

PHOT 222: Quantum Photonics

LECTURE 16

Michaël Barbier, Spring semester (2024-2025)

OVERVIEW OF THE COURSE

week	topic	Serway 9 th	Young
Week 1	Relativity	Ch. 39	Ch. 37
Week 2	Waves and Particles	Ch. 40	Ch. 38-39
Week 3	Wave packets and Uncertainty	Ch. 40	Ch. 38-39
Week 4	The Schrödinger equation and Probability	Ch. 41	Ch. 39
Week 5	Midterm exam 1		
Week 6	Quantum particles in a potential	Ch. 41	Ch. 40
Week 7	Bayram		
Week 8	Harmonic oscillator	Ch. 41	Ch. 40
Week 9	Tunneling through a potential barrier	Ch. 41	Ch. 40
Week 10	Midterm exam 2		
Week 11	Bohr's hydrogen atom, absorption/emission spectra	Ch. 42	Ch. 41
Week 12	Quantum mechanical model of the hydrogen atom	Ch. 42	Ch. 41
Week 13	Exercises		
Week 14	Spin / Many-electron atoms	Ch. 42	Ch. 41
Week 15	Molecules	Ch. 43	Ch. 42
Week 16	Crystalline materials & energy band structure	Ch. 43	Ch. 42

Solids - Crystal structures

CRYSTAL STRUCTURE

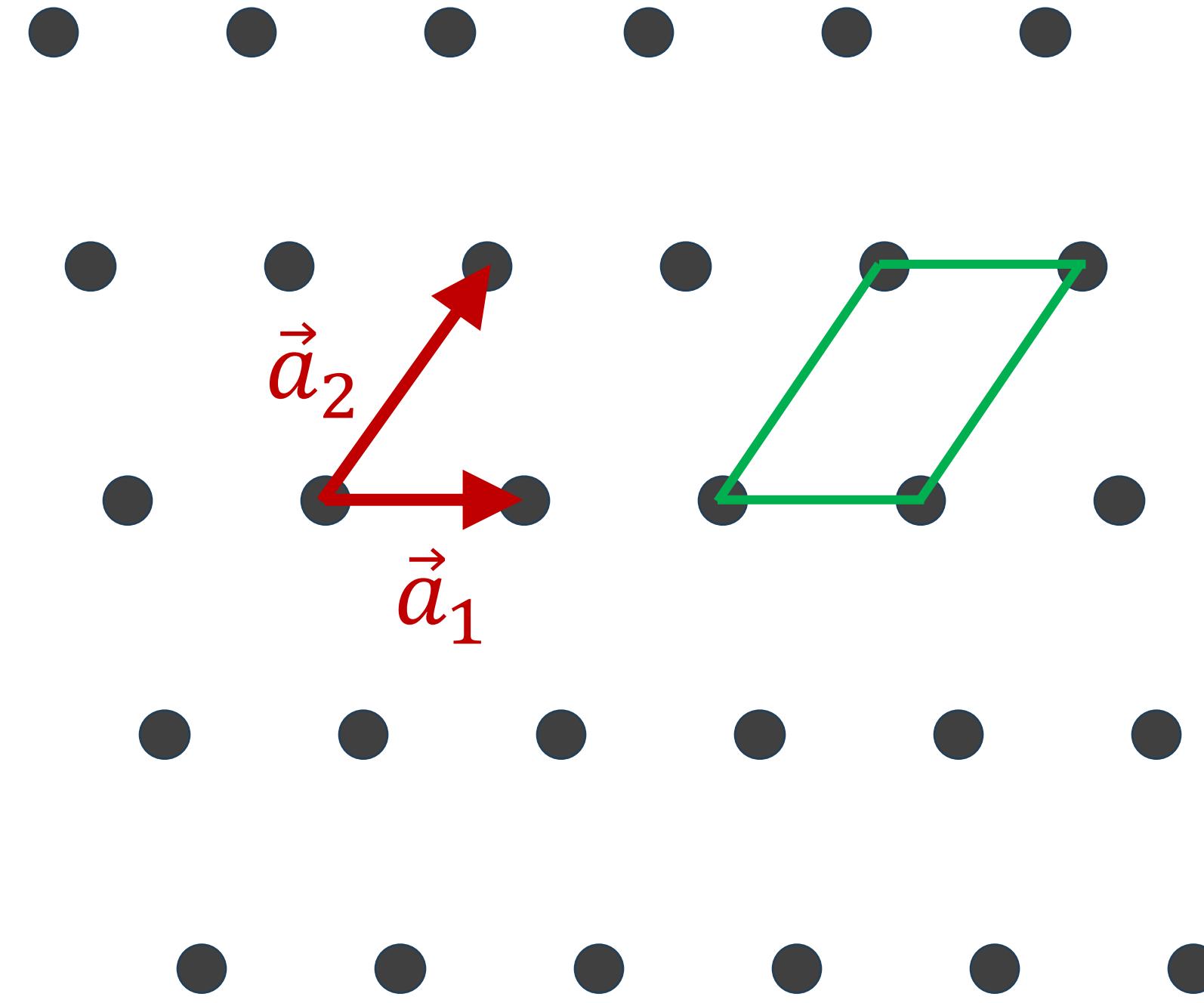
- Crystal structure:
 - Long-range order
 - Periodic repetition of same atoms

