
PHOT 301: Quantum Photonics
Example final exam questions and solutions

Michaël Barbier, Fall semester (2024-2025)

General information on the exam

Grading: This final exam will count for 50% of your total grade. Together with the
projects which count for 40%, and the midterm exam that counts for 10%, your total
grade for the course will be determined.

Exam type: The final exam consists of 8 open questions/problems. The exam is a
written exam and all questions can be answered using only pen and paper. Calculators,
mobile phones, laptops are not needed, and are not allowed to be used during the exam.
The last page of the exam contains some formulas which can be used to help solve the
problems.

The duration of the final exam is 3 hours.

Exam questions

Please answer all questions listed below. Each of the questions is valued equally in the
score calculation of the exam. If a question contains multiple part, each of the parts is
valued equally within the score for the question.

Please tell if any question is unclear or ambiguous.

Question 1: Wave functions and expectation values

Consider the following 1D wave function defined with 𝑥 ∈ ℝ:

𝜓(𝑥) = 𝐴 1
(𝑥 + 𝑖)2

with 𝐴 a normalization constant.

(1/3) First calculate the normalization constant 𝐴 of the wave function.
(2/3) Then calculate the expectation value for the position operator ⟨𝑥⟩ ∈ ℝ.
(3/3) Calculate the variance 𝜎2 (expectation value): 𝜎2 = ⟨(𝑥 − ⟨𝑥⟩)2⟩ = ⟨𝑥2⟩ − ⟨𝑥⟩2.
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Solution (Q1)

The normalization factor 𝐴 = √2/𝜋 as can be seen from:

1 = ∫
∞

−∞
|𝜓(𝑥)|2𝑑𝑥 = |𝐴|2 ∫

∞

−∞
| 1
(𝑥 + 𝑖)2 |

2 𝑑𝑥

= |𝐴|2 ∫
∞

−∞

1
(𝑥 − 𝑖)2

1
(𝑥 + 𝑖)2 𝑑𝑥

= |𝐴|2 ∫
∞

−∞

1
(𝑥2 + 1)2 𝑑𝑥

= |𝐴|212 (arctan(𝑥) + 𝑥
𝑥2 + 1)∣

+∞

−∞

= |𝐴|212 (𝜋2 + 𝜋
2) = |𝐴|2𝜋2

The expectation value for the position ⟨𝑥⟩ = 0 can be derived as:

⟨𝑥⟩ = ∫
∞

−∞
𝑥|𝜓(𝑥)|2𝑑𝑥 = |𝐴|2 ∫

∞

−∞
𝑥| 1

(𝑥 + 𝑖)2 |
2 𝑑𝑥

= |𝐴|2 ∫
∞

−∞

𝑥
(𝑥2 + 1)2 𝑑𝑥

= −|𝐴|212
1

𝑥2 + 1∣
+∞

−∞
= 0

The variance 𝜎2 = ⟨𝑥2⟩ − ⟨𝑥⟩2 = ⟨𝑥2⟩ − 0 = 1 can be derived as:

⟨𝑥2⟩ = ∫
∞

−∞
𝑥2|𝜓(𝑥)|2𝑑𝑥 = |𝐴|2 ∫

∞

−∞
𝑥2| 1

(𝑥 + 𝑖)2 |
2 𝑑𝑥

= |𝐴|2 ∫
∞

−∞

𝑥2

(𝑥2 + 1)2 𝑑𝑥

= |𝐴|212 (arctan(𝑥) − 𝑥
𝑥2 + 1)∣

+∞

−∞

= |𝐴|212 (𝜋2 + 𝜋
2) = |𝐴|2𝜋2 = 1

Question 2: Infinite well eigenstate superposition

Consider the following two normalized superpositions (𝜙𝑎, 𝜙𝑏) of 1D infinite well eigen-
states 𝜓𝑛(𝑥):
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𝜙𝑎 = 1√
2
(𝜓1 + 𝜓3)

𝜙𝑏 =
1√
2
(𝜓1 + 𝑖𝜓3)

where the eigenstates of the infinite well (with width 𝐿) are given by:

𝜓𝑛(𝑥) = √2
𝐿 sin(𝑛𝜋𝑥𝐿 ) , 𝐸𝑛 = ℏ2𝜋2𝑛2

2𝑚𝐿2 , with 𝑛 = 1, 2, 3,…

(1/2) Calculate the expectation value of the position for the two superpositions: ⟨ ̂𝑥⟩
(2/2) Calculate the variance (expectation value) 𝜎2 = ⟨( ̂𝑥 − ⟨𝑥⟩)2⟩ = ⟨𝑥2⟩ − ⟨𝑥⟩2 for the
two superpositions.

