
PHOT 301: Quantum Photonics
LECTURE 13-15

Michaël Barbier, Fall semester (2024-2025)
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APPROXIMATIONS
Method Approximates?

1 Transfer matrix method piece-wise constant 

2 Finite basis method limited , : Matrix-formalism

3 Finite difference method discretizes wave function

4 Perturbation theory (stat.) small perturbation known solutions

5 Time-dependent perturbation small perturbation known solutions

6 Tight-binding approx. electrons strongly bound (covalent)

7 Variational method finding energy minima

V (x)

ψn En

Usage of simple examples to compare over approximations

• Infinite square well with E-field (David Miller’s book section 2.11)

• More on approximation methods: see Chapter 6 of David Miller’s book

• Analytic solution vs. perturbation vs. finite basis method vs. Finite difference
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INFINITE WELL WITH E-FIELD
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A CONSTANT ELECTRIC FIELD

• The potential for a constant electric field: 

• The time-independent Schrodinger equation:

V (x) = e xE
~

− + e xψ(x) = Eψ(x)
ℏ2

2m

ψ(x)d2

dx2 E
~
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A CONSTANT ELECTRIC FIELD

Rewrite the equation to clarify its form:

Where  and .

This looks very much like the (solvable) Airy equation:

 we need to find a suitable substitution for 

− + e xψ(x) = Eψ(x)
ℏ2

2m

ψ(x)d2

dx2 E
~

ψ(x)d2

dx2 = (x − )ψ(x)
2meE

~

ℏ2

E

eE
~

= c (x − d)ψ(x)

c = 2meE
~

ℏ2 d = E

eE
~

= zf(z)
f(z)d2

dz2

⟶ z

5Lecture 13-15: Approximations PART II



SUITABLE SUBSTITUTION FOR Z(X)
Assume a linear form for  and rewrite the Airy equationz = αx + β

= = zf(z) = ( x + β )f(z)
ψ(x)d2

dx2

f(z)d2

dz2 ( )dz

dx

2

α2 α3 α2

But we have also:

= − (E − e x)ψ(x) = c(x − d)
ψ(x)d2

dx2

2m

ℏ2 E
~

⟹ c(x − d) = ( x + β )α3 α2

⟹ α = β = − dc1/3 c1/3

⟹ z = αx + β = (x − d) = (x − )c1/3 ( )2meE
~

ℏ2

1/3
E

eE
~

6Lecture 13-15: Approximations PART II



AIRY EQUATION SOLUTIONS

= z f(z), ψ(x) = f(z) = C Ai(z) + D Bi(z)
f(z)d2

dz2

Ai(z)

Bi(z)

= cos( + zt)dt
1
π

∫ ∞

0

t3

3

= [exp(− + zt) + sin( + zt)] dt
1
π

∫ ∞

0

t3

3
t3

3
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BOUNDARY CONDITIONS

Inverse cannot exist  determinant is zero:

 Numerically solutions , 

= z f(z), ψ(x) = f(z) = C Ai(z) + D Bi(z)
f(z)d2

dz2

x = 0 ⟶ = − dz0 c1/3

x = L ⟶ = (L − d)zL c1/3

C Ai( ) + D Bi( ) = 0z0 z0

C Ai( ) + D Bi( ) = 0zL zL

( ) ( ) = ( )Ai( )z0

Ai( )zL

Bi( )z0

Bi( )zL

C

D

0
0

⟶

det ( ) = Ai( ) Bi( ) − Ai( ) Bi( ) = 0
Ai( )z0

Ai( )zL

Bi( )z0

Bi( )zL

z0 zL zL z0

⟶ (E)z0 (E)zL
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DIMENSIONLESS UNITS