- Translation symmetry

Basis vectors $\vec{a}_1, \vec{a}_2, (\vec{a}_3)$

- **Unit cell:** a single repeated block

- **Primitive unit cell:** a unit cell with one lattice point

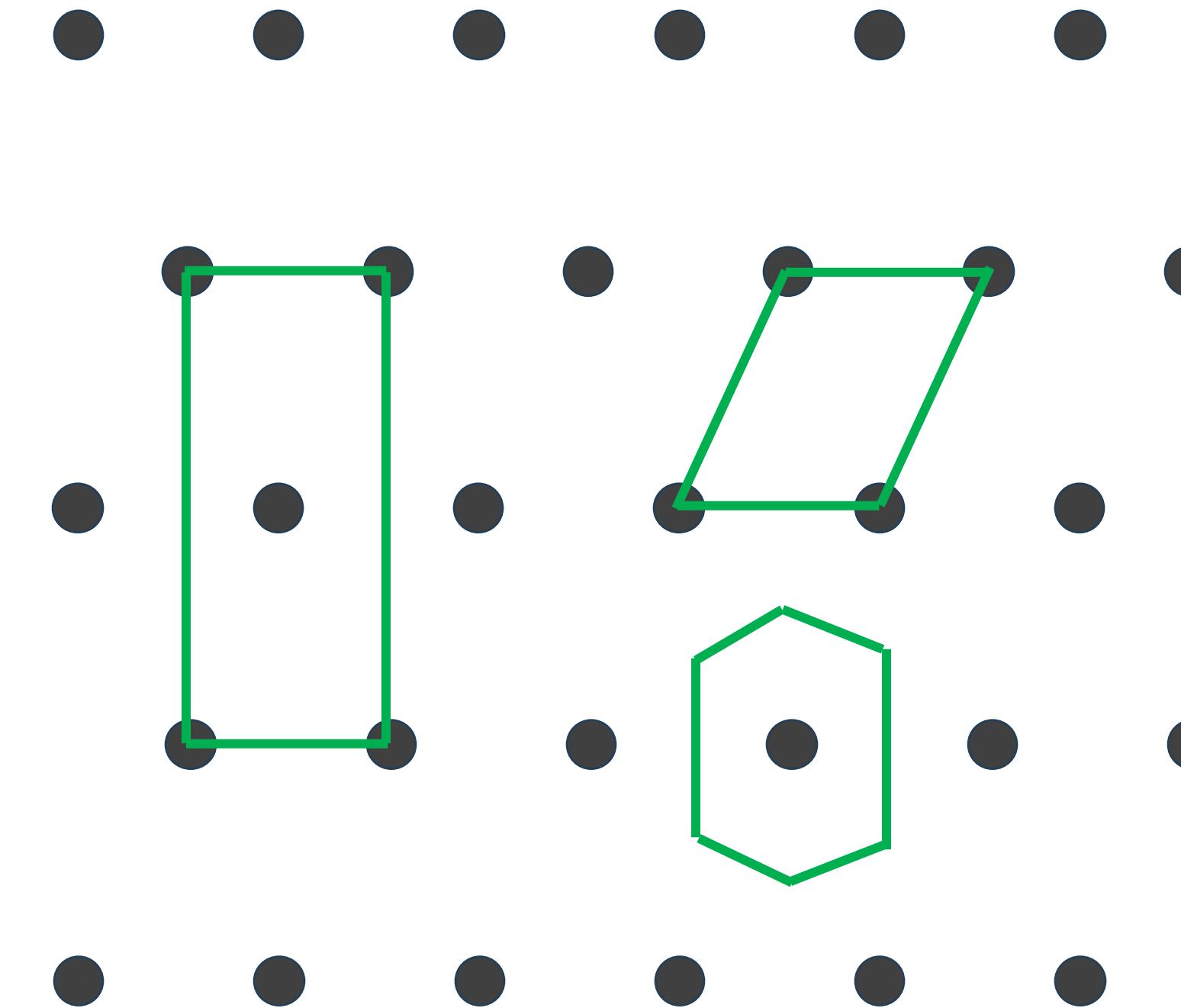


CRYSTAL STRUCTURE

- Different unit cell possible

- Non-primitive unit cells: symmetry

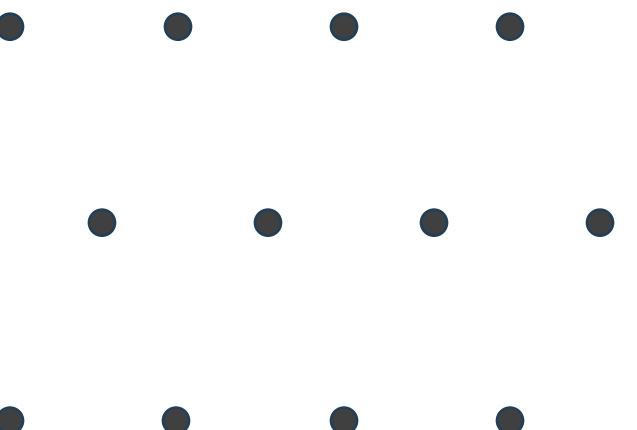
→ Body-centered rectangular unit cell



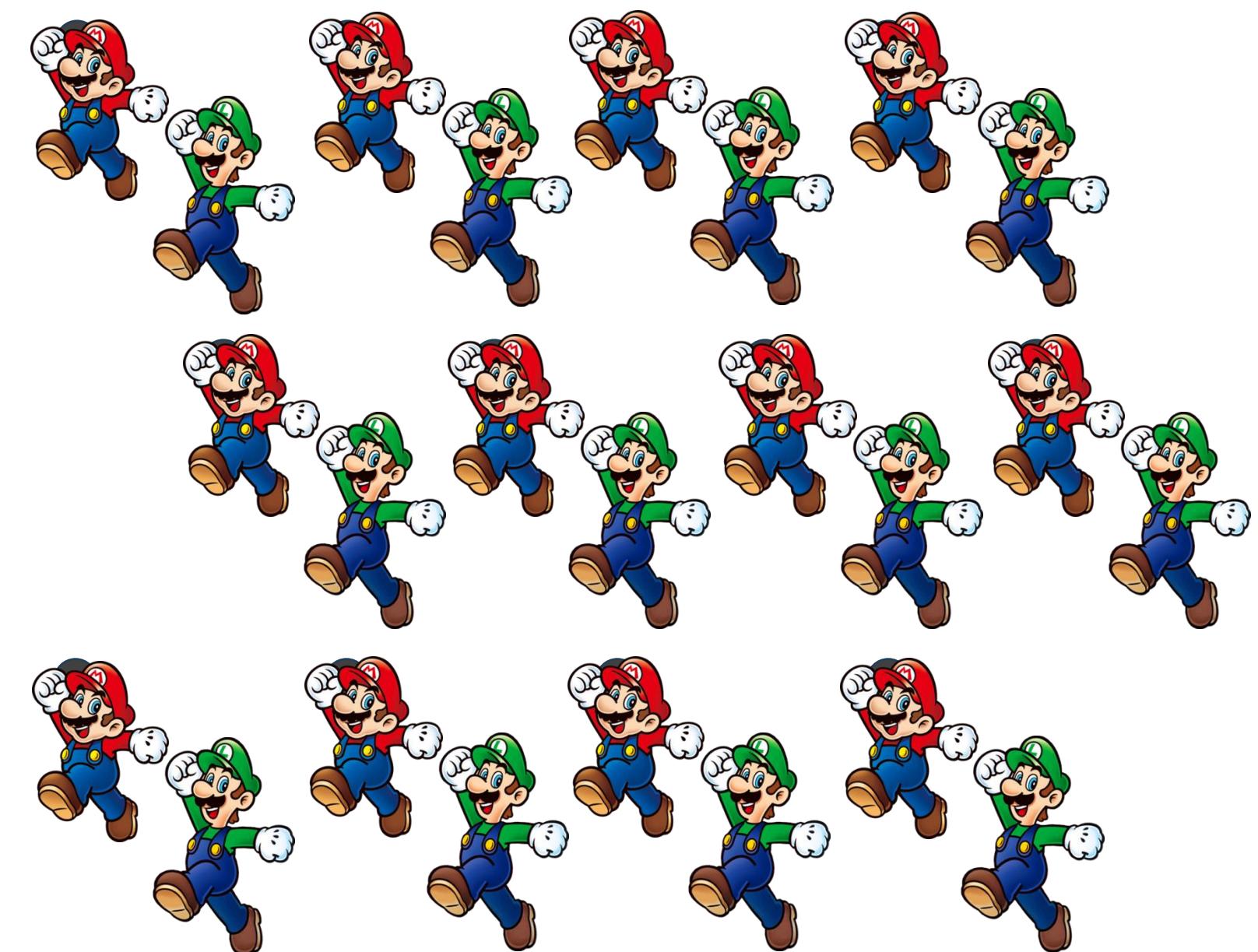
BRAVAIS LATTICE + BASIS

Basis
Atoms/molecule

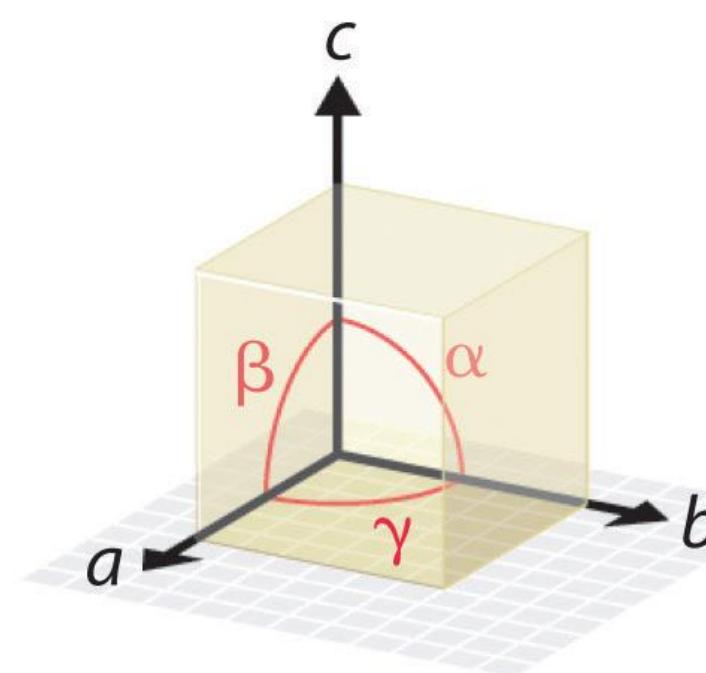
+



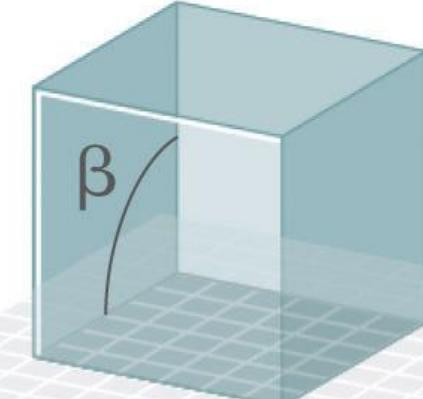
=



