500@)dz + [ 11— 5)om(2en(2)dz
With the eigenstates ¥, (2) = \fsm('mrz)
1
Hon =2 [ ¥n(@agtn(dz + [ v~ 1 2m(@ ()i
= n%6mn + I/L/ (z — 1/2) sin(mnz) sin(nnz)dz,
0
The second integral can be calculated:

if m +n is odd

/0 (z — 1/2) sin(mnz) sin(nrz)dz = {

\ 0 if m+n iseven
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HAMILTONIAN: OVERLAP INTEGRALS

We see that the integral has two different contributions:

e Diagonal elements H,,, are defined by I—:TO with B, = n? B
e Otherelements H,, ,,, determined by perturbing potential ﬁp — H - I—:TO

if n=m*+1l,m=£3,...

H,, = n’ ¢

. H,, =0 if n=m+2,m=%4,...

e The Hamiltonian gives contributions of eigenstates ,,(z) = 1/2sin(nnz)

K22

e Eigenenergies F,, and potential vy, arein units of Efo = o7

Lecture 13-15: Approximations PART Il

17



SOLVING THE EIGENVALUE EQUATION

The eigenvalue equation is:

ﬁ% (Z) = Ep, (Z)

If we numerically calculate the overlap integrals:

1 —0.54 0
Hp, =1 —0.54 4 —0.584
0 —0.584 9

When comparing resulting eigenvalues:

Eigenvalues Er FEs Es

Finite basis approx. 0.90437 4.0279 9.068

Analytical solution  0.90419 4.0275 9.017
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COMPARING EIGENSTATES

1.5- /A
’\ / \
/e |
10 T 8 ] \ |
X |\ I
S 0.51 1 11 \ [ \
0 [ ! " \
4(.01 0.0 N} \ I \
Y \
2 - == Analytic \ ,'
0 —0.5- .. . \ I
o) — Finite basis: g \
LL o : \ J
—1.04 —— Finite basis: y; \ II
Finite basis: g3 W/
-1.51 | | L | | L | |
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
x (in L) x (in L) x (in L)
(i) From the plot

Finite basis method gives good results for lower eigenenergies/eigenstates
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FINITE DIFFERENCE
APPROXIMATION



FINITE DIFFERENCE APPROXIMATION

Steps to reach to the solutions:

1. Discretize the wave function (finite basis)

2. Finite Difference Method to discretize the Schr"odinger equation

3. Limited discrete points — matrix algebra (Requires finite box)

4, Solve the eigenvalue equations for eigenenergies & eigenstates

+ oo

V(ix) =0

+ oo

1
1
|
1
1
I
|
I
1
|
. . I_
L Lecture 13-15: ApprOX|mat|oanART [l L 21

+ oo + oo

C Ai(z,) + D Bi(z,)

V(x) =eEx




DISCRETIZING A FUNCTION

e Afunction on a computer as a vector:

(f(ml)\ (fl\
f(z2) fo

\f(a;N)/ \f;v/
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A NORMALIZED STATE

e Anormalized state requires: (f|f) = 1

e |f we define the normalized state as ket and bra:
(f(xl)\ (f1 \

f(z2) f
H=lf@we =" =7

\fen))  \ s/
(fl = (f* (zp)Vox| — (f1v0x  f3Vox - fi3/0x)

And the inner product is:

N b
F15) = (@) f@)se = Y |f;PPse / f(2)2da

j=1
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FINITE DIFFERENCES

e Hamiltonian contains second derivative

e Derivative of a discrete function?

Central difference scheme:

Backward difference

@
2

| 8%

df(x)

dx

Forward difference

/5"

Xi—1 Xi Xi+1

(%) >\

Of(z) _ fin— f(i—1)

20T

Central difference

y ()

0x

Xi—1 X
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SECOND DERIVATIVE

Hamiltonian contains second derivative

Derivative of a discrete function?

Central difference scheme:

df(x)

_ Of(x)

dx

Y

 fi— fG 1)

Second derivative by using central difference scheme with 6 /2

d’f(z)

fi—i—l_fi fi_fi—l

. ox ox

dx?

ox

Discrete potential function V; = V' (x;)

A

H =

h? d?

 2m dx2

+ V() —

Lecture 13-15: Approximati

20T

_ Jin + fia — 2

dx?

CR? fin 4 fia - 2f;

AUAART 1

dx?