Simplify formula and units

⎧

⎩
⎨
⎪⎪⎪⎪
⎪⎪⎪⎪

z0

zL

= − d = −c1/3 ( )2meE
~

ℏ2

1/3
E

eE
~

= (L − d) = (L − )c1/3 ( )2meE
~

ℏ2

1/3
E

eE
~

In units of ,=E∞
1

ℏ2π2

2mL2

E ⟶ ε =
E

E∞
1

⟶ = =VL νL
VL

E∞
1

e LE
~

E∞
1

⇒ = − ε, = ( − ε)z0 ( )π

νL

2
3

zL ( )π

νL

2
3

νL
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CHOICE OF UNITS

For comparison with the infinite well: energy unit 

Alternative: energy unit 

E∞
1

= − ε, = ( − ε)z0 ( )π

νL

2
3

zL ( )π

νL

2
3

νL

νL

= − , = (1 − )z0 π
2
3 ε~ zL π

2
3 ε~

eigenenergies: Solve determinant equation

eigenstates: Fill in eigenenergies in boundary conditions
(constants , )C D
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EIGENENERGIES & EIGENSTATES

1. Numerically solve determinant equation for eigenenergies ,

2. Use  in boundary conditions to obtain 

3. Normalize by 

Remember that  scales with energy

En

En (x)ψn

|ψ(x) dx = 1∫ L

0 |2

Eigenenergies : Ai( ) Bi( ) − Ai( ) Bi( ) = 0En z0 zL zL z0

Eigenstates (x) = C Ai(z) + D Bi(z) : = −ψn
D

C

Bi( )z0

Ai( )z0

z

z = (x − d) = (x − ) = ( − ε)c1/3 ( )2meE
~

ℏ2

1/3
E

eE
~ ( )π

νL

2
3 x

L
νL
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FINAL SOLUTION

• Eigenenergies  have zero determinant: find roots

• Fill in  to get eigenstates 

εn

εn (x)ψn
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FINITE BASIS APPROXIMATION
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FINITE BASIS APPROXIMATION
Steps to reach to the solutions:

1. Expand the solution in a known basis

2. Limit the amount of energy levels  matrix algebra

3. Solve the eigenvalue equations for eigenenergies & eigenstates

⟶
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DIMENSIONLESS HAMILTONIAN
The dimensionless Hamiltonian for infinite well is obtained by:

• , ,

• electric field  in units of 

Compute the elements of the Hamiltonian (matrix)

With 

z = x/L E ⟶ E/E∞
1

νL /VL E∞
1

= − + (z − 1/2)  with  = −Ĥ
1

π2

d2

dz2 νL Ĥ0
1

π2

d2

dz2

= − ∫ (z) (z)dz + ∫ (z − 1/2) (z) (z)dz,Hmn
1

π2 ψm
d2

dz2 ψn νL ψm ψn

(z) = sin(nπz)ψn 2–√
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HAMILTONIAN: OVERLAP INTEGRALS

With the eigenstates 

The second integral can be calculated:

= ⟨ | | ⟩ = − ∫ (z) (z)dz + ∫ (z − ) (z) (z)dz,Hmn ψm Ĥ ψn
1

π2 ψm
d2

dz2 ψn νL
1
2

ψm ψn

(z) = sin(nπz)ψn 2–√

Hmn = − (z) (z)dz + (z − 1/2) (z) (z)dz,
1

π2 ∫ 1

0
ψm

d2

dz2 ψn ∫ 1

0
νL ψm ψn

= + (z − 1/2) sin(mπz) sin(nπz)dz,n2δmn νL ∫ 1

0

(z − 1/2) sin(mπz) sin(nπz)dz =∫ 1

0

⎧
⎩⎨
⎪⎪⎪
⎪⎪⎪

4nm

( −π2 m2 n2)2

0

if  m + n  is odd

if  m + n  is even
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HAMILTONIAN: OVERLAP INTEGRALS
We see that the integral has two different contributions:

• Diagonal elements  are defined by  with 

• Other elements  determined by perturbing potential 

• The Hamiltonian gives contributions of eigenstates 

• Eigenenergies  and potential  are in units of 

Hnn Ĥ0 =En n2 E∞
1

Hn,m≠n = −Ĥp Ĥ Ĥ0

=Hnn n2

⎧
⎩⎨
⎪⎪⎪
⎪⎪⎪

Hmn

Hmn

= −νL
4nm

( −π2 m2 n2)2

= 0

if  n = m ± 1, m ± 3, …

if  n = m ± 2, m ± 4, …

(z) = sin(nπz)ψn 2–√

En νL =E∞
1

ℏ2π2

2mL2
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SOLVING THE EIGENVALUE EQUATION
The eigenvalue equation is:

If we numerically calculate the overlap integrals:

When comparing resulting eigenvalues:

Eigenvalues

Finite basis approx.