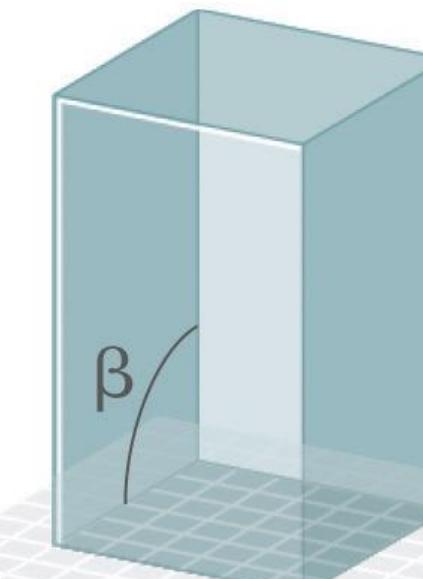
#7 TYPES OF 3D CRYSTAL SYSTEMS



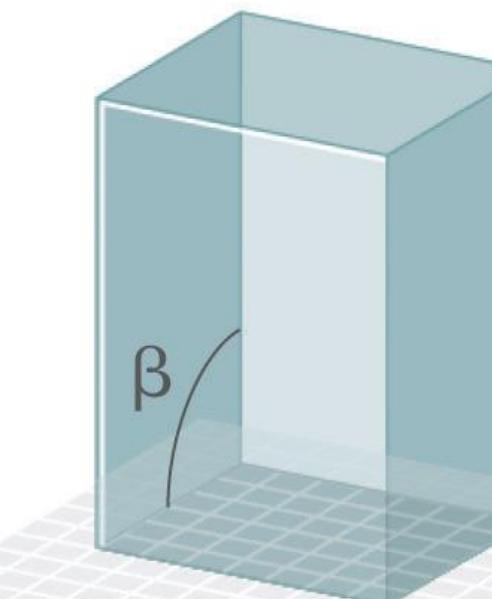
Edges and angles



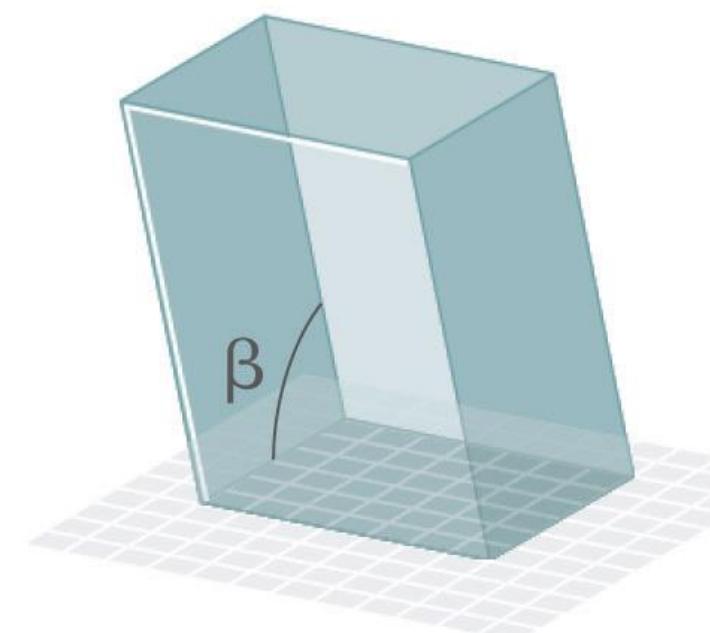
Cubic
 $a = b = c$
 $\alpha = \beta = \gamma = 90^\circ$



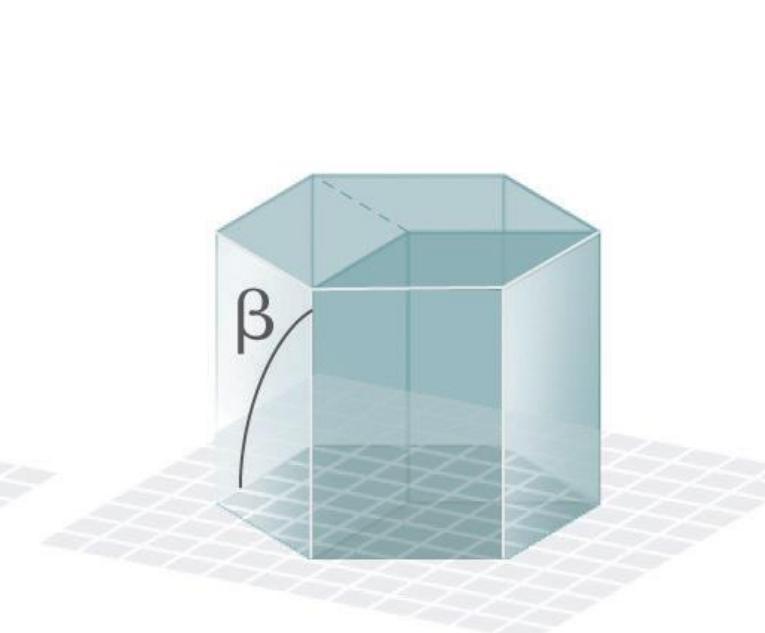
Tetragonal
 $a = b \neq c$
 $\alpha = \beta = \gamma = 90^\circ$



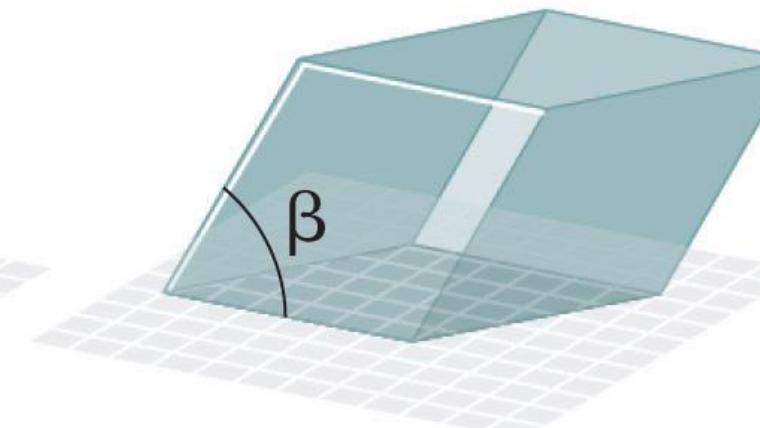
Orthorhombic
 $a \neq b \neq c$
 $\alpha = \beta = \gamma = 90^\circ$



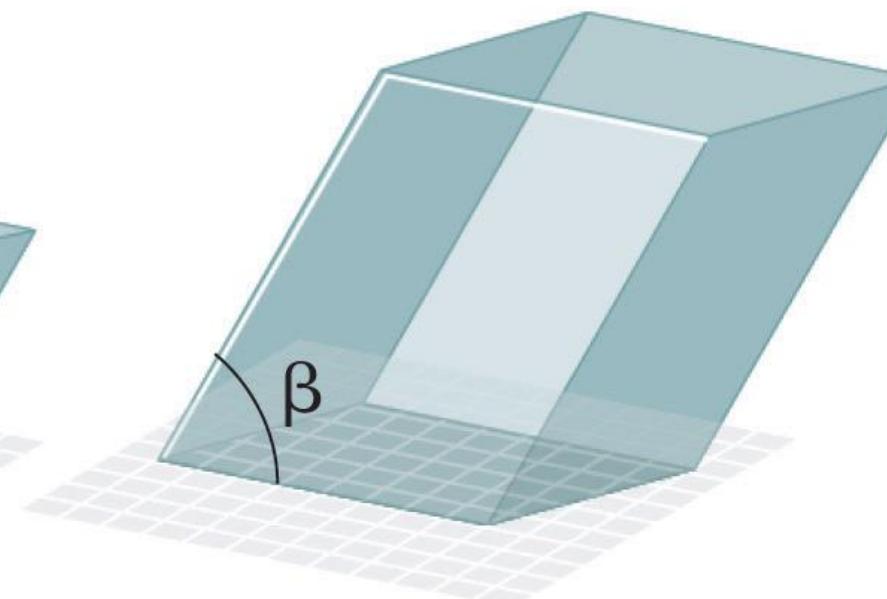
Monoclinic
 $a \neq b \neq c$
 $\alpha = \gamma = 90^\circ \neq \beta$