Solution (Q2)

In the following we will use that eigenstates 𝜓𝑛(𝑥) are real, and the substitution 𝑥 ⟶
𝑢 = 𝑔(𝑥) = 𝑥/𝐿 for definite integrals:

∫
𝑏

𝑎
𝑓(𝑔(𝑥))𝑑 𝑔(𝑥)

𝑑𝑥 𝑑𝑥 = ∫
𝑔(𝑏)

𝑔(𝑎)
𝑓(𝑢) 𝑑𝑢

where we will use it to convert to intervals such as for example:

2
𝐿 ∫

𝐿

0
𝑥2 sin2(𝑚𝜋𝑥/𝐿) 𝑑𝑥 = 2𝐿2 ∫

1

0
𝑢2 sin2(𝑚𝜋𝑢) 𝑑𝑢

The expectation values for the position ⟨ ̂𝑥⟩𝑎 and ⟨ ̂𝑥⟩𝑏 for the superpositions 𝜙𝑎 and 𝜙𝑏
can be derived as follows.

⟨𝑥⟩𝑎 = ∫
𝐿

0
𝑥|𝜙𝑎|2𝑑𝑥

= 1
2 ∫

𝐿

0
𝑥 (𝜓1 + 𝜓3)2 𝑑𝑥

= 1
2 ∫

𝐿

0
𝑥𝜓2

1 𝑑𝑥 + 1
2 ∫

𝐿

0
𝑥𝜓2

3 𝑑𝑥 + 1
2 ∫

𝐿

0
𝑥 2𝜓1𝜓3 𝑑𝑥

= 1
𝐿 ∫

𝐿

0
𝑥 sin2(𝜋𝑥/𝐿) 𝑑𝑥 + 1

𝐿 ∫
𝐿

0
𝑥 sin2(3𝜋𝑥/𝐿) 𝑑𝑥 + 1

𝐿 ∫
𝐿

0
𝑥 2 sin(𝜋𝑥/𝐿) sin(3𝜋𝑥) 𝑑𝑥

= 𝐿∫
1

0
𝑥 sin2(𝜋𝑥) 𝑑𝑥 + 𝐿∫

1

0
𝑥 sin2(3𝜋𝑥) 𝑑𝑥 + 𝐿∫

1

0
𝑥 2 sin(𝜋𝑥) sin(3𝜋𝑥) 𝑑𝑥

= 𝐿
4 + 𝐿

4 + 0 = 𝐿
2
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The expectation value ⟨𝑥⟩𝑏 of 𝜙𝑏 is obtained in the same way:

⟨𝑥⟩𝑏 = ∫
𝐿

0
𝑥|𝜙𝑏|2𝑑𝑥

= 1
2 ∫

𝐿

0
𝑥 (𝜓2

1 + 𝜓2
3) 𝑑𝑥

= 1
2 ∫

𝐿

0
𝑥𝜓2

1 𝑑𝑥 + 1
2 ∫

𝐿

0
𝑥𝜓2

3 𝑑𝑥

= 1
𝐿 ∫

𝐿

0
𝑥 sin2(𝜋𝑥/𝐿) 𝑑𝑥 + 1

𝐿 ∫
𝐿

0
𝑥 sin2(3𝜋𝑥/𝐿) 𝑑𝑥

= 𝐿∫
1

0
𝑥 sin2(𝜋𝑥) 𝑑𝑥 + 𝐿∫

1

0
𝑥 sin2(3𝜋𝑥) 𝑑𝑥

= 𝐿
4 + 𝐿

4 = 𝐿
2

For variance 𝜎2 = ⟨𝑥2⟩ − ⟨𝑥⟩2 = ⟨𝑥2⟩ − 𝐿2
4 we calculate ⟨𝑥2⟩ and subtract then 𝐿2

4 :