+ Vi
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MATRIX FORM

A h? d? h? fin + fio1 — 2
H=— |4 — = Vi
2m dx? +Viz) 2m dx? i
e The Hamiltonian can be written as a matrix operator
(10 )
1 -2 1
1 -2 1
A k2
H = — T V 1
2m dx? ’ +Viz)
1 -2 1
1 -2 1
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MATRIX FORM (DIMENSIONLESS)

, 1 d° 1 fix1+ fio1 —2f; i1
eV — TRt (55

N 2

e The Hamiltonian can be written as a matrix operator (E, v, in units of £7°)

1o \ (v \

-2 1 Vs

2 §u? S -
1 -2 1 V-1
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MATRIX FORM (DIMENSIONLESS)
, 1 d° 1 fix1+ fio1 —2f; (i 1)

N 2

H=—ma@ Ve = 2™ 5a

e The Hamiltonian can be written as a matrix operator (E, v, in units of £7°)

10 V(N \

-2 1 —N + 2

w2 §x? 2N :
1 —2 1 N — 2

\ 0 1) \ N

— Solve the eigenvalue equation: ﬁ\@bn) = E, |y,
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SOLVING LARGE MATRIX EQUATIONS

import numpy as np
from scipy.sparse import diags array
from scipy.sparse.linalg import eigsh, LaplacianNd

# Parameters

n ="50; L =1.0; dx = L/(n-1)
X = np.linspace(@, L, n)
V=5%(x - L/2)

# Calculate E n, Psi n
lap = LaplacianNd(
grid shape=(n, ), boundary conditions='dirichlet'
) .tosparse().astype(np.float64)
Vmat = diags array([V], offsets=[0]).toarray()
E n, Psi n = eigsh(-lap/np.pi**2/dx**2 + Vmat, k=3, which="SM")
print("Eigenvalues E1, E2, E3:\n\t\t" + str(np.round(E_n, 3)))

Eigenvalues E1, E2, E3:
[0.729 4.038 8.976]
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INFINITE WELL WITH ELECTRIC FIELD

A 1 d? _ . 1 d?
H:_FQ‘I_VL(Z_]./Z) with Hoz—ﬁw
Eigenvalues Eq FEs Es

Finite difference 0.7293 4.0382 8.976
Finite basis approx. 0.9044 4.0279 9.068
Analytical solution 0.9042 4.0275 9.017

e Choosinginitial basis functions not necessary
e Accurate potential V() (0= dependent)

e BAD eigenenergies accuracy? Wave function accuracy GOOD?
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WAVE FUNCTION COMPARISON

Eigenstates yn(x)

1.51

1.01

0.51

=== Analytic
| — FDM: g
| — FDM: y,
FDM: g3

0.0 0.5
x (in L)

1.0

\
/\ / \
/ \ I \
/// \ | \
[\ [\
I\ / \
! \ \
‘«"/ \ \
11 \ f |
\ |
\ |
\ I
\ I
\ I
\
\/
0.0 0.5 1.0 0.0 0.5 1.0
x (in L) x (in L)
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TIME-INDEPENDENT
PERTURBATION THEORY



PERTURBATION THEORY

Steps to reach to the solutions:

1. H = I—:TO + fyI-:Tp Assume the perturbation to be small

2. Expand both the eigenenergies & eigenstates into power series in 7y

3. Recursive relations for eigenenergies & eigenstates

+ 00

V(ix) =0

) +o0 +00

C Ai(z,) + D Bi(z,)

1
|
I
1
1
I
1
1
|
|
L
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EXAMPLE OF STANDARD PERTURBATION

Putting on a “small” electric field

e Approximating the effect of V(z) = eE(x — L/2) = ez by power series:

E. =EY Lo+ ape? +...

Eigenstates |1, ) extracted from E,,

e < 1 — higher orders zero

e Can we generalize perturbations? ~
5 P Epm (E1)

Ef}?) 4
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PERTURBATION PART OF HAMILTONIAN

Independent of the actual perturbation form

e Known solutions for the unperturbed part I:IO

ﬁ0‘¢n> — En‘¢n>

e Perturbation of PIO by “small” perturbing part FIP:
B = Hy++H,
e We can express the eigenenergies E and eigenstates |¢):

H|¢) = (Ho +vH,)|¢) = E|¢)

Lecture 13-15: Approximations PART Il
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POWER SERIES EXPANSION
H|¢) = (Ho +vH,)|¢) = E|9)
Expand F and |¢) as power series in 7:
E=EO 4 yEW 4 42E® L A3EC) L 14p® 4
) = 1) +116") +97167) ++718) +1HgW) + ..

Schrodinger equation becomes:

(Ho +vH,) (169) +16V) +4216) +...) =

(E(O) +4EW 4+ 42E@ 4 ) (\¢(°)> + oMY + 42 + ...