Hexagonal
 $a = b \neq c$
 $\alpha = \beta = 90^\circ, \gamma = 120^\circ$



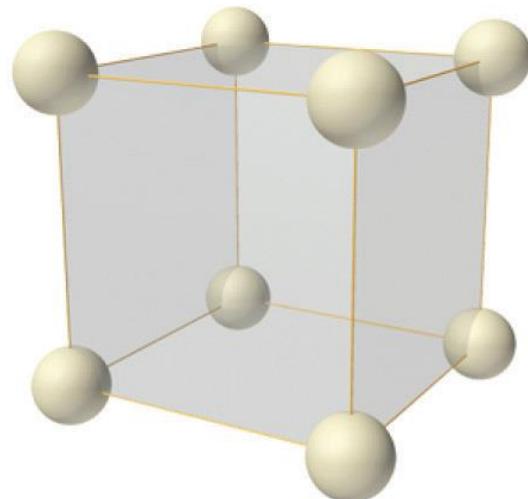
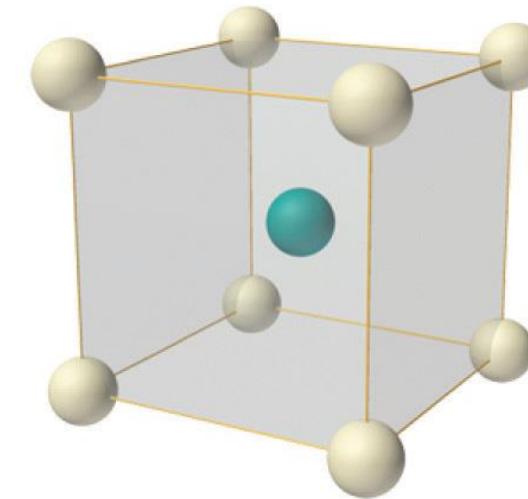
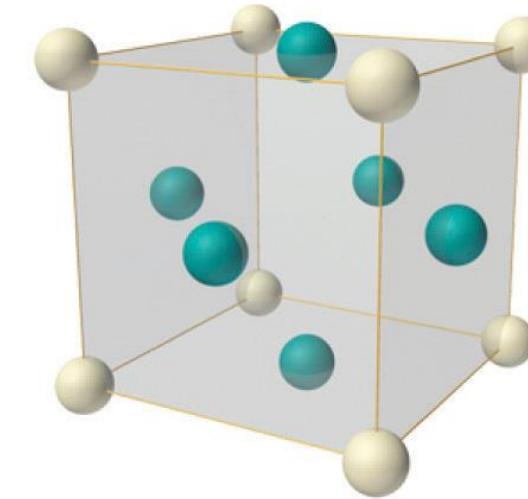
Rhombohedral
 $a = b = c$
 $\alpha = \beta = \gamma \neq 90^\circ$



Triclinic
 $a \neq b \neq c$
 $\alpha \neq \beta \neq \gamma \neq 90^\circ$

3D CRYSTAL BRAVAIS LATTICES

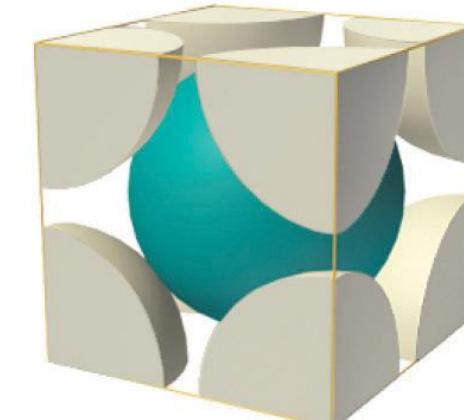
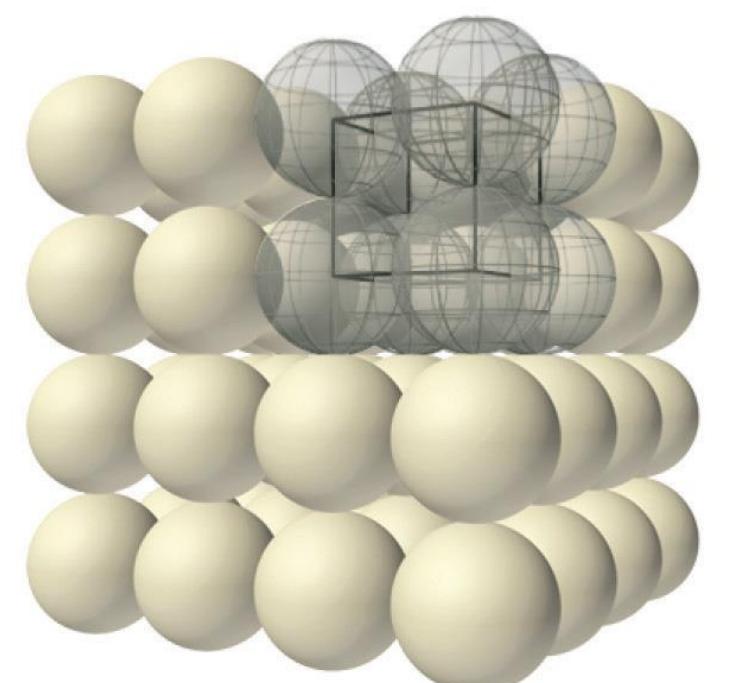
- Crystal system + symmetry



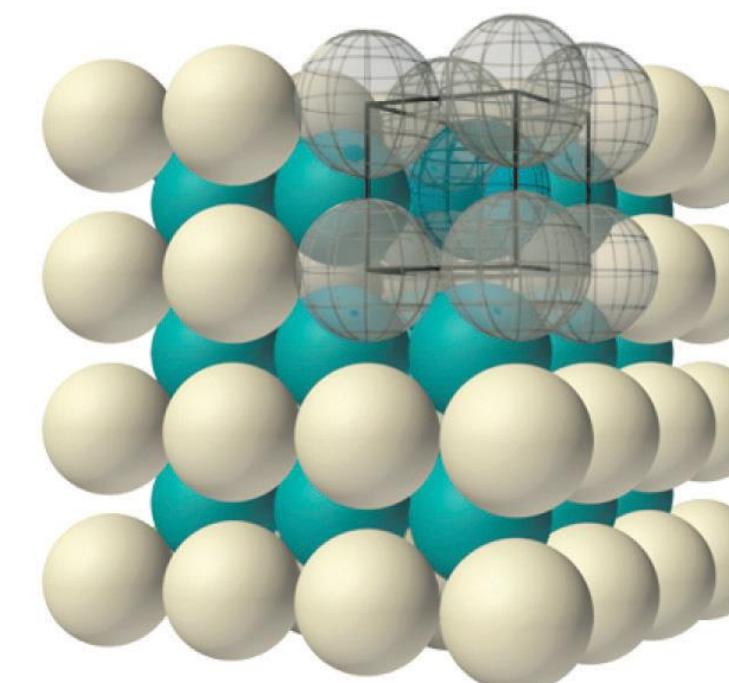
- 14 Bravais lattices in 3D

- Example - Cubic system has 3 Bravais lattices:

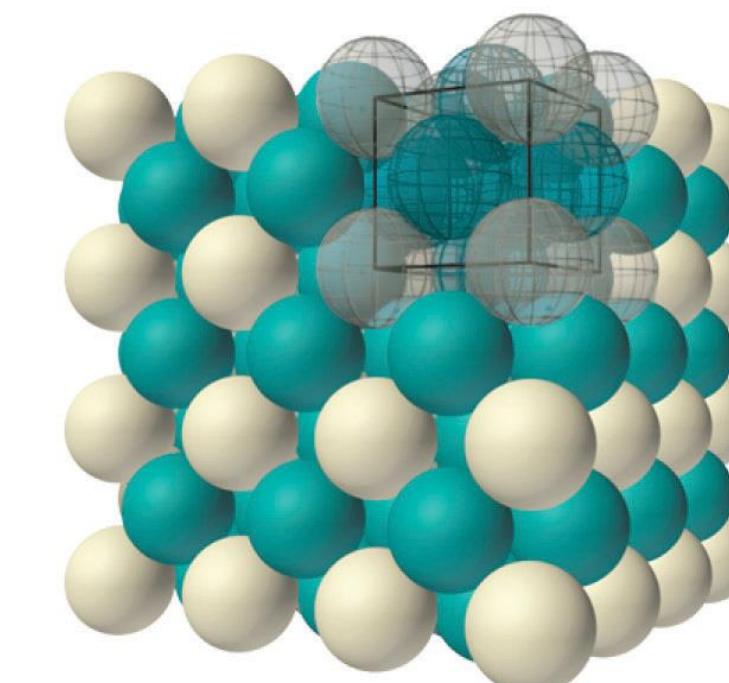
- Simple cubic
- Body-centered cubic
- Face-centered cubic



