
PHOT 301: Quantum Photonics
Project topics: project 2

Michaël Barbier, Fall semester (2024-2025)

Introduction

There are four projects to be performed during the PHOT 301 course of this semester. This
file contains the project topics for the second project. The projects are meant to focus more on
applied “real world” problems.

You can and are encouraged to work together on projects, further, you can ask help from me
and Yağız (asking help will not influence your project grade). However, your project report
and any figures containing plots and/or schematics should be made individually and not copied
from others or online resources. Please cite any sources that you used and where you used them
(you don’t have to cite this document).

Type of report for project 2

The report should be between one and two pages (one sheet) including figures. Please ask help
to your instructors on time, we might have not enough time to help you at the last day before
the deadline of the report.

Grading of the project

This project will count for 10% of your grade. During this semester four projects will be made
in total, corresponding to 40% of your total grade.

Project topics

Next is a list of problems out of which you can choose for your project together with their
task description. You only have to solve one problem for your project. Please inform me if the
problem description contains any errors or anything is unclear.

You can use the code snippets in the separate document: phot301_guidelines_for_the_projects.pdf
to construct any numerical methods required for your problem: transfer matrix method, finite
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basis method, tight-binding method, etc. There are also some code snippets provided for
creating visualizations/plots. The code snippets are in Python, please inform me if you need
help within another program (such as MATLAB).

Problem 1: Impact of the potential barrier shape on resonances in
transmission and reflection

The transfer matrix method is a great method because it gives exact solutions for the wave
function (given by simple propagating waves in each region of constant potential). When
the approximation of the potential energy function 𝑉 (𝑥) is not accurate, then it can lead to
artifacts though. Here we consider the impact of the barrier shape on the transmission of a
particle incident onto the barrier. See also page 45 in [1].

The transmission through a single 1D finite barrier with potential 𝑉 inside the barrier exhibits
various resonance peaks for energies 𝐸 > 𝑉 . When the barrier is smooth, these resonances
should disappear.

• Compute and compare the transmission coefficient 𝑇 of a square barrier with a Gaussian
shaped barrier 𝑉 (𝑥) ∝ exp (−𝑥2/(2𝜎)) by approximating the smooth barrier via the
transfer matrix method.

• Stepwise increase the smoothness of the “smooth” barrier by increasing the step-wise
pieces: I suggest comparing a barrier with a height of 1 eV and 𝜎 = 1 nm built-up from
1 (square barrier), 3, 7, and 15 pieces (see the figure below).

• Plot the transmission for these increasingly “smooth” barriers to show how resonances in
the transmission slowly disappear.
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Figure 1: A Gaussian smooth barrier approximated by piece-wise constant potential energy
functions. From left to right the number of piece-wise constant regions is increased
resulting in better approximations of the Gaussian barrier: the barriers consists of
3, 5, and 15 parts respectively. The barrier region is defined within an interval of 3
standard deviations.
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Problem 2: Bound states and transmission resonances in a double barrier
system

In optical systems, gratings can be used as filters for specific wave lengths. In nanoscale systems,
similarly, a series of potential barriers can serve the same purpose. Here we will consider the
simplest grating possible: a double barrier.

The manner in which energies (corresponding to frequencies) that can pass are “chosen” can
be understood as resonances in the transmission. To find the resonances we can look at the
bound states of the well between the barriers (if we would assume the barriers would be very
thick). These energy values of bound states in the well of a double barrier system correspond
to the resonances in the transmission. The particles tunnel via the quasi-bound states, for a
more detailed description see also page 288 of Miller’s book [2].

• Compute the transmission for a double barrier system with inter-barrier distance of 𝐿 = 2
nm, and for multiple barrier ticknesses 𝑊 = 0.25, 0.5, 1 nm and constant barrier height
of 0.25 eV.

• Then compute the bound states for a well with corresponding width, i.e., also equal to
𝐿 = 2 nm and finite height of 0.25 eV (you can use the same transfer method method for
that as well). Can you find transmission resonances (peaks in transmission), for similar
energies?

• Plot and visually compare the transmission resonances for various thicknesses of the
barriers. Show the impact of the barrier thickness on total transmission and sharpness of
the transmission resonances.