⟨𝑥2⟩𝑎 = ∫
𝐿

0
𝑥2|𝜙𝑎|2𝑑𝑥

= 1
2 ∫

𝐿

0
𝑥2 (𝜓1 + 𝜓3)2 𝑑𝑥

= 1
2 ∫

𝐿

0
𝑥2 𝜓2

1 𝑑𝑥 + 1
2 ∫

𝐿

0
𝑥2 𝜓2

3 𝑑𝑥 + 1
2 ∫

𝐿

0
𝑥2 2𝜓1𝜓3 𝑑𝑥

= 1
𝐿 ∫

𝐿

0
𝑥2 sin2(𝜋𝑥/𝐿) 𝑑𝑥 + 1

𝐿 ∫
𝐿

0
𝑥2 sin2(3𝜋𝑥/𝐿) 𝑑𝑥 + 1

𝐿 ∫
𝐿

0
𝑥2 2 sin(𝜋𝑥/𝐿) sin(3𝜋𝑥) 𝑑𝑥

= 𝐿2 ∫
1

0
𝑥2 sin2(𝜋𝑥) 𝑑𝑥 + 𝐿2 ∫

1

0
𝑥2 sin2(3𝜋𝑥) 𝑑𝑥 + 𝐿2 ∫

1

0
𝑥2 2 sin(𝜋𝑥) sin(3𝜋𝑥) 𝑑𝑥

= 𝐿2 (1
6 − 1

4𝜋2 + 1
6 − 1

9
1

4𝜋2 + 2 3
16𝜋2) = 𝐿2 (1

3 + 7
18𝜋2)

⟹ 𝜎2
𝑎 = 𝐿2 ( 1

12 + 7
18𝜋2)

4



⟨𝑥2⟩𝑏 = ∫
𝐿

0
𝑥2|𝜙𝑏|2𝑑𝑥

= 1
2 ∫

𝐿

0
𝑥2 (𝜓2

1 + 𝜓2
3) 𝑑𝑥

= 1
2 ∫

𝐿

0
𝑥2 𝜓2

1 𝑑𝑥 + 1
2 ∫

𝐿

0
𝑥2 𝜓2

3 𝑑𝑥

same integrals as above without 3rd term

= 𝐿2 (1
6 − 1

4𝜋2 + 1
6 − 1

9
1

4𝜋2) = 𝐿2 (1
3 − 5

18𝜋2)

⟹ 𝜎2
𝑏 = 𝐿2 ( 1

12 − 5
18𝜋2)

Question 3: Oscillations of eigenstates

Consider a Hydrogen atom in a superposition state Ψ( ⃗𝑟, 𝑡) of a 1𝑆 and a 2𝑃𝑧 orbital
(ignore spin):

Ψ( ⃗𝑟, 𝑡) = 1√
2
(𝜓100( ⃗𝑟) 𝑒−𝑖𝐸1𝑡/ℏ + 𝜓210( ⃗𝑟) 𝑒−𝑖𝐸2𝑡/ℏ) .

where the eigenstates 𝜓𝑛𝑙𝑚 for the hydrogen orbitals (without spin) 𝜓100( ⃗𝑟) and 𝜓210( ⃗𝑟)
and their eigenenergies are given by

𝜓100( ⃗𝑟) = 1
√𝜋𝑎30

𝑒−𝑟, 𝐸1 = −Ry

𝜓210( ⃗𝑟) = 1
√32𝜋𝑎30

𝑒−𝑟/2 𝑟 cos 𝜃 = 1
√32𝜋𝑎30

𝑒−𝑟/2 𝑧, 𝐸2 = −Ry
4

with 𝑟 in units of the Bohr radius 𝑎0.

(1/1) Calculate the expectation value for the position along the z-axis ⟨ ̂𝑧⟩ as a function
of time and show that it oscillates (in time) around zero.