Analytical solution

(z) = (z)Ĥψn Enψn

=Hmn

⎛
⎝⎜

1
−0.54

0

−0.54
4

−0.584

0
−0.584

9

⎞
⎠⎟

E1 E2 E3

0.90437 4.0279 9.068

0.90419 4.0275 9.017
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COMPARING EIGENSTATES

Finite basis method gives good results for lower eigenenergies/eigenstates

From the plot
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FINITE DIFFERENCE
APPROXIMATION
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FINITE DIFFERENCE APPROXIMATION
Steps to reach to the solutions:

1. Discretize the wave function (finite basis)

2. Finite Difference Method to discretize the Schr"odinger equation

3. Limited discrete points  matrix algebra (Requires finite box)

4. Solve the eigenvalue equations for eigenenergies & eigenstates

⟶
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DISCRETIZING A FUNCTION

• A function on a computer as a vector:

f(x) = ⟶

⎛

⎝
⎜⎜⎜⎜

f( )x1

f( )x2

⋮
f( )xN

⎞

⎠
⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜⎜

f1

f2

⋮
fN

⎞

⎠
⎟⎟⎟⎟
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A NORMALIZED STATE

• A normalized state requires: 

• If we define the normalized state as ket and bra:

And the inner product is:

⟨f|f⟩ = 1

|f⟩ = |f( ) ⟩ = ⟶xj δx
−−√

⎛

⎝
⎜⎜⎜⎜

f( )x1

f( )x2

⋮
f( )xN

⎞

⎠
⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜⎜

f1

f2

⋮
fN

⎞

⎠
⎟⎟⎟⎟

⟨f| = ⟨ ( ) | ⟶ ( )f ∗ xj δx
−−√ f ∗

1 δx
−−√ f ∗

2 δx
−−√ ⋯ f ∗

N δx
−−√

⟨f|f⟩ = ⟨f(x)|f(x)⟩δx = | δx ⟷ |f(x) dx∑
j=1

N

fj|2 ∫ b

a

|2

23Lecture 13-15: Approximations PART II



Lecture 13-15: Approximations PART II



FINITE DIFFERENCES

• Hamiltonian contains second derivative

• Derivative of a discrete function?

Central difference scheme:  ⟶ =
df(x)

dx

δf(x)
δx

− f(i − 1)fi+1

2δx

24Lecture 13-15: Approximations PART II



SECOND DERIVATIVE

• Hamiltonian contains second derivative

• Derivative of a discrete function?

• Second derivative by using central difference scheme with 

Central difference scheme:  ⟶ =
df(x)

dx

δf(x)
δx

− f(i − 1)fi+1

2δx

δ/2

⟶ =
f(x)d2

dx2

−−fi+1 fi

δx

−fi fi−1

δx

δx

+ − 2fi+1 fi−1 fi

δx2

• Discrete potential function = V ( )Vi xi

= − + V (x) ⟶ − +Ĥ
ℏ2

2m

d2

dx2

ℏ2

2m

+ − 2fi+1 fi−1 fi

δx2 Vi
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MATRIX FORM

• The Hamiltonian can be written as a matrix operator

= − + V (x) ⟶ − +Ĥ
ℏ2

2m

d2

dx2

ℏ2

2m

+ − 2fi+1 fi−1 fi

δx2 Vi

= − + V (x)1Ĥ
ℏ2

2m δx2

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

1
1

0
−2
1

1
−2

⋱

1

⋱
1

⋱
−2
1

1
−2
0

1
1

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
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MATRIX FORM (DIMENSIONLESS)

