PHOT 301: Quantum Photonics
LECTURE 13-15
Michaël Barbier, Fall semester (2024-2025)
| Method | Approximates? | |
|---|---|---|
| 1 | Transfer matrix method | piece-wise constant \(V(x)\) |
| 2 | Finite basis method | limited \(\psi_n\), \(E_n\): Matrix-formalism |
| 3 | Finite difference method | discretizes wave function |
| 4 | Perturbation theory (stat.) | small perturbation known solutions |
| 5 | Time-dependent perturbation | small perturbation known solutions |
| 6 | Tight-binding approx. | electrons strongly bound (covalent) |
| 7 | Variational method | finding energy minima |
Usage of simple examples to compare over approximations
\[ -\frac{\hbar^2}{2m} \frac{d^2 \psi(x)}{dx^2} + e\tilde{E}x \psi(x) = E \psi(x) \]
\[ -\frac{\hbar^2}{2m} \frac{d^2 \psi(x)}{dx^2} + e\tilde{E}x \psi(x) = E \psi(x) \]
Rewrite the equation to clarify its form:
\[ \begin{aligned} \frac{d^2 \psi(x)}{dx^2} &= \frac{2m e\tilde{E}}{\hbar^2} (x-\frac{E}{e\tilde{E}}) \psi(x)\\ &= c\,(x - d) \psi(x) \end{aligned} \]
Where \(c = \frac{2m e\tilde{E}}{\hbar^2}\) and \(d = \frac{E}{e\tilde{E}}\).
This looks very much like the (solvable) Airy equation:
\[ \frac{d^2 f(z)}{dz^2} = z f(z) \]
\(\longrightarrow\) we need to find a suitable substitution for \(z\)
Assume a linear form for \(z = \alpha x + \beta\) and rewrite the Airy equation
\[ \frac{d^2 \psi(x)}{dx^2} = \frac{d^2 f(z)}{dz^2} \left( \frac{dz}{dx} \right)^2 = \alpha^2 z f(z) = (\alpha^3 x + \beta \alpha^2) f(z) \]
But we have also:
\[ \frac{d^2 \psi(x)}{dx^2} = -\frac{2m}{\hbar^2} (E - e\tilde{E}x) \psi(x) = c (x - d) \]
\[ \Longrightarrow c (x - d) = (\alpha^3 x + \beta \alpha^2)\\ \Longrightarrow \alpha = c^{1/3} \qquad \beta = - c^{1/3} d\\ \]
\[ \Longrightarrow z = \alpha x + \beta = c^{1/3}(x - d) = \left( \frac{2 m e\tilde{E}}{\hbar^2} \right)^{1/3} \left(x - \frac{E}{e\tilde{E}}\right) \]
\[ \frac{d^2 f(z)}{dz^2} = z \, f(z), \qquad \quad \psi(x) = f(z) = C \, \mathrm{Ai}(z) + D \, \mathrm{Bi}(z) \]
\[ \begin{aligned} \mathrm{Ai}(z) &= \frac{1}{\pi} \int_0^\infty \cos\left(\frac{t^3}{3} + zt\right) dt\\ \mathrm{Bi}(z) &= \frac{1}{\pi} \int_0^\infty \left[\exp\left(-\frac{t^3}{3} + zt\right) + \sin\left(\frac{t^3}{3} + zt\right)\right] dt\\ \end{aligned} \]
\[ \frac{d^2 f(z)}{dz^2} = z \, f(z), \qquad \quad \psi(x) = f(z) = C \, \mathrm{Ai}(z) + D \, \mathrm{Bi}(z) \]