• What parameter would you need to change if you want to optimize the system to work
as a filter for a specific frequency(energy)? How do you get that energy to correspond
to a transmission resonance? Which parameter do you need to change to optimize the
sharpness of resonance peaks?
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Figure 2: A 1D double potential barrier system with rectangular potential barrier with height
of 0.25 eV and separated by 2 nm. The width of the barriers is increased from left to
right and is equal to 0.25, 0.5, and 1 nm, respectively.
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Problem 3: Free particle wave packets

Quantum mechanical wave packets propagating within a simple 1D system with constant po-
tential 𝑉 (𝑥) (as free particles) disperse in time, see also page 67 in Miller’s book [2]. This
is because a wave packet is a superposition of wave solutions 𝑒𝑖𝑘𝑥 with different momentum,
traveling at different velocities. Suppose a wave packet is defined by:

𝐴(𝑥, 𝑡) =
√

ℏ√
2𝜋 ∫

+∞

−∞
𝜙(𝑘) 𝑒𝑖(𝑘𝑥−𝜔(𝑘) 𝑡) 𝑑𝑘

with the dispersion relation 𝜔(𝑘) = 𝐸(𝑘)/ℏ telling us how the energy 𝐸 of a wave component
depends on the wave vector 𝑘. If 𝜔(𝑘) = 𝜔 is a constant then the wave packet moves at a
constant velocity without changing its shape since it becomes a function of 𝑥 − 𝑣 𝑡 with the
velocity 𝑣 = 𝑣𝑔 = 𝑣𝑝 = 𝜔

𝑘 :

𝐴(𝑥, 𝑡) =
√

ℏ√
2𝜋 ∫

+∞

−∞
𝜙(𝑘)𝑒𝑖𝑘(𝑥− 𝜔

𝑘 𝑡) 𝑑𝑘

If 𝜔(𝑘) is not a constant the group velocity 𝑣𝑔 of the wave packet is proportional to the derivative
of the energy to the momentum 𝑣𝑔 ∝ 𝑑𝜔

𝑑𝑘 . This we can see from expanding 𝜔(𝑘) around some
fixed 𝑘0:

𝜔(𝑘) = 𝜔(𝑘0) + (𝑘 − 𝑘0)𝑑𝜔
𝑑𝑘 ∣

𝑘0

+ 1
2 (𝑘 − 𝑘0)2 𝑑2𝜔

𝑑𝑘2 ∣
𝑘0

+ …

= 𝑘0𝑣𝑝 + (𝑘 − 𝑘0)𝑣𝑔 + 1
2 (𝑘 − 𝑘0)2 Γ + …

Here 𝑣𝑝 = 𝜔(𝑘0)
𝑘 is the phase velocity, 𝑣𝑔 = 𝑑𝜔

𝑑𝑘 ∣𝑘0
is the group velocity as we saw before, and

we defined a new parameter Γ = 𝑑2𝜔
𝑑𝑘2 ∣

𝑘0
.

Filling in this expression within the Gaussian wave packet we can write it in the following form
(after some algebra):

√
ℏ√

2𝜋𝜎(𝑡) exp {−1
2 (𝑥 − (𝑥0 + 𝑣𝑔𝑡)

𝜎(𝑡) )
2
} 𝑒𝑖𝜃(𝑥,𝑡)

with

Phase: 𝜃(𝑥, 𝑡) = 𝑘0 𝑥 − 𝑘0 𝑡 (𝑣𝑔 − 𝑣𝑝) − Γ 𝑡
Γ2 𝑡2 + 𝜎4𝑥

Width: 𝜎(𝑡) = 𝜎𝑥 √1 + Γ2

𝜎4𝑥
𝑡2
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If we look at the envelope function, that is we ignore the phase factor 𝑒𝑖𝜃(𝑥,𝑡), then we see
that the velocity of the envelope function is still given by the group velocity 𝑣𝑔. Moreover, the
broadening of the envelope function in time given by 𝜎(𝑡) is determined by the Γ parameter.
For a free particle with mass 𝑚 we have 𝜔(𝑘) = 𝐸/ℏ = ℏ𝑘2

2𝑚 and thus Γ = 𝑑2𝜔(𝑘0)
𝑑𝑘2 = ℏ/𝑚.