Solution (Q3)

As shorthand notation we rename real-valued eigenstates 𝜓100, 𝜓210 ⟶ 𝜓1, 𝜓2 and
define 𝜔1 = 𝐸1/ℏ, 𝜔2 = 𝐸2/ℏ and Δ𝜔 = 𝜔1−𝜔2. We also simply use the notation ∫𝑉 𝑑𝑉
for the integral over the whole space. The expection value for 𝑧:

5



⟨𝑧⟩ = 1
2 ∫

𝑉
𝑧 (𝜓1 𝑒𝑖𝜔1𝑡 + 𝜓2 𝑒𝑖𝜔2𝑡) (𝜓1 𝑒−𝑖𝜔1𝑡 + 𝜓2 𝑒−𝑖𝜔2𝑡) 𝑑𝑉

= 1
2 ∫

𝑉
𝑧 (𝜓2

1 + 𝜓2
2 + 2𝜓1𝜓2 cos(Δ𝜔𝑡)) 𝑑𝑉

|𝜓1|2 and |𝜓1|2 are symmetric under 𝑧 ⟶ −𝑧

= 0 + 0 + cos(Δ𝜔𝑡)∫
𝑉

𝑧 𝜓1𝜓2𝑑𝑉

Integration in spherical coordinates with 𝑧 = 𝑟 cos 𝜃

= 1√
32𝜋𝑎30

cos(Δ𝜔𝑡)∫
∞

0
𝑑𝑟∫

𝜋

0
𝑑𝜃∫

2𝜋

0
𝑑𝜙 𝑟2 cos2 𝜃 𝑒−3𝑟

2 𝑟2 sin 𝜃

= 1√
32𝜋𝑎30

cos(Δ𝜔𝑡)∫
2𝜋

0
𝑑𝜙 ×∫

∞

0
𝑟4 𝑒−3𝑟

2 𝑑𝑟 ×∫
𝜋

0
cos2 𝜃 sin 𝜃𝑑𝜃

= 1√
8𝑎30

cos(Δ𝜔𝑡)4! 2
5

35 × 2
3

= 1√
2𝑎30

256
243 cos(Δ𝜔𝑡)

which is oscillating in time with frequency Δ𝜔/2𝜋.

Question 4: Perturbation: the anharmonic oscillator

Consider the 1D harmonic oscillator perturbed by a perturbation part: 𝐻̂𝑝 = 𝛽𝑥4 with 𝛽
a small number:

𝐻̂ = ̂𝑝2
2𝑚 + 1

2𝑚𝜔2𝑥2 + 𝛽𝑥4

= 𝐻̂0 + 𝐻̂𝑝

where the unperturbed Hamiltonian 𝐻̂0 has eigenenergies 𝐸(0)
𝑚 , that is:

𝐻̂0𝜓𝑚(𝑥) = 𝐸(0)
𝑚 𝜓𝑚(𝑥), and ground state: 𝜓0 = (𝑚𝜔

𝜋ℏ )
1/4

𝑒−𝑚𝜔
2ℏ 𝑥2, 𝐸(0)

0 = 1
2ℏ𝜔

(1/1) Calculate the value of the energy of the perturbed ground state 𝐸0 within first
order perturbation theory approximation.

Hint: The energy 𝐸𝑚 of eigenstate 𝜓𝑚 up to first order in perturbation theory is given
by:

𝐸𝑚 = 𝐸(0)
𝑚 + ⟨𝜓(0)

𝑚 |𝐻̂𝑝|𝜓(0)
𝑚 ⟩
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Solution (Q4)

The energy up to first order perturbation for the ground state is given by:

𝐸0 = 𝐸(0)
0 + ⟨𝜓(0)

0 |𝐻̂𝑝|𝜓(0)
0 ⟩

= 1
2ℏ𝜔 + 𝛽√𝑚𝜔

𝜋ℏ ∫
∞

−∞
𝑥4𝑒−𝑚𝜔

ℏ 𝑥2 𝑑𝑥

= 1
2ℏ𝜔 + 𝛽√𝑚𝜔

𝜋ℏ
3√𝜋(

√
ℏ)5

4(√𝑚𝜔)5

= 1
2ℏ𝜔 + 𝛽 3ℏ2

4𝑚2𝜔2

Question 5: Spin projection operators

Consider a particle with spin with the following orthonormal basis of eigenstates:

|𝑢⟩ = | ↑⟩ = (1
0) , |𝑑⟩ = | ↓⟩ = (0

1) .