(a) Simple cubic

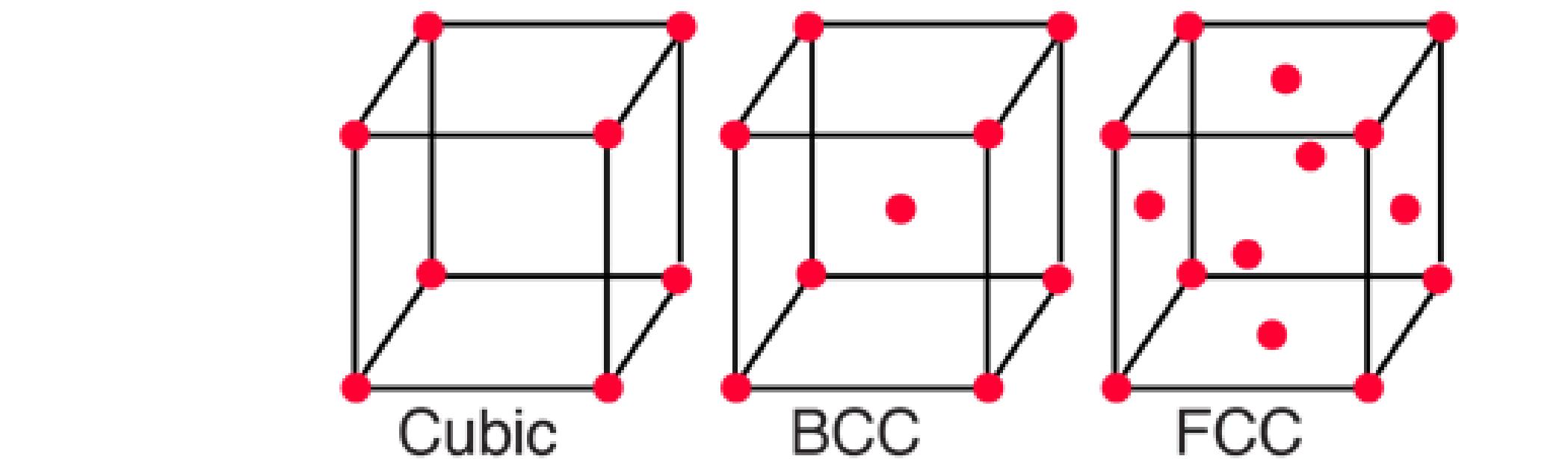
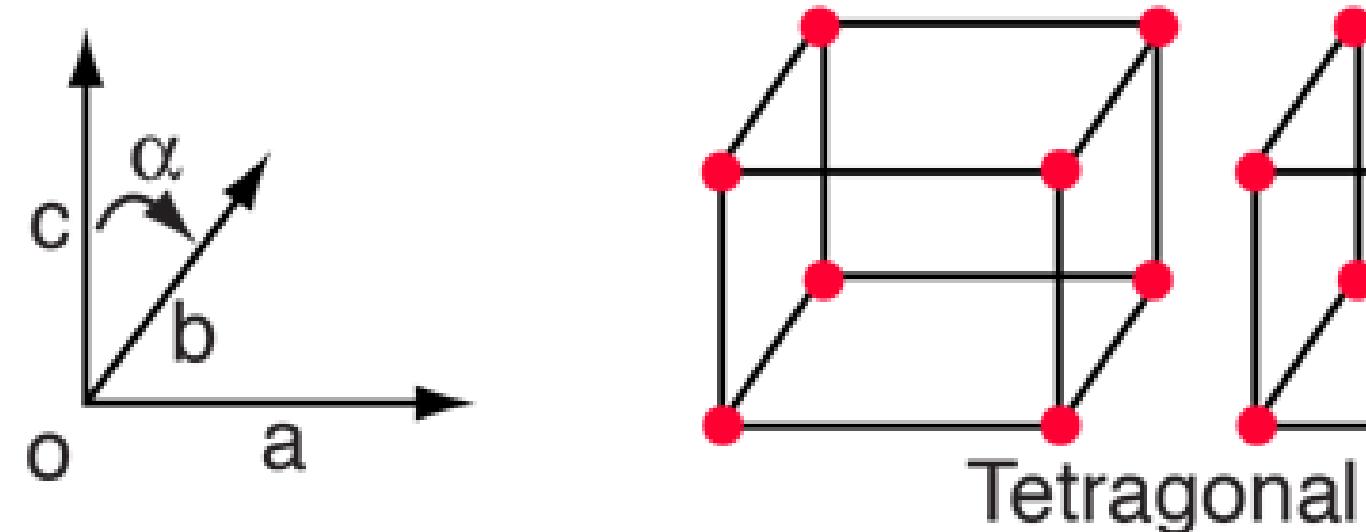
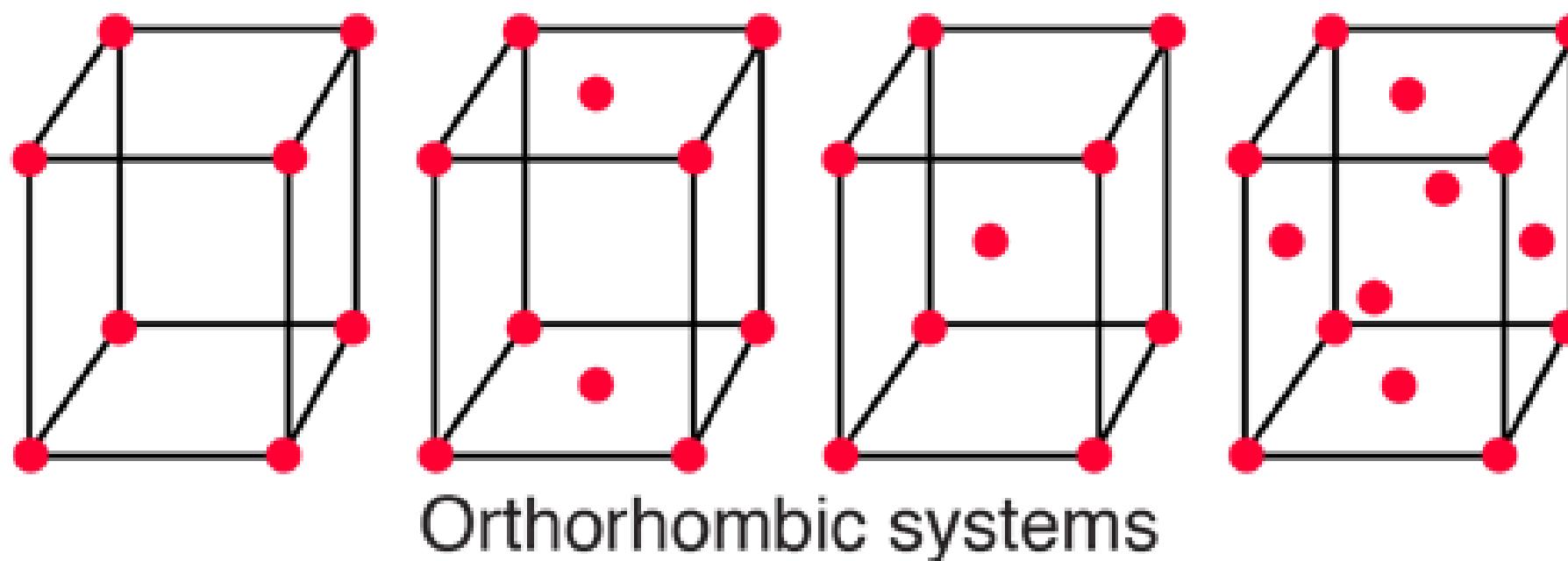
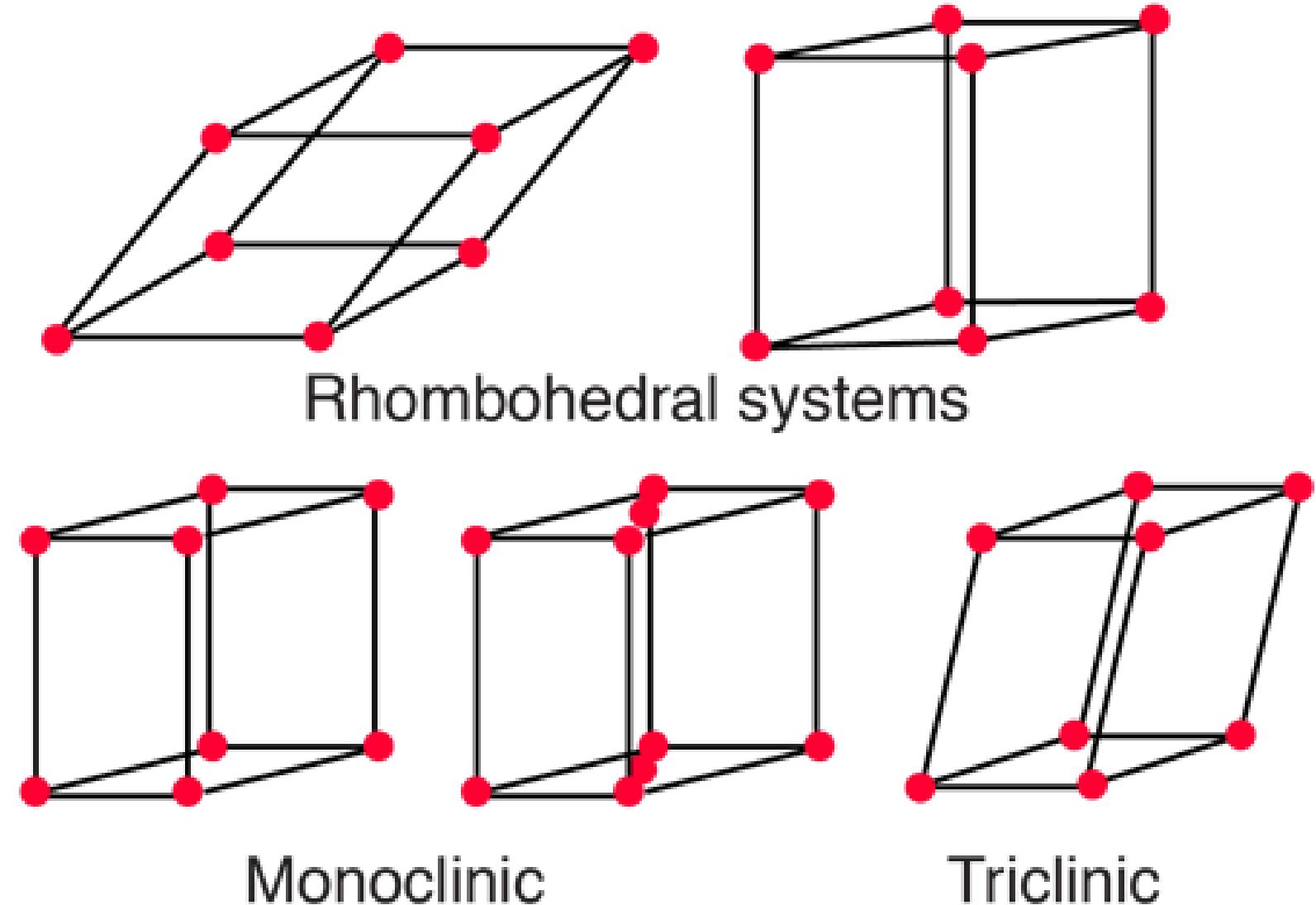