Perform the following tasks to understand the evolution of the probability density function of
free particles:

• Compute the evolution of a wave packet of an electron (1D) in time. Use an average
energy 𝐸 = ℏ2𝑘2

0/2𝑚 = 1 eV and initial packet width given by 𝜎(𝑡 = 0) = 1 nm.
• Plot 3 snapshots of the wave packet at different time points: 𝑡 = 0 fs (femtoseconds), 10

fs, and 20 fs, to illustrate that the wave packet broadens. Have a look at the PhET wave
packet simulator, see the link in reference [3], to verify your results.

• Visualize the broadening as function of time for wave packets of particles with different
mass terms (so different values for Γ).

• If two wave packets of equal width but unequal energy/velocity travel a certain distance,
say 20 nm, which one broadened more at arrival? How can you see that from the formulas?

Problem 4: Coherent states

In a harmonic oscillator coherent states can be formed, see page 63 in Miller’s book [2]. These
coherent states minimize the uncertainty in momentum/space, and approximate the classical
motion of the classical harmonic oscillator, that is, a localized wave packet (and corresponding
probability density) is oscillating forth and back in the quadratic well, not losing its localized
nature over time. This is very different from free particles for which an initially localized wave
packet broadens over time.

A coherent state is identified by a complex number 𝛼 that represents an eigenvalue of the
annihilation operator (i.e. the lowering ladder operator): ̂𝑎− |𝛼⟩ = 𝛼 |𝛼⟩). The state is given by
the following superposition of energy eigenstates |𝑛⟩ of the harmonic oscillator:

|𝛼⟩ =
∞

∑
𝑛=0

𝑐𝑛|𝑛⟩ =
∞

∑
𝑛=0

𝛼𝑛
√

𝑛!
𝑒−|𝛼|2/2|𝑛⟩

Remember that the eigenstates of the Hamiltonian were given by:

𝐻̂|𝑛⟩ = 𝐸𝑛|𝑛⟩, with 𝐻̂ = ( ̂𝑎+ ̂𝑎− + 1
2) ℏ𝜔

Perform the following tasks (similar to problem 3.42 in Griffith’s book [4]):

• Plot the contributions |𝑐𝑛|2 of each eigenstate |𝑛⟩, for different values of |𝛼| = 5, 10, and
20 (the phase doesn’t matter here). What is the difference between states with smaller
and larger values of |𝛼|?

• Plot how the expectation value of the energy ⟨𝐻̂⟩ varies as function of the magnitude |𝛼|.
• Prove that the eigenvalue 𝛼 evolves in time as 𝛼(𝑡) = 𝛼 𝑒−𝑖𝜔𝑡. Show this by adding the

time-dependent factor to the eigenstates |𝑛⟩ → exp(−𝑖𝐸𝑛𝑡/ℏ) |𝑛⟩ with 𝐸𝑛 = (𝑛+1/2)ℏ𝜔
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• Calculate the evolution in time of the expectation values ⟨ ̂𝑥⟩, ⟨ ̂𝑥2⟩, ⟨ ̂𝑝⟩, and ⟨ ̂𝑝2⟩. Compare
them with the classical harmonic oscillator.

• Use the expectation values calculated above to compare with the classical concept of a
particle in a parabolic well. Show the following: The wave packet turns back at the
classical turning points, see the figure below. The kinetic energy 𝑇 = 𝑝2

2𝑚 is zero at those
points, and potential energy 𝑉 (𝑥) = 1

2𝑚𝜔2𝑥2 is maximal and equal to the total energy
⟨𝐻̂⟩.

• The wave packet can keep its shape partially by the fact that the energy levels are mul-
tiples of a common factor. This makes that any superposition of eigenstates periodically
returns to the same interference pattern, i.e. the same state (and thus the same shape).
What do you expect would happen in an infinite well? And in a finite well?
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Figure 3: The evolution in time of the probability of a coherent state in a 1D quantum harmonic
oscillator system. The upper (lower) plots show snapshots of the probability density
function of a coherent state at multiple time points. The time points correspond
to the alpha values given in the plots and the upper (lower) plots correspond to a
magnitude of 5 (10) for alpha. The turning point (on the right) is reached in the 3rd
panels from the left, after which the packet slowly return in the fourth panels from
the left.
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