Consider further the left and right spin states:

|𝑙⟩ = | ←⟩ = 1√
2
(|1⟩ − |2⟩) = 1√

2
( 1
−1)

|𝑟⟩ = | →⟩ = 1√
2
(|1⟩ + |2⟩) = 1√

2
(1
1)

and projection operators derived from them: ̂𝑃𝑢 = |𝑢⟩⟨𝑢| and ̂𝑃𝑙 = |𝑙⟩⟨𝑙|.
(1/1) Perform the following projections:

̂𝑃𝑢 ̂𝑃𝑙|𝑢⟩ = ?

Solution (Q5)

̂𝑃𝑢 ̂𝑃𝑙|𝑢⟩ = |𝑢⟩⟨𝑢| |𝑙⟩⟨𝑙| |𝑢⟩ = |𝑢⟩⟨𝑢|𝑙⟩⟨𝑙|𝑢⟩

= (1
0)

1√
2
(1 0)( 1

−1) × 1√
2
(1 −1)(1

0)

= 1
2|𝑢⟩

7



Question 6: Spin evolution in a magnetic field

Look at the evolution of the spin in time under a B-field oriented along the x-axis: 𝐵⃗ =
(𝐵, 0, 0). That is, consider the following Schrodinger equation:

𝜇𝐵𝐵(0 1
1 0)(𝑐𝑢

𝑐𝑑
) = 𝐸(𝑐𝑢

𝑐𝑑
)

where 𝜇𝐵 = 𝑒ℏ
2𝑚0

is the Bohr magneton.

(1/2) Calculate the eigenvalues and corresponding eigenstates of the system.

(2/2) Start in the spin up state Ψ(𝑡 = 0) = |𝑢⟩ = (1
0) at time 𝑡 = 0. After what time

will the system returns back to the spin up state?

Solution (Q6)

The eigenenergies of this eigenvalue equation can be derived as follows:

det(𝜇𝐵𝐵(0 1
1 0) − 𝐸𝟙) = det(( −𝐸 𝜇𝐵𝐵

𝜇𝐵𝐵 −𝐸 )) = 𝐸2 − (𝜇𝐵𝐵)2 = 0

⇒ 𝐸± = ±𝜇𝐵𝐵

Corresponding eigenstates 𝜓± can be found by inserting the eigenenergies in the original
equation:

𝜇𝐵𝐵(0 1
1 0)(𝑐𝑢

𝑐𝑑
) = ±𝜇𝐵𝐵(𝑐𝑢

𝑐𝑑
)

⇒ 𝜇𝐵𝐵𝑐𝑑 = ±𝜇𝐵𝐵𝑐𝑢 ⇒ 𝑐𝑑 = ±𝑐𝑢 ⇒ 𝜓± ∝ ( 1
±1)

Normalizing the eigenstates 𝜓± we obtain:

𝜓± = 1√
2
( 1
±1)

If we start in the spin-up state, we can expand this state in the eigenstates 𝜓± where the
coefficients of the expansion can be seen to be:

Ψ(𝑡 = 0) = 1√
2
(𝜓+ + 𝜓−)
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Adding the time-dependency factors for the eigenstates with energies 𝐸±:

Ψ(𝑡 > 0) = 1√
2
(𝜓+𝑒−𝑖𝜇𝐵𝐵𝑡/ℏ + 𝜓−𝑒𝑖𝜇𝐵𝐵𝑡/ℏ) = 1

2 (𝑒−𝑖𝜇𝐵𝐵𝑡/ℏ + 𝑒𝑖𝜇𝐵𝐵𝑡/ℏ

𝑒−𝑖𝜇𝐵𝐵𝑡/ℏ − 𝑒𝑖𝜇𝐵𝐵𝑡/ℏ)

= 1
2 ( 2 cos(𝜇𝐵𝐵𝑡/ℏ)

−2𝑖 sin(𝜇𝐵𝐵𝑡/ℏ))

Therefore the first occurence that the wave function gets into the same spin-up state:

Ψ(𝑡 > 0) = (1
0) ⇔ cos(𝜇𝐵𝐵𝑡/ℏ) = 1 & sin(𝜇𝐵𝐵𝑡/ℏ) = 0

Therefore 𝜇𝐵𝐵𝑡/ℏ = 2𝜋 and 𝑡 = 2𝜋ℏ
𝜇𝐵𝐵 . (𝜋 instead of 2𝜋 as alternative is also accepted as

probability for the spin-up state is one).