\[ \begin{aligned} &x = 0 \longrightarrow z_0 = -c^{1/3} d &\qquad C \, \mathrm{Ai}(z_0) + D \, \mathrm{Bi}(z_0) = 0\\ &x = L \longrightarrow z_L = c^{1/3}(L-d) &\qquad C \, \mathrm{Ai}(z_L) + D \, \mathrm{Bi}(z_L) = 0\\ \end{aligned} \]
\[ \begin{pmatrix} \mathrm{Ai}(z_0) & \mathrm{Bi}(z_0)\\ \mathrm{Ai}(z_L) & \mathrm{Bi}(z_L)\\ \end{pmatrix} \pmatrix{C \\ D} = \pmatrix{0 \\ 0} \]
Inverse cannot exist \(\longrightarrow\) determinant is zero:
\[ \det \begin{pmatrix} \mathrm{Ai}(z_0) & \mathrm{Bi}(z_0)\\ \mathrm{Ai}(z_L) & \mathrm{Bi}(z_L)\\ \end{pmatrix} = \mathrm{Ai}(z_0) \, \mathrm{Bi}(z_L) - \mathrm{Ai}(z_L) \, \mathrm{Bi}(z_0) = 0\\ \]
\(\longrightarrow\) Numerically solutions \(z_0(E)\), \(z_L(E)\)
Simplify formula and units
\[ \left\{ \begin{aligned} z_0 &= -c^{1/3} d = - \left(\frac{2m e \tilde{E}}{\hbar^2}\right)^{1/3} \, \frac{E}{e\tilde{E}} \\ z_L &= c^{1/3}(L-d) = \left(\frac{2m e \tilde{E}}{\hbar^2}\right)^{1/3} \, \left(L - \frac{E}{e\tilde{E}}\right)\\ \end{aligned} \right. \]
In units of \(E_1^\infty = \frac{\hbar^2 \pi^2}{2 m L^2}\),
\[ \boxed{E \longrightarrow \varepsilon = \frac{E}{E_1^{\infty}}} \qquad\boxed{V_L \longrightarrow \nu_L = \frac{V_L}{E_1^{\infty}} = \frac{e\tilde{E}L}{E_1^{\infty}}} \]
\[ \Rightarrow \boxed{z_0 = - \left(\frac{\pi}{\nu_L}\right)^{\frac{2}{3}} \varepsilon, \qquad z_L = \left(\frac{\pi}{\nu_L}\right)^{\frac{2}{3}} \left(\nu_L - \varepsilon\right)} \]
For comparison with the infinite well: energy unit \(\,\,E_1^\infty\)
\[ z_0 = - \left(\frac{\pi}{\nu_L}\right)^{\frac{2}{3}} \varepsilon, \qquad z_L = \left(\frac{\pi}{\nu_L}\right)^{\frac{2}{3}} \left(\nu_L - \varepsilon\right) \]
Alternative: energy unit \(\,\,\nu_L\)
\[ z_0 = - \pi^\frac{2}{3} \tilde{\varepsilon}, \qquad z_L = \pi^\frac{2}{3} \left(1 - \tilde{\varepsilon}\right) \]
eigenenergies: Solve determinant equation
eigenstates: Fill in eigenenergies in boundary conditions (constants \(C\), \(D\))
\[ \begin{aligned} &\textrm{Eigenenergies} \, \,E_n: \qquad \qquad\qquad\mathrm{Ai}(z_0) \, \mathrm{Bi}(z_L) - \mathrm{Ai}(z_L) \, \mathrm{Bi}(z_0) = 0\\ &\\ &\textrm{Eigenstates} \, \,\psi_n(x) = C \,\mathrm{Ai}(z) + D \,\mathrm{Bi}(z): \qquad\frac{D}{C} = -\frac{\mathrm{Bi(z_0)}}{\mathrm{Ai(z_0)}} \end{aligned} \]
Remember that \(z\) scales with energy
\[ z = c^{1/3}(x - d) = \left( \frac{2 m e\tilde{E}}{\hbar^2} \right)^{1/3} \left(x - \frac{E}{e\tilde{E}}\right) = \left(\frac{\pi}{\nu_L}\right)^{\frac{2}{3}} \left(\frac{x}{L}\nu_L - \varepsilon\right) \]
Steps to reach to the solutions:
The dimensionless Hamiltonian for infinite well is obtained by:
\[ \hat{H} = -\frac{1}{\pi^2}\frac{d^2}{dz^2} + \nu_L \, (z - 1/2) \quad \textrm{ with } \quad \hat{H}_0 = -\frac{1}{\pi^2}\frac{d^2}{dz^2} \]
Compute the elements of the Hamiltonian (matrix)
\[ H_{mn} = -\frac{1}{\pi^2} \int \psi_m(z) \frac{d^2}{dz^2} \psi_n(z) dz \,\, + \,\,\int \nu_L \, (z - 1/2) \psi_m(z) \psi_n(z) dz, \]
With \(\,\psi_n(z) = \sqrt{2} \sin(n \pi z)\)
\[ H_{mn} = \langle \psi_m | \hat{H} | \psi_n \rangle = -\frac{1}{\pi^2} \int \psi_m(z) \frac{d^2}{dz^2} \psi_n(z) dz \,\, + \,\,\int \nu_L \, (z - \frac{1}{2}) \psi_m(z) \psi_n(z) dz, \]
With the eigenstates \(\psi_n(z) = \sqrt{2}\sin(n\pi z)\)
\[ \begin{aligned} H_{mn} &= -\frac{1}{\pi^2} \int_0^1 \psi_m(z) \frac{d^2}{dz^2} \psi_n(z) dz \,\, + \,\,\int_0^1 \nu_L \, (z - 1/2) \psi_m(z) \psi_n(z) dz,\\ &= n^2\delta_{mn} \,\, + \,\,\nu_L \int_0^1 \, (z-1/2) \sin(m\pi z) \sin(n\pi z) dz,\\ \end{aligned} \]
The second integral can be calculated:
\[ \int_0^1 \, (z-1/2) \sin(m\pi z) \sin(n\pi z) dz = \left\{\,\,\begin{aligned} \frac{4nm}{\pi^2(m^2-n^2)^2} & \qquad \textrm{if }\,\, m+n \,\,\textrm{ is odd} \\ & \\ 0 & \qquad \textrm{if } \,\,m+n\,\, \textrm{ is even} \end{aligned}\right. \]
We see that the integral has two different contributions:
\[ H_{nn} = n^2 \qquad \left\{\,\, \begin{aligned} H_{mn} &= - \nu_L \, \frac{4nm}{\pi^2(m^2-n^2)^2} & \quad \textrm{if }\,\,n = m \pm 1, m \pm 3, \dots \\ & & \\ H_{mn} &= 0 & \quad \textrm{if }\,\, n = m \pm 2, m \pm 4, \dots\\ \end{aligned} \right. \]
The eigenvalue equation is:
\[ \hat{H} \psi_n(z) = E_n \psi_n(z) \]
If we numerically calculate the overlap integrals:
\[ H_{mn} = \pmatrix{ 1 & -0.54 & 0\\ -0.54 & 4 & -0.584\\ 0 & -0.584 & 9\\ } \]
When comparing resulting eigenvalues:
| Eigenvalues | \(E_1\) | \(E_2\) | \(E_3\) |
|---|---|---|---|
| Finite basis approx. | \(0.90437\) | \(4.0279\) | \(9.068\) |
| Analytical solution | \(0.90419\) | \(4.0275\) | \(9.017\) |
From the plot
Finite basis method gives good results for lower eigenenergies/eigenstates
Steps to reach to the solutions:
\[ f(x) = \pmatrix{f(x_1) \\ f(x_2) \\ \vdots \\ f(x_N)} \longrightarrow \pmatrix{f_1 \\ f_2 \\ \vdots \\ f_N} \]
\[ |f \rangle = |f(x_j) \sqrt{\delta x}\rangle = \pmatrix{f(x_1) \\ f(x_2) \\ \vdots \\ f(x_N)} \longrightarrow \pmatrix{f_1 \\ f_2 \\ \vdots \\ f_N} \]
