
PHOT 301: Quantum Photonics
Project topics: project 1

Michaël Barbier, Fall semester (2024-2025)

Introduction

There are four projects to be performed during the PHOT 301 course of this semester. This
file contains the project topics for the first project. The projects are meant to focus more on
applied “real world” problems.

You can and are encouraged to work together on projects, further, you can ask help from me
and Yağız (asking help will not influence your project grade). However, your project report
and any figures containing plots and/or schematics should be made individually and not copied
from others or online resources. Please cite any sources that you used and where you used them
(you don’t have to cite this document).

Type of report for project 1

The report should be between one and two pages (one sheet) including figures. Please ask help
to your instructors on time, we might have not enough time to help you at the last day before
the deadline of the report.

Grading of the project

This project will count for 10% of your grade. During this semester four projects will be made
in total, corresponding to 40% of your total grade.

Project topics

Next is a list of problems out of which you can choose for your project together with their
task description. You only have to solve one problem for your project. Please inform me if the
problem description contains any errors or anything is unclear.
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Problem 1: Angle-dependent transmission and reflection at a 1D step
potential

Calculate the transmission and reflection coefficients of a propagating wave in a 2D plane which
hits a potential step at 𝑥 = 0:

𝑉 (𝑥, 𝑦) = 𝑉 (𝑥) = { 0𝑥 < 0
𝑉0𝑥 > 0

Consider for this the time-independent Schrodinger equation and show that 𝑘𝑦 is a constant of
motion by separation of the variables. Therefore, assume that

𝜓(𝑥, 𝑦) = 𝜙(𝑥)𝑒𝑖𝑘𝑦𝑦

and fill this solution in into the time-independent Schrodinger equation:

𝜕2𝜓(𝑥, 𝑦)
𝜕𝑥2 + 𝜕2𝜓(𝑥, 𝑦)

𝜕𝑦2 = −2𝑚
ℏ2 (𝐸 − 𝑉 (𝑥))𝜓(𝑥, 𝑦)

⇒ 𝑒𝑖𝑘𝑦𝑦 𝜕2𝜙(𝑥)
𝜕𝑥2 − 𝑘2

𝑦𝜙(𝑥)𝜕2𝑒𝑖𝑘𝑦𝑦

𝜕𝑦2 = −2𝑚
ℏ2 (𝐸 − 𝑉 (𝑥))𝜙(𝑥)𝑒𝑖𝑘𝑦𝑦

⇒ 1
𝜙(𝑥)

𝜕2𝜙(𝑥)
𝜕𝑥2 = 𝑘2

𝑦 − 2𝑚
ℏ2 (𝐸 − 𝑉 (𝑥))

⇒ 𝜕2𝜙(𝑥)
𝜕𝑥2 = − [2𝑚

ℏ2 (𝐸 − 𝑉 (𝑥)) − 𝑘2
𝑦] 𝜙(𝑥)

Then solve the Schrodinger equation for the solution of 𝜙(𝑥) and assume the wave function
before and after the step at 𝑥 = 0:

𝑥 < 0 𝜙(𝑥) = 𝐴𝑒𝑖𝑘𝑥 + 𝐵𝑒−𝑖𝑘𝑥

𝑥 > 0 𝜙(𝑥) = 𝐶𝑒𝑖𝑞𝑥

with 𝑘2 = 2𝑚
ℏ2 𝐸 − 𝑘2

𝑦 and 𝑞2 = 2𝑚
ℏ2 (𝐸 − 𝑉0) − 𝑘2

𝑦.

Be careful that in this case the transmission coefficient cannot be calculated from the amplitude
of the transmitted wave in a trivial manner (because the wave vector 𝑘 ≡ 𝑘𝑥 before the step
is not equal to the wave vector 𝑞 ≡ 𝑞𝑥 after the step). Use the fact that the transmission
coefficient can be expressed in the reflection coefficient 𝑇 = 1 − 𝑅 and that 𝑅 = |𝐵|2/|𝐴|2

• Plot the transmission as function of the energy 𝐸 and the angle 𝜃 = arctan(𝑘𝑦/𝑘𝑥) with
the horizontal of the incoming wave.

• Describe what happens when the angle 𝜃 becomes large such that 2𝑚
ℏ2 (𝐸 − 𝑉0) − 𝑘2

𝑦 < 0.
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Figure 1: Transmission and reflection of a 2D propagating wave, coming from the left, incident
on a 1D potential step given by 𝑉 (𝑥 > 0) = 𝑉0, under an angle 𝜃 = arctan(𝑘𝑦/𝑘𝑥).
Left: side view of the potential step. Right: top view of the potential step.

Problem 2: Transmission through a barrier

The transfer matrix method is an especially convenient method when having a piece-wise con-
stant potential energy function 𝑉 (𝑥). Assume the 1D staircase increasing potential barrier in
the figure below, notice that the height increases as multiples of 𝑉 and the width of each step
of the staircase is 𝑎.