(b) Body-centered cubic



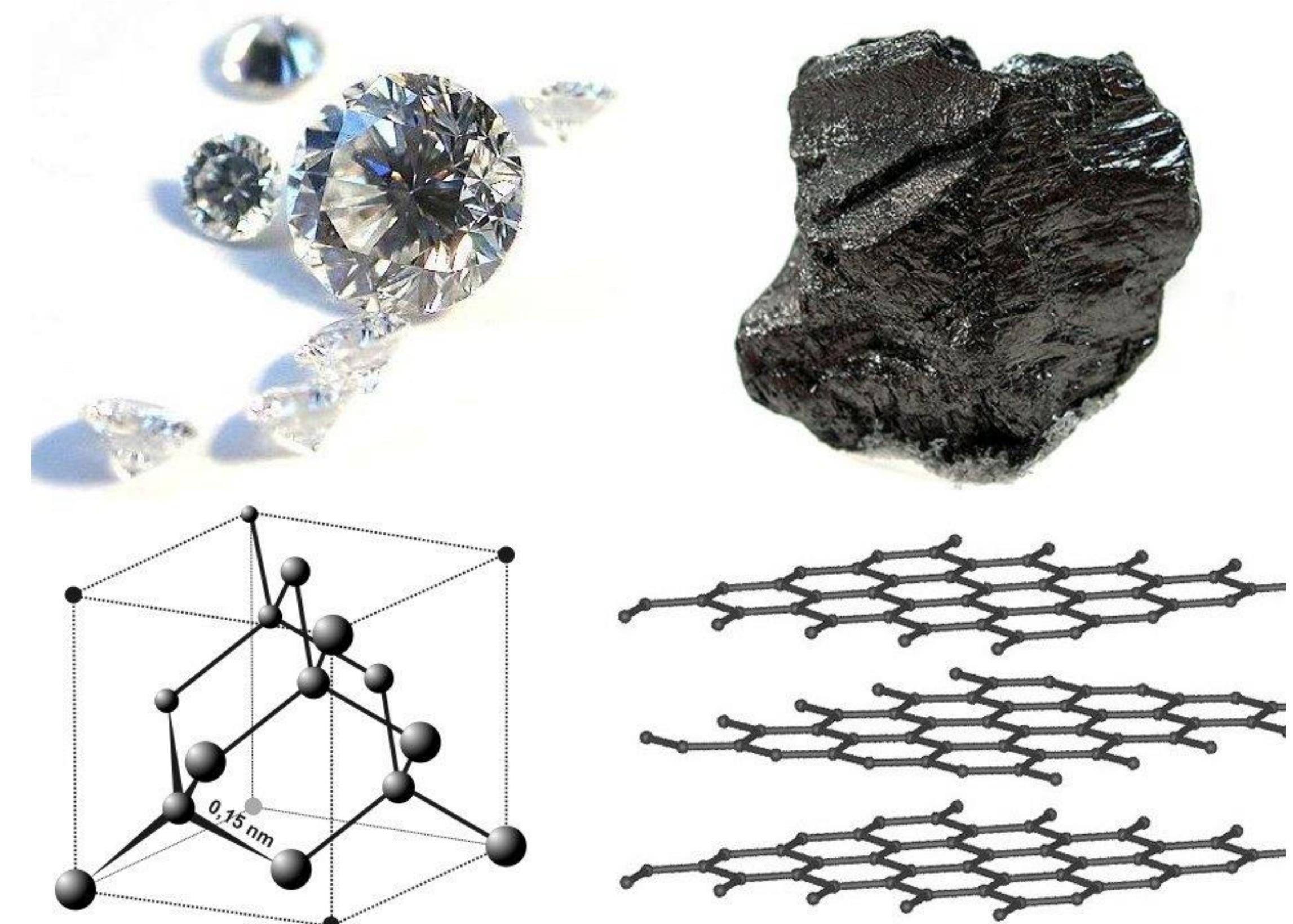
(c) Face-centered cubic

#14 3D CRYSTAL BRAVAIS LATTICES



BONDS IN CRYSTALLINE MATERIALS

- Different types of bonds
 - Ionic bonds
 - Covalent bonds
 - Vanderwaals bonds
 - Hydrogen bonds