Question 7: Periodic systems

Assume a 1D periodic system of equi-distant 𝛿-function potential barriers. A single unit
cell has length 𝐿 and contains a single potential barrier with strength 𝛼, that is 𝑉 (𝑥) =
��(x). The relation between the coefficients (𝐴, 𝐵) before at 𝑥 = 0 and (𝐶, 𝐷) after the
barrier at 𝑥 = 𝐿 can be written as:

(𝐴
𝐵) = 1

𝑘𝑎 ((𝑘𝑎 − 𝑖)𝑒𝑖𝑘𝐿 −𝑖𝑒𝑖𝑘𝐿
𝑖𝑒−𝑖𝑘𝐿 (𝑘𝑎 + 𝑖)𝑒−𝑖𝑘𝐿)(𝐶

𝐷)

where the wave vector is 𝑘 =
√
2𝑚𝐸/ℏ and 𝑎 = ℏ2

𝑚𝛼 . According to the Bloch theorem we
can write

(𝐶
𝐷) = 𝑒𝑖𝛽𝐿 (𝐴

𝐵)

with 𝛽 the Bloch wave vector which provides the slowly varying phase of the envelope
function.

(1/1): Show that the Bloch theorem leads to the following characteristic equation (which
defines the band structure 𝐸(𝛽)):

cos(𝛽𝐿) = cos(𝑘𝐿) + 1
𝑘𝑎 sin(𝑘𝐿)
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Solution (Q7)

We use the Bloch condition 𝑒𝑖𝛽𝐿 (𝐴
𝐵) = (𝐶

𝐷) to eliminate coefficients 𝐴 and 𝐵:

𝑒−𝑖𝛽𝐿 (𝐶
𝐷) = 1

𝑘𝑎 ((𝑘𝑎 − 𝑖)𝑒𝑖𝑘𝐿 −𝑖𝑒𝑖𝑘𝐿
𝑖𝑒−𝑖𝑘𝐿 (𝑘𝑎 + 𝑖)𝑒−𝑖𝑘𝐿)(𝐶

𝐷)

⇒ [ 1
𝑘𝑎 ((𝑘𝑎 − 𝑖)𝑒𝑖𝑘𝐿 −𝑖𝑒𝑖𝑘𝐿

𝑖𝑒−𝑖𝑘𝐿 (𝑘𝑎 + 𝑖)𝑒−𝑖𝑘𝐿)−(𝑒−𝑖𝛽𝐿 0
0 𝑒−𝑖𝛽𝐿)] (𝐶

𝐷) = (0
0)

This means the determinant of the matrix should be zero:

det [ 1
𝑘𝑎 ((𝑘𝑎 − 𝑖)𝑒𝑖𝑘𝐿 −𝑖𝑒𝑖𝑘𝐿

𝑖𝑒−𝑖𝑘𝐿 (𝑘𝑎 + 𝑖)𝑒−𝑖𝑘𝐿)−(𝑒−𝑖𝛽𝐿 0
0 𝑒−𝑖𝛽𝐿)] = 0

We derive the characteristic equation by writing out the determinant:

0 = 1
(𝑘𝑎)2 [(𝑘𝑎)2 + 1 + (𝑘𝑎)2𝑒−𝑖2𝛽𝐿 − 𝑘𝑎(𝑘𝑎 − 𝑖)𝑒𝑖𝑘𝐿𝑒−𝑖𝛽𝐿 − 𝑘𝑎(𝑘𝑎 + 𝑖)𝑒−𝑖𝑘𝐿𝑒−𝑖𝛽𝐿 − 1]

= 𝑒−𝑖𝛽𝐿

(𝑘𝑎)2 [(𝑘𝑎)2𝑒𝑖𝛽𝐿 + (𝑘𝑎)2𝑒−𝑖𝛽𝐿 − 𝑘𝑎(𝑘𝑎 − 𝑖)𝑒𝑖𝑘𝐿 − 𝑘𝑎(𝑘𝑎 + 𝑖)𝑒−𝑖𝑘𝐿]

= 2𝑒−𝑖𝛽𝐿

(𝑘𝑎)2 [(𝑘𝑎)2(𝑒𝑖𝛽𝐿 + 𝑒−𝑖𝛽𝐿) − (𝑘𝑎)2(𝑒𝑖𝑘𝐿 + 𝑒−𝑖𝑘𝐿) + 𝑖𝑘𝑎(𝑒𝑖𝑘𝐿 − 𝑒−𝑖𝑘𝐿)]