\[ \langle f | = \langle f^*(x_j) \sqrt{\delta x}| \longrightarrow \pmatrix{f_1^* \sqrt{\delta x} & f_2^* \sqrt{\delta x} & \cdots & f_N^* \sqrt{\delta x}} \]
And the inner product is:
\[ \langle f | f \rangle = \langle f(x) | f(x)\rangle \delta x = \sum_{j=1}^N |f_j|^2 \delta x \quad\longleftrightarrow\quad \int_a^b |f(x)|^2 dx \]
\[ \textrm{Central difference scheme: } \quad \frac{df(x)}{dx} \longrightarrow \frac{\delta f(x)}{\delta x} = \frac{f_{i+1} - f(i-1)}{2\delta x} \]
\[ \textrm{Central difference scheme: } \quad \frac{df(x)}{dx} \longrightarrow \frac{\delta f(x)}{\delta x} = \frac{f_{i+1} - f(i-1)}{2\delta x} \]
\[ \frac{d^2 f(x)}{dx^2} \longrightarrow \frac{\frac{f_{i+1} - f_{i}}{\delta x} - \frac{f_{i} - f_{i-1}}{\delta x}}{\delta x} = \frac{f_{i+1} + f_{i-1} - 2 f_i}{\delta x^2} \]
\[ \hat{H} = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + V(x) \quad \longrightarrow \quad -\frac{\hbar^2}{2m} \frac{f_{i+1} + f_{i-1} - 2 f_i}{\delta x^2} + V_i \]
\[ \hat{H} = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + V(x) \quad \longrightarrow \quad -\frac{\hbar^2}{2m} \frac{f_{i+1} + f_{i-1} - 2 f_i}{\delta x^2} + V_i \]
\[ \hat{H} = -\frac{\hbar^2}{2m\,\delta x^2} \pmatrix{ 1 & 0 & & & & & \\ 1 & -2 & 1 & & & & \\ & 1 & -2 & 1 & & & \\ & & \ddots & \ddots & \ddots & & \\ & & & 1 & -2 & 1 & \\ & & & & 1 & -2 & 1 \\ & & & & & 0 & 1 \\ } + V(x) \mathbb{1} \]
\[ \hat{H} = -\frac{1}{\pi^2} \frac{d^2}{dx^2} + V(x) \quad \longrightarrow \quad -\frac{1}{\pi^2} \frac{f_{i+1} + f_{i-1} - 2 f_i}{\delta x^2} \,+\, \nu_L \left(\frac{i}{N}-\frac{1}{2}\right) \]
\[ -\frac{1}{\pi^2\,\delta x^2} \pmatrix{ 1 & 0 & & & \\ 1 & -2 & 1 & & \\ & \ddots & \ddots & \ddots & \\ & & 1 & -2 & 1 \\ & & & 0 & 1 \\ } + \pmatrix{ V_1 & & & & \\ & V_2 & & & \\ & & \ddots & & \\ & & & V_{N-1} & \\ & & & & V_{N} \\ } \]
\[ \hat{H} = -\frac{1}{\pi^2} \frac{d^2}{dx^2} + V(x) \quad \longrightarrow \quad -\frac{1}{\pi^2} \frac{f_{i+1} + f_{i-1} - 2 f_i}{\delta x^2} \,+\, \nu_L \left(\frac{i}{N}-\frac{1}{2}\right) \]
\[ -\frac{1}{\pi^2\,\delta x^2} \pmatrix{ 1 & 0 & & & \\ 1 & -2 & 1 & & \\ & \ddots & \ddots & \ddots & \\ & & 1 & -2 & 1 \\ & & & 0 & 1 \\ } + \frac{\nu_L}{2N} \pmatrix{ -N & & & & \\ & -N+2 & & & \\ & & \ddots & & \\ & & & N-2 & \\ & & & & N \\ } \]
\(\longrightarrow\) Solve the eigenvalue equation: \(\,\,\hat{H} |\psi_n\rangle = E_n |\psi_n\)
import numpy as np
from scipy.sparse import diags_array
from scipy.sparse.linalg import eigsh, LaplacianNd