— Equate coefficients of same orderin «y

Lecture 13-15: Approximations PART Il
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/EROTH ORDER PERTURBATION

(Ho+7Hy) (167) +719") +7216®) +...) =

(E(O) +4EW £ 42E® 4 ) (y¢<0>> + 1My 4+ 42 pP) + .. )
e zeroth orderiny:

Hy|¢) = EO1p®)y  —  |,) =1¢0), E,=EY

e These are the solutions of the unperturbed Hamiltonian

Lecture 13-15: Approximations PART Il
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MATCHING ORDERS
(Ho +vHy) ([$m) + 216D +92[62) +...) =

(Bm +7BD + 2B + .. (Im) +716V) +7716) +

Matching orders in 7y

I':I0|¢m> — Em‘¢m>
Ho[¢) + Hy|tpm) = Em|p™) + BV [3hy,)

Hol¢?) + HyloW) = Ep|¢®) + EW oMy 4 EP|p,,,)

Lecture 13-15: Approximations PART Il
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MATCHING ORDERS CTU'D

I_:,O|¢m> — Em ¢m>
Hol¢pW) + Hyltm) = Enl¢M) + EW|y,,)
Hy|¢®) + Hy|pW) = E,|¢@) + EW W) 4 E@yh,,)

Rewrite highest order state to the left-hand-side:

(I::TO — Em)’¢m> =0
(Ho — En)|¢") = (BW )\¢m>
(Ho — Ep)|¢?) = (B — Hp)|¢W) + EP |py,)
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FIRST ORDER PERTURBATION THEORY

(I::TO - Em)’¢m> =0 )
(Ho — En)|¢") = (EW — Hy)|thm)
(Ho — Bp)|9®) = (BY — H,)|s) + B¢

Left-multiply by the bra (1,,,|

left-hand-side: <¢my(ﬁ0 )|¢ )y = < |(Em

right-hand-side: (¢, |(EY — H,)[¢bm) =

= BY = (¢n|Hy ¢m)

e First order correction to the eigenenergy: E,,, + EW)
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FIRST ORDER EIGENSTATE

e Expand first order correction eigenstate: ‘(b(l)) => a,(zl) %)
e Fillingin:

(Ho — En)|¢"V) = (B — H,) 9
left-hand-side:  (1;|(Ho — Ep)|¢™M) = (B; — En)(i|¢W) = (E; — Ep)al”

right-hand-side:  (4;|(E® — H,)|[¢m) = ED (4;]hn) — (5| Hp[thm)

@ (il Hpltpm)
% T E,-E

n HA— m
S LA ST

n#*m
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ELECTRIC FIELD AS PERTURBATION

Up to first order we have:

) — ) +160) = ) + 3 20 p’W )

n#m

Em — Em + E(l) — Em + <¢m‘Hp’¢m>
The Hamiltonian in dimensionless units:

. 1 d? _ A 1 d?
H:_FQ‘I_VL(Z_]./Z) Wlth Hoz—ﬁw

e The Hamiltonian gives contributions of eigenstates 1, (z) = /2 sin(nnz)

h2m2

e Eigenenergies F,, and potential vy, are in units of Efo = o
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FIRST ORDER CORRECTION

The correction in the energies is zero (no change):

) + 160 = ) + 3

n#m

— ’¢m> —

— Em T <¢m‘ﬁp‘¢m>

1
—m? + VL/ (z — 1/2) sin?(mnz)dz,
0

=m?+0=m’

Yn| Hp|¥m)

[%n)

n=m=+1,43,...

E,, — E,

2I/L 4n

/0 (z — 1/2) sin(mnz) sin(nnz)dz |¥,)

m

2

3 iy )
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FIRST ORDER CORRECTION CTU'D

Where the second integral was obtained from:

( 4dnm

72 (m? — n2)? if m+n is odd

/0 (z — 1/2) sin(mnz) sin(nrz)dz = <

\ 0 if m +n iseven

So we have for eigenenergies and eigenstates:
En + By = m?

) + [4)) = /2sin(mmz) +

Z 8nmur/2

2 (m? — n2)? sin(nmz)

n=m=41,43,...
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WAVE FUNCTION COMPARISON

1.5' ’\\ | /’\ /\‘
X / /\ [\
1.0 ® - 1 [\
x [\ i\
= 05 - {/ \ .
" / | \\
O} | \ f |
s o .
Z - == Analytic \ /
v —0.5- ' 1 \ [
o — Perturbed: y; \
= \
—1.01 Perturbed: y; - ] \ I/
Perturbed: s 7 \ /
-1.51 | | L | | L | |
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
x (in L) x (in L) x (in L)

For 2nd order perturbation theory: see Chapter 6 of David Miller’s book
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