= 2𝑒−𝑖𝛽𝐿 [cos(𝛽𝐿) − cos(𝑘𝐿) − 1
𝑘𝑎 sin(𝑘𝐿)]

⇒ cos(𝛽𝐿) = cos(𝑘𝐿) + 1
𝑘𝑎 sin(𝑘𝐿)

Question 8: two particles in an infinite well

Consider the 1D infinite well with two particles. Assume that the particles are not inter-
acting and ignore exchange energy:

(1/1) Assume that the particles are bosons and both are in the ground state: what is
the energy of the system?

Hint: For an infinite square well with width 𝐿 the solutions for a single particle can be
written in the form:

𝜓𝑛(𝑥) = √2
𝐿 sin(𝑛𝜋𝑥𝐿 ) , 𝐸𝑛 = ℏ2𝜋2𝑛2

2𝑚𝐿2 , with 𝑛 = 1, 2, 3,…
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Solution (Q8)

For two bosons the wave function is the symmetric sum: 𝜓(𝑥1, 𝑥2) ∝ 𝜓1(𝑥1)𝜓1(𝑥2) +
𝜓1(𝑥2)𝜓1(𝑥1). Since the particles are not interacting the Hamiltonian is decoupled:

𝐻̂ = 𝐻̂1 + 𝐻̂2 = − ℏ2

2𝑚
𝜕2

𝜕𝑥2
1
− ℏ2

2𝑚
𝜕2

𝜕𝑥2
2

The symmetric wave function for both single-particle wave functions in the ground state:

𝜓(𝑥1, 𝑥2) ∝ 𝜓1(𝑥1)𝜓1(𝑥2) + 𝜓1(𝑥2)𝜓1(𝑥1) ∝ 𝜓1(𝑥1)𝜓1(𝑥2)

where normalization leads to 𝜓(𝑥1, 𝑥2) = 𝜓1(𝑥1)𝜓1(𝑥2). Using this wave function and
the Hamiltonian above we obtain the expectation value for the energy ⟨𝐻̂⟩:

⟨𝐻̂⟩ = ∫
𝐿

0
𝑑𝑥1 ∫

𝐿

0
𝑑𝑥2𝜓∗(𝑥1, 𝑥2)𝐻̂𝜓(𝑥1, 𝑥2)

= ∫
𝐿

0
𝑑𝑥1 ∫

𝐿

0
𝑑𝑥2𝜓(𝑥1, 𝑥2)(𝐻̂1 + 𝐻̂2)𝜓(𝑥1, 𝑥2)

= ∫
𝐿

0
𝑑𝑥1 ∫

𝐿

0
𝑑𝑥2𝜓1(𝑥1)𝜓1(𝑥2)𝐻̂1𝜓1(𝑥1)𝜓1(𝑥2) +∫

𝐿

0
𝑑𝑥1 ∫

𝐿

0
𝑑𝑥2𝜓1(𝑥1)𝜓1(𝑥2)𝐻̂2𝜓1(𝑥1)𝜓1(𝑥2)

= ∫
𝐿

0
𝑑𝑥2𝜓2

1(𝑥2)∫
𝐿

0
𝑑𝑥1[𝜓1(𝑥1)𝐻̂1𝜓1(𝑥1)] +∫

𝐿

0
𝑑𝑥1𝜓2

1(𝑥1)∫
𝐿

0
𝑑𝑥2[𝜓1(𝑥2)𝐻̂2𝜓1(𝑥2)]

= 𝐸1 ∫
𝐿

0
𝑑𝑥2𝜓2

1(𝑥2) + 𝐸1 ∫
𝐿

0
𝑑𝑥1𝜓2

1(𝑥1)

= 2𝐸1 = 2ℏ2𝜋2

2𝑚𝐿2

Formulas

In the following formulas parameters 𝑛, 𝑚 are integers and 0 < 𝑎 ∈ ℝ and 𝑏 ∈ ℝ0:
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Anti-derivatives (indefinite integrals)