# Parameters
n = 500; L = 1.0; dx = L/(n-1)
x = np.linspace(0, L, n)
V = 5 * (x - L/2)
# Calculate E_n, Psi_n
lap = LaplacianNd(
grid_shape=(n, ), boundary_conditions='dirichlet'
).tosparse().astype(np.float64)
Vmat = diags_array([V], offsets=[0]).toarray()
E_n, Psi_n = eigsh(-lap/np.pi**2/dx**2 + Vmat, k=3, which="SM")
print("Eigenvalues E1, E2, E3:\n\t\t" + str(np.round(E_n, 3))) Eigenvalues E1, E2, E3:
[0.729 4.038 8.976]
\[ \hat{H} = -\frac{1}{\pi^2}\frac{d^2}{dz^2} + \nu_L \, (z - 1/2) \quad \textrm{ with } \quad \hat{H}_0 = -\frac{1}{\pi^2}\frac{d^2}{dz^2} \]
| Eigenvalues | \(E_1\) | \(E_2\) | \(E_3\) |
|---|---|---|---|
| Finite difference | \(0.7293\) | \(4.0382\) | \(8.976\) |
| Finite basis approx. | \(0.9044\) | \(4.0279\) | \(9.068\) |
| Analytical solution | \(0.9042\) | \(4.0275\) | \(9.017\) |
Steps to reach to the solutions:
\[ E_m = E^{(0)}_m + \alpha_1 \varepsilon + \alpha_2 \varepsilon^2 + \dots \]
\[ \hat{H}_0 |\psi_n\rangle = E_n |\psi_n\rangle \]
\[ \hat{H} = \hat{H}_0 + \gamma\hat{H}_p \]
\[ \hat{H}|\phi\rangle = (\hat{H}_0 + \gamma\hat{H}_p) |\phi\rangle = E |\phi\rangle \]
\[ \hat{H}|\phi\rangle = (\hat{H}_0 + \gamma\hat{H}_p) |\phi\rangle = E |\phi\rangle \]
Expand \(E\) and \(|\phi\rangle\) as power series in \(\gamma\):
\[ E = E^{(0)} + \gamma E^{(1)} + \gamma^2 E^{(2)} + \gamma^3 E^{(3)} + \gamma^4 E^{(4)} + \dots \]
\[ |\phi\rangle = |\phi^{(0)}\rangle + \gamma |\phi^{(1)}\rangle + \gamma^2 |\phi^{(2)}\rangle + \gamma^3 |\phi^{(3)}\rangle + \gamma^4 |\phi^{(4)}\rangle + \dots \]
Schrodinger equation becomes:
\[ \begin{aligned} &(\hat{H}_0 + \gamma\hat{H}_p) \left( |\phi^{(0)}\rangle + \gamma |\phi^{(1)}\rangle + \gamma^2 |\phi^{(2)}\rangle + \dots \right) = \\ & \qquad\left(E^{(0)} + \gamma E^{(1)} + \gamma^2 E^{(2)} + \dots \right) \left( |\phi^{(0)}\rangle + \gamma |\phi^{(1)}\rangle + \gamma^2 |\phi^{(2)}\rangle + \dots \right) \end{aligned} \]
\(\longrightarrow\) Equate coefficients of same order in \(\gamma\)
\[ \begin{aligned} &(\hat{H}_0 + \gamma\hat{H}_p) \left( |\phi^{(0)}\rangle + \gamma |\phi^{(1)}\rangle + \gamma^2 |\phi^{(2)}\rangle + \dots \right) = \\ & \qquad\left(E^{(0)} + \gamma E^{(1)} + \gamma^2 E^{(2)} + \dots \right) \left( |\phi^{(0)}\rangle + \gamma |\phi^{(1)}\rangle + \gamma^2 |\phi^{(2)}\rangle + \dots \right) \end{aligned} \]
\[ \hat{H}_0 |\phi^{(0)}\rangle = E^{(0)} |\phi^{(0)}\rangle \quad \longrightarrow \quad |\psi_m\rangle \equiv |\phi^{(0)}\rangle, \quad E_m \equiv E^{(0)} \]