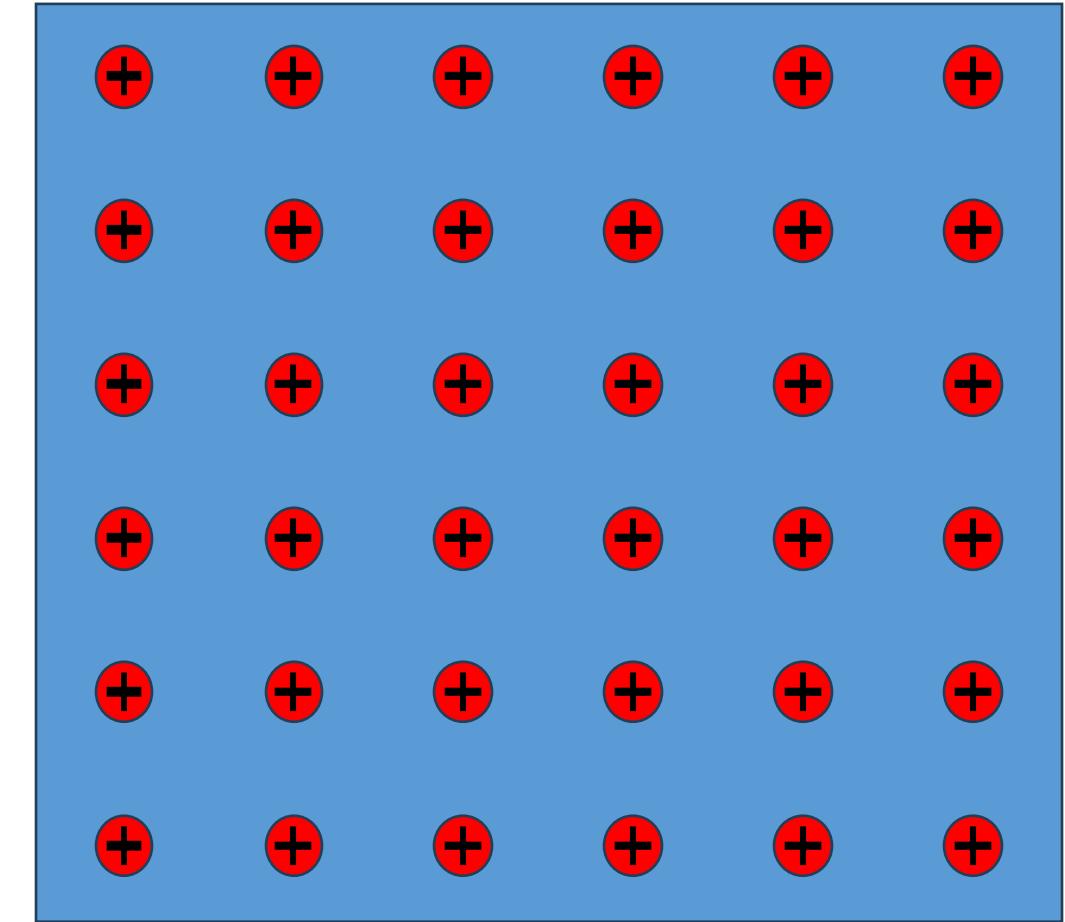


Metals – Free electron model

METALS: FREE-ELECTRON MODEL

- In metals orbitals of valence electrons have a large overlap
- Metals share electrons
- Electrons are moving nearly free

→ Particle in a box

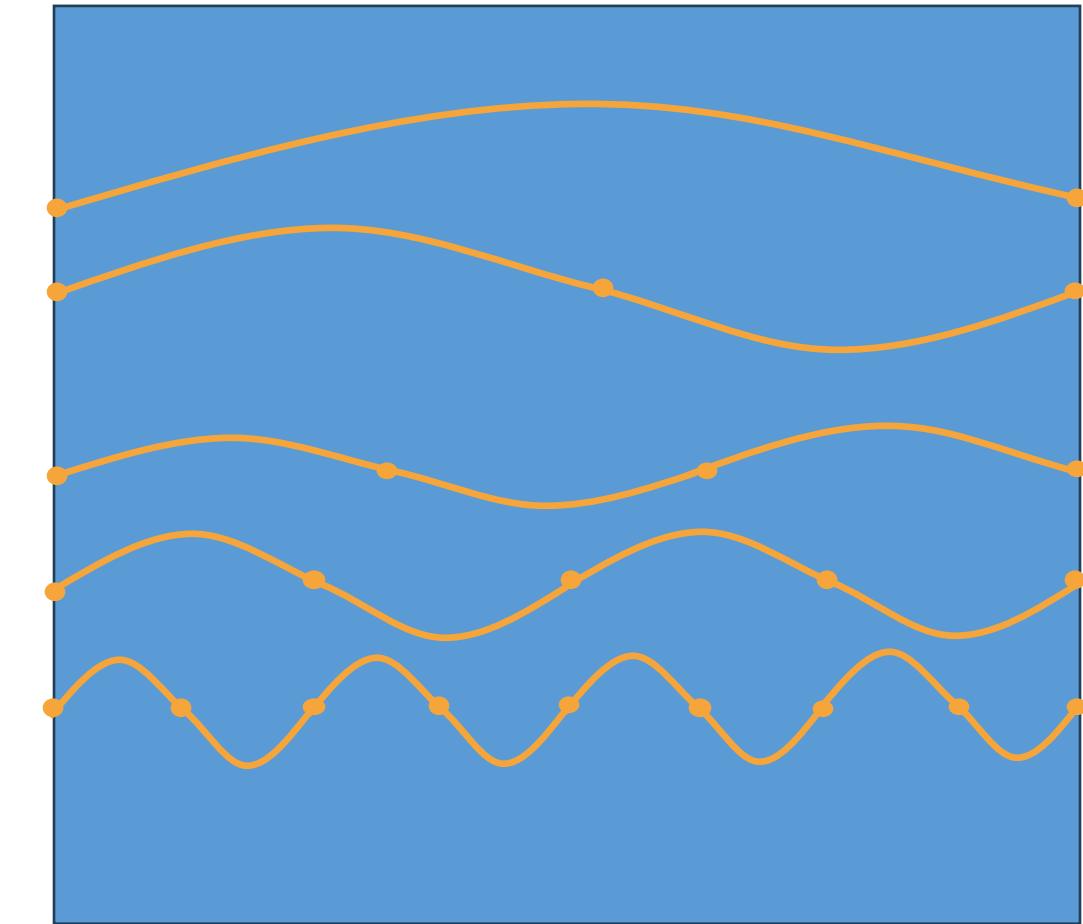


$$E_{n_x, n_y, n_z} = \frac{\hbar^2 \pi^2}{2mL^2} (n_x^2 + n_y^2 + n_z^2)$$

METALS: FREE-ELECTRON MODEL

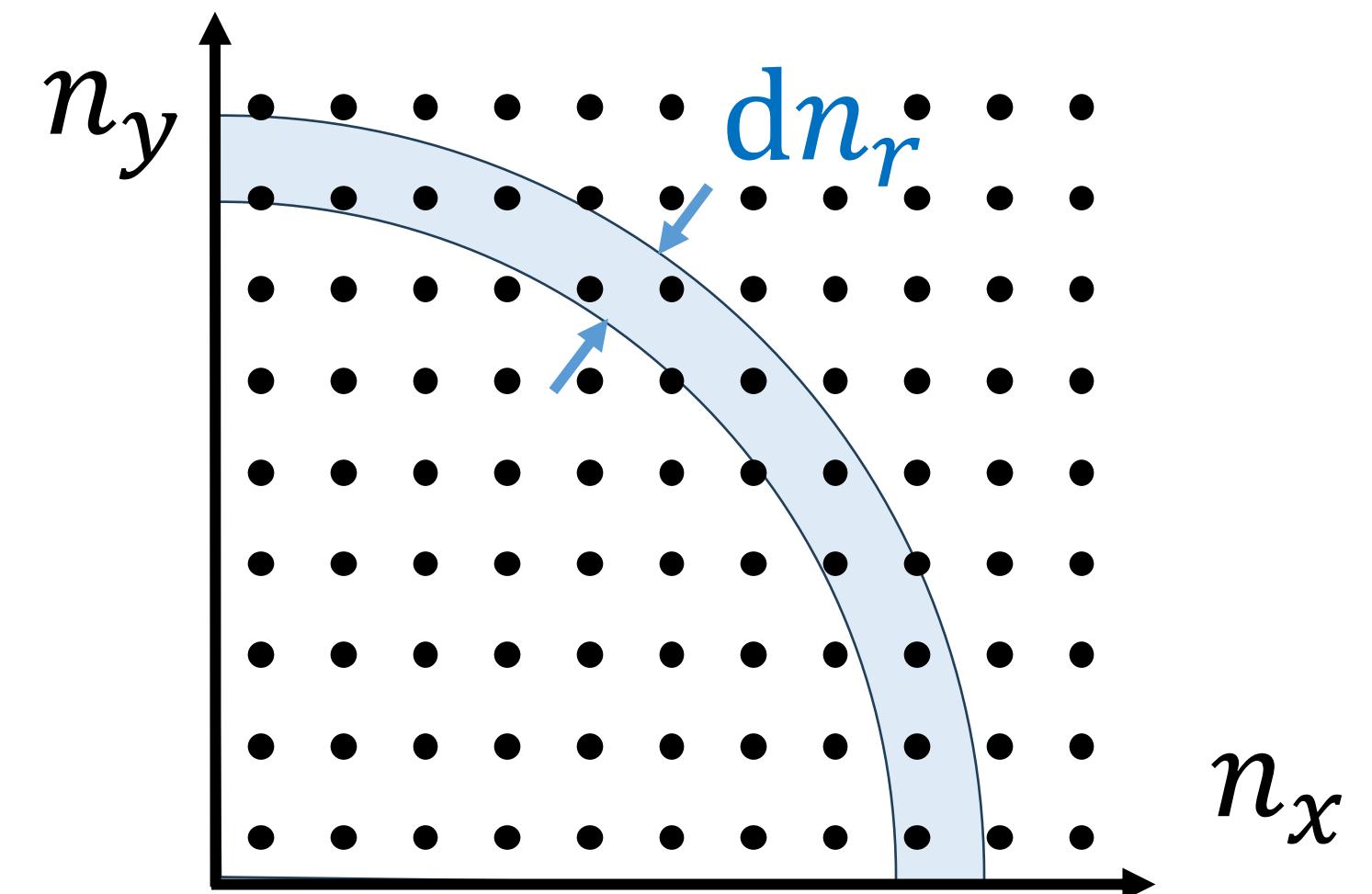
- In metals orbitals of valence electrons have a large overlap
- Metals share electrons
- Electrons are moving nearly free