∫ 1
(𝑥2 + 1)2 𝑑𝑥 = 1

2 (arctan(𝑥) + 𝑥
𝑥2 + 1)

∫ 𝑥
(𝑥2 + 1)2 𝑑𝑥 = −1

2
1

𝑥2 + 1

∫ 𝑥2

(𝑥2 + 1)2 𝑑𝑥 = 1
2 (arctan(𝑥) − 𝑥

𝑥2 + 1)

∫ 𝑥3

(𝑥2 + 1)2 𝑑𝑥 = 1
2 ( 1

𝑥2 + 1 + log(𝑥2 + 1))

∫ cos𝑛(𝑎𝑥) sin(𝑎𝑥) 𝑑𝑥 = − 1
𝑎(𝑛 + 1) cos𝑛+1(𝑎𝑥)

∫ cos(𝑎𝑥) sin𝑛(𝑎𝑥) 𝑑𝑥 = 1
𝑎(𝑛 + 1) sin𝑛+1(𝑎𝑥)

Definite integrals

∫
∞

0
𝑥𝑛𝑒−𝑎𝑥 𝑑𝑥 = 𝑛!

𝑎𝑛+1

∫
∞

0
𝑒−𝑎𝑥2 𝑑𝑥 =

√𝜋
2√𝑎

∫
∞

0
𝑥2𝑒−𝑎𝑥2 𝑑𝑥 =

√𝜋
4𝑎3/2

∫
∞

0
𝑥4𝑒−𝑎𝑥2 𝑑𝑥 = 3√𝜋

8𝑎5/2

Definite integrals

∫
1

0
sin(𝑚𝜋𝑥) sin(𝑛𝜋𝑥) 𝑑𝑥 = 1

2𝛿𝑚𝑛

∫
1

0
𝑥 sin2(𝑚𝜋𝑥) 𝑑𝑥 = 1

4

∫
1

0
𝑥2 sin2(𝑚𝜋𝑥) 𝑑𝑥 = 1

6 − 1
4𝜋2𝑚2

∫
1

0
𝑥 sin(𝜋𝑥) sin(3𝜋𝑥) 𝑑𝑥 = 0

∫
1

0
𝑥2 sin(𝜋𝑥) sin(3𝜋𝑥) 𝑑𝑥 = 3

16𝜋2

∫
1

0
𝑥3 sin(𝜋𝑥) sin(3𝜋𝑥) 𝑑𝑥 = 9

32𝜋2

∫
∞

−∞
𝑒−𝑎𝑥2 𝑑𝑥 =

√𝜋√𝑎

∫
∞

−∞
𝑥2𝑒−𝑎𝑥2 𝑑𝑥 =

√𝜋
2𝑎3/2

∫
∞

−∞
𝑥4𝑒−𝑎𝑥2 𝑑𝑥 = 3√𝜋

4𝑎5/2

Integration in spherical coordinates:

∫
∞

−∞
𝑑𝑥∫

∞

−∞
𝑑𝑦∫

∞

−∞
𝑑𝑧 𝑓(𝑥, 𝑦, 𝑧) =

∫
∞

0
𝑑𝜌∫

𝜋

0
𝑑𝜃∫

2𝜋

0
𝑑𝜙 𝜌2 sin 𝜃 𝐹(𝜌, 𝜃, 𝜙)

where volume element 𝑑𝑥 𝑑𝑦 𝑑𝑧 = 𝜌2 sin 𝜃 𝑑𝜃 𝑑𝜙 𝑑𝜌

𝑥 = 𝜌 sin(𝜃) cos(𝜙), 𝑦 = 𝜌 sin(𝜃) sin(𝜙), 𝑧 = 𝜌 cos(𝜃)

12


	General information on the exam
	Exam questions
	Question 1: Wave functions and expectation values
	Solution (Q1)

	Question 2: Infinite well eigenstate superposition
	Solution (Q2)

	Question 3: Oscillations of eigenstates
	Solution (Q3)

	Question 4: Perturbation: the anharmonic oscillator
	Solution (Q4)

	Question 5: Spin projection operators
	Solution (Q5)

	Question 6: Spin evolution in a magnetic field
	Solution (Q6)

	Question 7: Periodic systems
	Solution (Q7)

	Question 8: two particles in an infinite well
	Solution (Q8)

	Formulas