• The Hamiltonian can be written as a matrix operator ( ,  in units of )

= − + V (x) ⟶ − + ( − )Ĥ
1

π2

d2

dx2

1
π2

+ − 2fi+1 fi−1 fi

δx2 νL
i

N

1
2

E νL E∞
1

− +
1
δπ2 x2

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

1
1

0
−2

⋱

1

⋱
1

⋱
−2
0

1
1

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

V1

V2

⋱
VN−1

VN

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟
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MATRIX FORM (DIMENSIONLESS)

• The Hamiltonian can be written as a matrix operator ( ,  in units of )

 Solve the eigenvalue equation: 

= − + V (x) ⟶ − + ( − )Ĥ
1

π2

d2

dx2

1
π2

+ − 2fi+1 fi−1 fi

δx2 νL
i

N

1
2

E νL E∞
1

− +
1
δπ2 x2

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

1
1

0
−2

⋱

1

⋱
1

⋱
−2
0

1
1

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟
νL

2N

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

−N

−N + 2

⋱
N − 2

N

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

⟶ | ⟩ = |Ĥ ψn En ψn
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SOLVING LARGE MATRIX EQUATIONS
import numpy as np1

from scipy.sparse import diags_array2

from scipy.sparse.linalg import eigsh, LaplacianNd3

4

# Parameters5

n = 500; L = 1.0; dx = L/(n-1)6

x = np.linspace(0, L, n)7

V = 5 * (x - L/2)8

9

# Calculate E_n, Psi_n10

lap = LaplacianNd(11

  grid_shape=(n, ), boundary_conditions='dirichlet'12

).tosparse().astype(np.float64)13

Vmat = diags_array([V], offsets=[0]).toarray()14

E_n, Psi_n = eigsh(-lap/np.pi**2/dx**2 + Vmat, k=3, which="SM")15

print("Eigenvalues E1, E2, E3:\n\t\t" + str(np.round(E_n, 3))) 16

Eigenvalues E1, E2, E3:

        [0.729 4.038 8.976]
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INFINITE WELL WITH ELECTRIC FIELD

Eigenvalues

Finite difference

Finite basis approx.

Analytical solution

• Choosing initial basis functions not necessary

• Accurate potential  (  dependent)

• BAD eigenenergies accuracy? Wave function accuracy GOOD?

= − + (z − 1/2)  with  = −Ĥ
1

π2

d2

dz2 νL Ĥ0
1

π2

d2

dz2

E1 E2 E3

0.7293 4.0382 8.976

0.9044 4.0279 9.068

0.9042 4.0275 9.017

V (x) δx
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WAVE FUNCTION COMPARISON
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TIME-INDEPENDENT
PERTURBATION THEORY
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PERTURBATION THEORY
Steps to reach to the solutions:

1.  Assume the perturbation to be small

2. Expand both the eigenenergies & eigenstates into power series in 

3. Recursive relations for eigenenergies & eigenstates

= + γĤ Ĥ0 Ĥp

γ
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EXAMPLE OF STANDARD PERTURBATION

• Putting on a “small” electric field

• Approximating the effect of  by power series:V (x) = e (x − L/2) ≡ εzE
~

= + ε + + …Em E
(0)
m α1 α2ε2

• Eigenstates  extracted from 

•  higher orders zero

• Can we generalize perturbations?

| ⟩ψm Em

ε ≪ 1 ⟶
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PERTURBATION PART OF HAMILTONIAN

• Independent of the actual perturbation form

• Known solutions for the unperturbed part 

• Perturbation of  by “small” perturbing part :