\[ \begin{aligned} &(\hat{H}_0 + \gamma\hat{H}_p) \left( |\psi_m \rangle + \gamma |\phi^{(1)} \rangle + \gamma^2 |\phi^{(2)}\rangle + \dots \right) = \\ & \qquad\left(E_m + \gamma E^{(1)} + \gamma^2 E^{(2)} + \dots \right) \left( |\psi_m \rangle + \gamma |\phi^{(1)} \rangle + \gamma^2 |\phi^{(2)}\rangle + \dots \right) \end{aligned} \]
Matching orders in \(\gamma\)
\[ \begin{aligned} \hat{H}_0 |\psi_m \rangle &= E_m |\psi_m \rangle\\ &\\ \hat{H}_0 |\phi^{(1)}\rangle + \hat{H}_p|\psi_m \rangle &= E_m |\phi^{(1)}\rangle + E^{(1)} |\psi_m \rangle\\ &\\ \hat{H}_0 |\phi^{(2)}\rangle + \hat{H}_p|\phi^{(1)}\rangle &= E_m |\phi^{(2)}\rangle + E^{(1)} |\phi^{(1)}\rangle + E^{(2)} |\psi_m\rangle\\ \end{aligned} \]
\[ \begin{aligned} \hat{H}_0 |\psi_m \rangle &= E_m |\psi_m \rangle\\ \hat{H}_0 |\phi^{(1)}\rangle + \hat{H}_p|\psi_m \rangle &= E_m |\phi^{(1)}\rangle + E^{(1)} |\psi_m \rangle\\ \hat{H}_0 |\phi^{(2)}\rangle + \hat{H}_p|\phi^{(1)}\rangle &= E_m |\phi^{(2)}\rangle + E^{(1)} |\phi^{(1)}\rangle + E^{(2)} |\psi_m\rangle\\ \end{aligned} \]
Rewrite highest order state to the left-hand-side:
\[ \begin{aligned} (\hat{H}_0 - E_m) |\psi_m \rangle &= 0\\ (\hat{H}_0 - E_m)|\phi^{(1)}\rangle &= (E^{(1)} - \hat{H}_p)|\psi_m \rangle\\ (\hat{H}_0 - E_m)|\phi^{(2)}\rangle &= (E^{(1)} - \hat{H}_p) |\phi^{(1)}\rangle + E^{(2)} |\psi_m\rangle\\ \end{aligned} \]
\[ \begin{aligned} (\hat{H}_0 - E_m) |\psi_m \rangle &= 0\\ (\hat{H}_0 - E_m)|\phi^{(1)}\rangle &= (E^{(1)} - \hat{H}_p)|\psi_m \rangle\\ (\hat{H}_0 - E_m)|\phi^{(2)}\rangle &= (E^{(1)} - \hat{H}_p) |\phi^{(1)}\rangle + E^{(2)} |\psi_m\rangle\\ \end{aligned} \]
Left-multiply by the bra \(\langle \psi_m |\)
\[ \begin{aligned} \textrm{left-hand-side:}\quad \langle \psi_m |(\hat{H}_0 - E_m)|\phi^{(1)}\rangle &= \langle \psi_m |(E_m - E_m)|\phi^{(1)}\rangle = 0\\ \textrm{right-hand-side:}\quad \langle \psi_m |(E^{(1)} - \hat{H}_p)|\psi_m \rangle &= E^{(1)} - \langle\psi_m | \hat{H}_p|\psi_m\rangle\\ &\\ \Longrightarrow E^{(1)} = \langle\psi_m | \hat{H}_p|\psi_m\rangle \end{aligned} \]
Expand first order correction eigenstate: \(|\phi^{(1)}\rangle = \sum_n a_n^{(1)} \, | \psi_n \rangle\)
Filling in:
\[ \begin{aligned} (\hat{H}_0 - E_m) |\phi^{(1)}\rangle &= (E^{(1)} - \hat{H}_p)|\psi_m \rangle\\ \end{aligned} \]