For the transfer matrix you assume propagating waves in every region of constant potential:

𝜓𝑗(𝑥) = 𝐴𝑗𝑒𝑖𝑘𝑗𝑥 + 𝐵𝑗𝑒−𝑖𝑘𝑗𝑥, with 𝑘𝑗 = √2𝑚(𝐸 − 𝑉𝑗)/ℏ

The continuity conditions of the wave function 𝜓 and its derivative 𝑑𝜓
𝑑𝑥 at the potential steps

at a location 𝑥𝑗 result in the transfer matrix between the coeffients:

(𝐴𝑗
𝐵𝑗

) = 𝑀𝑗 (𝐴𝑗+1
𝐵𝑗+1

) with 𝑀𝑗 = 1
2𝑘𝑗

(−(𝑘𝑗+1 + 𝑘𝑗)𝑒𝑖(𝑘𝑗+1−𝑘𝑗)𝑥𝑗 (𝑘𝑗+1 − 𝑘𝑗)𝑒−𝑖(𝑘𝑗+1+𝑘𝑗)𝑥𝑗

(𝑘𝑗+1 − 𝑘𝑗)𝑒𝑖(𝑘𝑗+1+𝑘𝑗)𝑥𝑗 −(𝑘𝑗+1 + 𝑘𝑗)𝑒−𝑖(𝑘𝑗+1−𝑘𝑗)𝑥𝑗
)

The transfer matrix can you help to link the coefficients for every region, use it to calculate the
transmission coefficient 𝑇 . Hereby remember that you can use 𝑇 = |𝐴4|2/|𝐴0|2, where 𝐴4 is
the transmitted wave amplitude (because 𝑘0 = 𝑘4) and 𝐵4 = 0.

(𝐴0
𝐵0

) = 𝑀0𝑀1𝑀2𝑀3 ( 𝐴4
𝐵4 = 0)

Perform the following tasks:

• Calculate the transmission coefficient 𝑇 as function of the energy 𝐸 of incoming propa-
gating waves from the left (in 1D). This can be numerically.

• Plot the transmission 𝑇 as function of the energy 𝐸.
• Plot and compare with the transmission through a single barrier of heigt 2𝑉 and width

3𝑎 (the “averaged” potential barrier).
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Figure 2: Potential barrier existing of three parts, of equal width 𝑎 and increasing in height.

Problem 3: Visualizing a single electron in a quantum dot

Model a square 2D quantum dot with side length 𝐿 and a potential energy function 𝑉 (𝑥, 𝑦):

𝑉 (𝑥, 𝑦) = { 0 0 < 𝑥 < 𝐿 & 0 < 𝑦 < 𝐿
+∞ otherwise

The 2D quantum dot is here modeled as a 2D infinite well, the solutions are combinations of
the 1D infinite well in 𝑥 and 𝑦 direction. Describe the time-independent solutions by factoring
the wave function (separation of the variables).

𝜓(𝑥, 𝑦) = 𝜓𝑥(𝑥)𝜓𝑦(𝑦)

𝑉!"#$%&' = +∞

𝑉%($%&' = 0

𝜓), E(

Figure 3: Square 2D quantum dot with side length 𝐿. Inside the quantum dot 𝑉 (𝑥, 𝑦) = 0,
outside the potential is infinite.

Perform the following tasks:

• Derive the solutions for the eigenstates and eigenenergies of the time-independent prob-
lem.
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• Plot the first 5 energy-levels of the quantum dot (in eV) as function of the side-length
𝐿 of the quantum dot (in nm). Take the side-lengths of the quantum dot in the range
𝐿 = [10, 1000] nm.

• Visualize a superposition of eigenstates 𝜓𝑛(𝑥, 𝑦) as a contour or density plot. Take as
an example 𝜓(𝑥, 𝑦) ∝ 𝜓𝑥,1(𝑥)𝜓𝑦,1(𝑦) + 𝜓𝑥,2(𝑥)𝜓𝑦,1(𝑦), this is, a superposition of the
ground state with the 2nd asymmetric eigenstate in 𝑥. Visualize both the wave function
(time-independent solution) and the probability density function |𝜓|2.

Problem 4: Connected wells

Consider two quantum wells brought into close proximity such that a particle can tunnel be-
tween them. To simplify the model use an infinite well with a delta-function barrier in the
middle of the well. The total potential energy function 𝑉 (𝑥) is then given by the delta-
function barrier with strength 𝛼 inside the well 𝑉 (𝑥) = 𝛼𝛿(𝑥), while outside the well 𝑉 (𝑥) =
+∞. Use the analytical result for the stationary solutions from the attached notes: “calcula-
tion_connected_wells.pdf”:

𝜓𝑒(𝑥) = 𝐴 sin(𝑘|𝑥|) + 𝐵 cos(𝑘𝑥) with 𝐵
𝐴 = tan(𝑘𝑎) = −(𝑘𝑎) ℏ2

𝑚𝛼 𝑎
𝜓𝑜(𝑥) = 𝐴 sin(𝑘𝑥) with 𝑘 =

√
2𝑚𝐸
ℏ2 ⇒ 𝐸𝑛 = 𝑛2𝜋2ℏ2

2𝑚𝑎2

Here the eigenstates 𝜓𝑒(𝑥) and 𝜓𝑜(𝑥) are the even and odd solutions. Remark that each of
them represents multiple solutions, and that the eigenenergies of the even solutions are given
by a transcendental equation.

Perform the following tasks:

• Numerically find the energy values (i.e., the eigenenergies) of the first three even eigen-
states.

• How do the eigenenergy values of the even eigenstates change when increasing the poten-
tial barrier strength 𝛼: do they increase or decrease?

• What about the impact of 𝛼 on the odd eigenenergies?
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Figure 4: An infinite square well with a delta-function potential barrier in the middle. This can
be seen as two connected quantum wells with the strength 𝛼 of the delta-function
potential barrier allowing tunneling between the wells.
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