Ĥ0

| ⟩ = | ⟩Ĥ0 ψn En ψn

Ĥ0 Ĥp

= + γĤ Ĥ0 Ĥp

• We can express the eigenenergies  and eigenstates :E |ϕ⟩

|ϕ⟩ = ( + γ )|ϕ⟩ = E|ϕ⟩Ĥ Ĥ0 Ĥp

35Lecture 13-15: Approximations PART II



POWER SERIES EXPANSION

Expand  and  as power series in :

|ϕ⟩ = ( + γ )|ϕ⟩ = E|ϕ⟩Ĥ Ĥ0 Ĥp

E |ϕ⟩ γ

E = + γ + + + + …E (0) E (1) γ2E (2) γ3E (3) γ4E (4)

|ϕ⟩ = | ⟩ + γ| ⟩ + | ⟩ + | ⟩ + | ⟩ + …ϕ(0) ϕ(1) γ2 ϕ(2) γ3 ϕ(3) γ4 ϕ(4)

Schrodinger equation becomes:

 Equate coefficients of same order in 

( + γ ) (| ⟩ + γ| ⟩ + | ⟩ + …) =Ĥ0 Ĥp ϕ(0) ϕ(1) γ2 ϕ(2)

( + γ + + …) (| ⟩ + γ| ⟩ + | ⟩ + …)E (0) E (1) γ2E (2) ϕ(0) ϕ(1) γ2 ϕ(2)

⟶ γ
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ZEROTH ORDER PERTURBATION

( + γ ) (| ⟩ + γ| ⟩ + | ⟩ + …) =Ĥ0 Ĥp ϕ(0) ϕ(1) γ2 ϕ(2)

( + γ + + …) (| ⟩ + γ| ⟩ + | ⟩ + …)E (0) E (1) γ2E (2) ϕ(0) ϕ(1) γ2 ϕ(2)

• zeroth order in :

• These are the solutions of the unperturbed Hamiltonian

γ

| ⟩ = | ⟩ ⟶ | ⟩ ≡ | ⟩, ≡Ĥ0 ϕ(0) E (0) ϕ(0) ψm ϕ(0) Em E (0)
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MATCHING ORDERS

Matching orders in 

( + γ ) (| ⟩ + γ| ⟩ + | ⟩ + …) =Ĥ0 Ĥp ψm ϕ(1) γ2 ϕ(2)

( + γ + + …) (| ⟩ + γ| ⟩ + | ⟩ + …)Em E (1) γ2E (2) ψm ϕ(1) γ2 ϕ(2)

γ

| ⟩Ĥ0 ψm

| ⟩ + | ⟩Ĥ0 ϕ(1) Ĥp ψm

| ⟩ + | ⟩Ĥ0 ϕ(2) Ĥp ϕ(1)

= | ⟩Em ψm

= | ⟩ + | ⟩Em ϕ(1) E (1) ψm

= | ⟩ + | ⟩ + | ⟩Em ϕ(2) E (1) ϕ(1) E (2) ψm
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MATCHING ORDERS CTU’D

Rewrite highest order state to the le�-hand-side:

| ⟩Ĥ0 ψm

| ⟩ + | ⟩Ĥ0 ϕ(1) Ĥp ψm

| ⟩ + | ⟩Ĥ0 ϕ(2) Ĥp ϕ(1)

= | ⟩Em ψm

= | ⟩ + | ⟩Em ϕ(1) E (1) ψm

= | ⟩ + | ⟩ + | ⟩Em ϕ(2) E (1) ϕ(1) E (2) ψm

( − )| ⟩Ĥ0 Em ψm

( − )| ⟩Ĥ0 Em ϕ(1)

( − )| ⟩Ĥ0 Em ϕ(2)

= 0

= ( − )| ⟩E (1) Ĥp ψm

= ( − )| ⟩ + | ⟩E (1) Ĥp ϕ(1) E (2) ψm
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FIRST ORDER PERTURBATION THEORY

Le�-multiply by the bra 

• First order correction to the eigenenergy: 

( − )| ⟩Ĥ0 Em ψm

( − )| ⟩Ĥ0 Em ϕ(1)

( − )| ⟩Ĥ0 Em ϕ(2)