\[ \begin{aligned} \textrm{left-hand-side:}\quad \langle \psi_i |(\hat{H}_0 - E_m)|\phi^{(1)}\rangle &= (E_i - E_m)\langle \psi_i | \phi^{(1)}\rangle = (E_i - E_m) a_i^{(1)}\\ \textrm{right-hand-side:}\quad \langle \psi_i |(E^{(1)} - \hat{H}_p)|\psi_m \rangle &= E^{(1)} \langle\psi_i | \psi_m \rangle - \langle \psi_i | \hat{H}_p |\psi_m \rangle\\ &\\ \Longrightarrow \qquad \,\,\,\,\, a_i^{(1)} &= \frac{\langle \psi_i | \hat{H}_p |\psi_m \rangle}{E_m - E_i}\\ &\\ \Longrightarrow \qquad |\phi^{(1)}\rangle &= \sum_{n \neq m} \frac{\langle \psi_n | \hat{H}_p |\psi_m \rangle}{E_m - E_n} |\psi_n \rangle \end{aligned} \]
Up to first order we have:
\[ \begin{aligned} |\psi_m \rangle \longrightarrow |\psi_m \rangle + |\phi^{(1)}_m\rangle &= |\psi_m \rangle + \sum_{n \neq m} \frac{\langle \psi_n | \hat{H}_p |\psi_m \rangle}{E_m - E_n} |\psi_n \rangle\\ E_m \longrightarrow \quad\,\,\, E_m + E^{(1)} &= E_m + \langle\psi_m | \hat{H}_p|\psi_m\rangle \end{aligned} \]
The Hamiltonian in dimensionless units:
\[ \hat{H} = -\frac{1}{\pi^2}\frac{d^2}{dz^2} + \nu_L \, (z - 1/2) \quad \textrm{ with } \quad \hat{H}_0 = -\frac{1}{\pi^2}\frac{d^2}{dz^2} \]
The correction in the energies is zero (no change):
\[ \begin{aligned} E_m + E^{(1)}_m &= E_m + \langle\psi_m | \hat{H}_p|\psi_m\rangle\\ &= m^2 \,\, + \,\,\nu_L \int_0^1 \, (z-1/2) \sin^2(m\pi z) dz,\\ &= m^2 + 0 = m^2 \end{aligned} \]
\[ \begin{aligned} |\psi_m \rangle + |\phi^{(1)}_m \rangle &= |\psi_m \rangle + \sum_{n \neq m} \frac{\langle \psi_n | \hat{H}_p |\psi_m \rangle}{E_m - E_n} |\psi_n \rangle\\ &= |\psi_m \rangle \,\, - \sum_{n \neq m} \frac{2\nu_L}{m^2 - n^2} \,\, \int_0^1 \, (z-1/2) \sin(m\pi z) \sin(n\pi z) dz \,\, |\psi_n \rangle\\ &= |\psi_m \rangle \,\, - \sum_{n = m \pm 1, \pm 3, \dots} \frac{2\nu_L}{m^2 - n^2} \,\, \frac{4nm}{\pi^2(m^2-n^2)^2} \,\, |\psi_n \rangle\\ \end{aligned} \]
Where the second integral was obtained from:
\[ \int_0^1 \, (z-1/2) \sin(m\pi z) \sin(n\pi z) dz = \left\{\,\,\begin{aligned} \frac{4nm}{\pi^2(m^2-n^2)^2} & \qquad \textrm{if }\,\, m+n \,\,\textrm{ is odd} \\ & \\ 0 & \qquad \textrm{if } \,\,m+n\,\, \textrm{ is even} \end{aligned}\right. \]
So we have for eigenenergies and eigenstates:
\[ \begin{aligned} E_m + E^{(1)}_m &= m^2\\ | \psi_m \rangle + | \psi^{(1)}_m \rangle &= \sqrt{2}\sin(m\pi z) \,\, + \sum_{n = m \pm 1, \pm 3, \dots} \frac{8nm \nu_L\sqrt{2}}{\pi^2(m^2-n^2)^3} \,\, \sin(n\pi z)\\ \end{aligned} \]
For 2nd order perturbation theory: see Chapter 6 of David Miller’s book
Lecture 13-15: Approximations PART II