= 0

= ( − )| ⟩E (1) Ĥp ψm

= ( − )| ⟩ + | ⟩E (1) Ĥp ϕ(1) E (2) ψm

⟨ |ψm

left-hand-side: ⟨ |( − )| ⟩ψm Ĥ0 Em ϕ(1)

right-hand-side: ⟨ |( − )| ⟩ψm E (1) Ĥp ψm

⟹ = ⟨ | | ⟩E (1) ψm Ĥp ψm

= ⟨ |( − )| ⟩ = 0ψm Em Em ϕ(1)

= − ⟨ | | ⟩E (1) ψm Ĥp ψm

+Em E (1)
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FIRST ORDER EIGENSTATE

• Expand first order correction eigenstate: 

• Filling in:

| ⟩ = | ⟩ϕ(1) ∑n a
(1)
n ψn

( − )| ⟩Ĥ0 Em ϕ(1) = ( − )| ⟩E (1) Ĥp ψm

left-hand-side: ⟨ |( − )| ⟩ψi Ĥ0 Em ϕ(1)

right-hand-side: ⟨ |( − )| ⟩ψi E (1) Ĥp ψm

⟹ a
(1)
i

⟹ | ⟩ϕ(1)

= ( − )⟨ | ⟩ = ( − )Ei Em ψi ϕ(1) Ei Em a
(1)
i

= ⟨ | ⟩ − ⟨ | | ⟩E (1) ψi ψm ψi Ĥp ψm

=
⟨ | | ⟩ψi Ĥp ψm

−Em Ei

= | ⟩∑
n≠m

⟨ | | ⟩ψn Ĥp ψm

−Em En

ψn
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ELECTRIC FIELD AS PERTURBATION
Up to first order we have:

The Hamiltonian in dimensionless units:

• The Hamiltonian gives contributions of eigenstates 

• Eigenenergies  and potential  are in units of 

| ⟩ ⟶ | ⟩ + | ⟩ψm ψm ϕ
(1)
m

⟶ +Em Em E (1)

= | ⟩ + | ⟩ψm ∑
n≠m

⟨ | | ⟩ψn Ĥp ψm

−Em En

ψn

= + ⟨ | | ⟩Em ψm Ĥp ψm

= − + (z − 1/2)  with  = −Ĥ
1

π2

d2

dz2 νL Ĥ0
1

π2

d2

dz2

(z) = sin(nπz)ψn 2–√

En νL =E∞
1

ℏ2π2

2mL2
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FIRST ORDER CORRECTION
The correction in the energies is zero (no change):

+Em E
(1)
m = + ⟨ | | ⟩Em ψm Ĥp ψm

= + (z − 1/2) (mπz)dz,m2 νL ∫ 1

0
sin2

= + 0 =m2 m2

| ⟩ + | ⟩ψm ϕ
(1)
m = | ⟩ + | ⟩ψm ∑

n≠m

⟨ | | ⟩ψn Ĥp ψm

−Em En

ψn

= | ⟩ − (z − 1/2) sin(mπz) sin(nπz)dz | ⟩ψm ∑
n≠m

2νL

−m2 n2 ∫ 1

0
ψn

= | ⟩ − | ⟩ψm ∑
n=m±1,±3,…

2νL

−m2 n2

4nm

( −π2 m2 n2)2 ψn
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FIRST ORDER CORRECTION CTU’D
Where the second integral was obtained from:

So we have for eigenenergies and eigenstates:

(z − 1/2) sin(mπz) sin(nπz)dz =∫ 1

0

⎧
⎩⎨
⎪⎪⎪
⎪⎪⎪

4nm

( −π2 m2 n2)2

0

if  m + n  is odd

if  m + n  is even

+Em E
(1)
m

| ⟩ + | ⟩ψm ψ
(1)
m

= m2

= sin(mπz) + sin(nπz)2–√ ∑
n=m±1,±3,…

8nmνL 2–√
( −π2 m2 n2)3
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WAVE FUNCTION COMPARISON

For 2nd order perturbation theory: see Chapter 6 of David Miller’s book
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