→ Particle in a box



$$E_{n_x, n_y, n_z} = \frac{\hbar^2 \pi^2}{2mL^2} (n_x^2 + n_y^2 + n_z^2)$$

$$\psi_{n_x, n_y, n_z} = \sqrt{\frac{8}{L^3}} \sin\left(\frac{n_x \pi x}{L}\right) \sin\left(\frac{n_y \pi y}{L}\right) \sin\left(\frac{n_z \pi z}{L}\right)$$

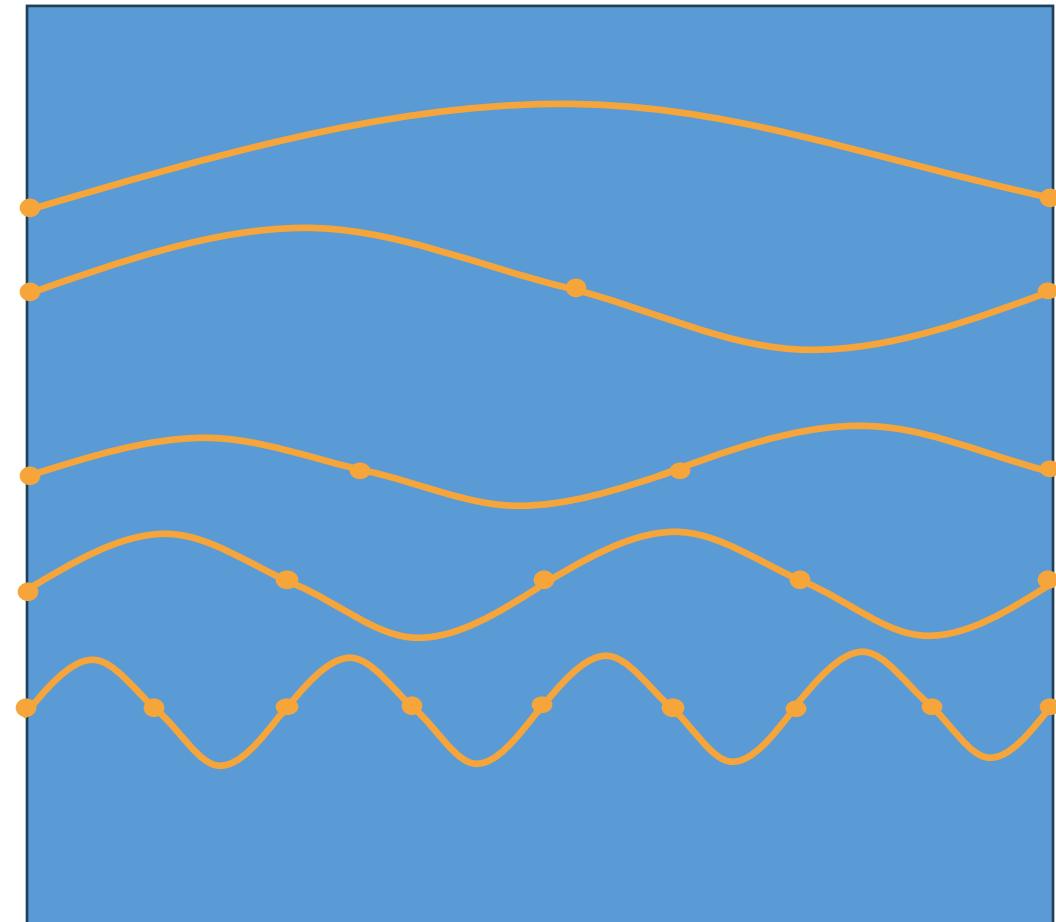


FREE-ELECTRON MODEL: DENSITY OF STATES

- Number of states increases with energy

$$E_{n_x, n_y, n_z} = \frac{\hbar^2 \pi^2}{2mL^2} (n_x^2 + n_y^2 + n_z^2)$$

- For larger radius $n_r = \sqrt{n_x^2 + n_y^2 + n_z^2}$ more states



- Density of States $g(E)$:

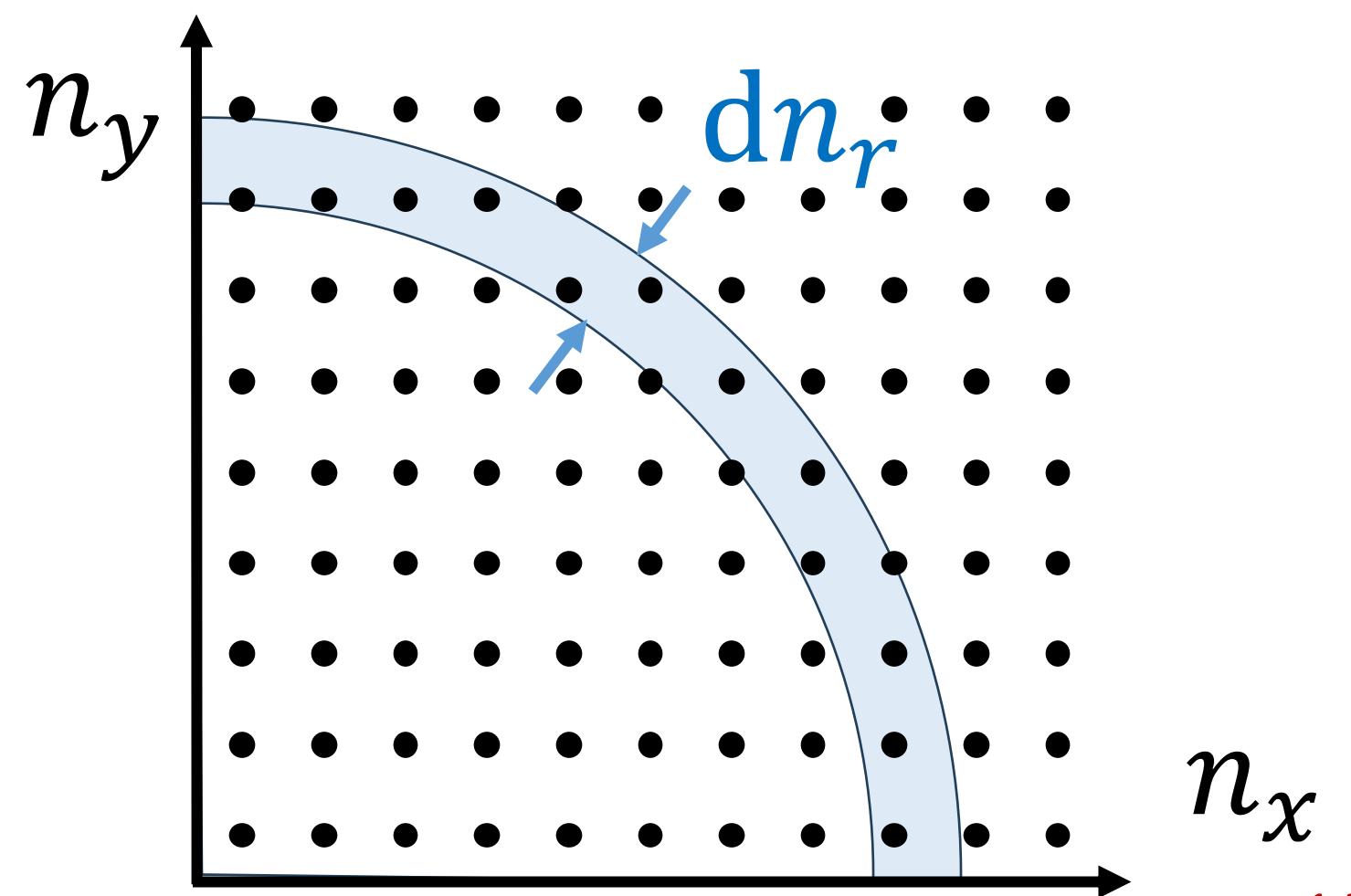
$$g(E) = \frac{dn}{dE}$$

Volume sphere

$$n(E) = \frac{1}{8} \left(\frac{4}{3} \pi n_r^3 \right) 2 = \frac{\pi n_r^3}{3} = \frac{(2m)^{\frac{3}{2}} L^3 E^{\frac{3}{2}}}{3\pi^2 \hbar^3}$$

1/8 of sphere

spin



FREE-ELECTRON MODEL: DENSITY OF STATES

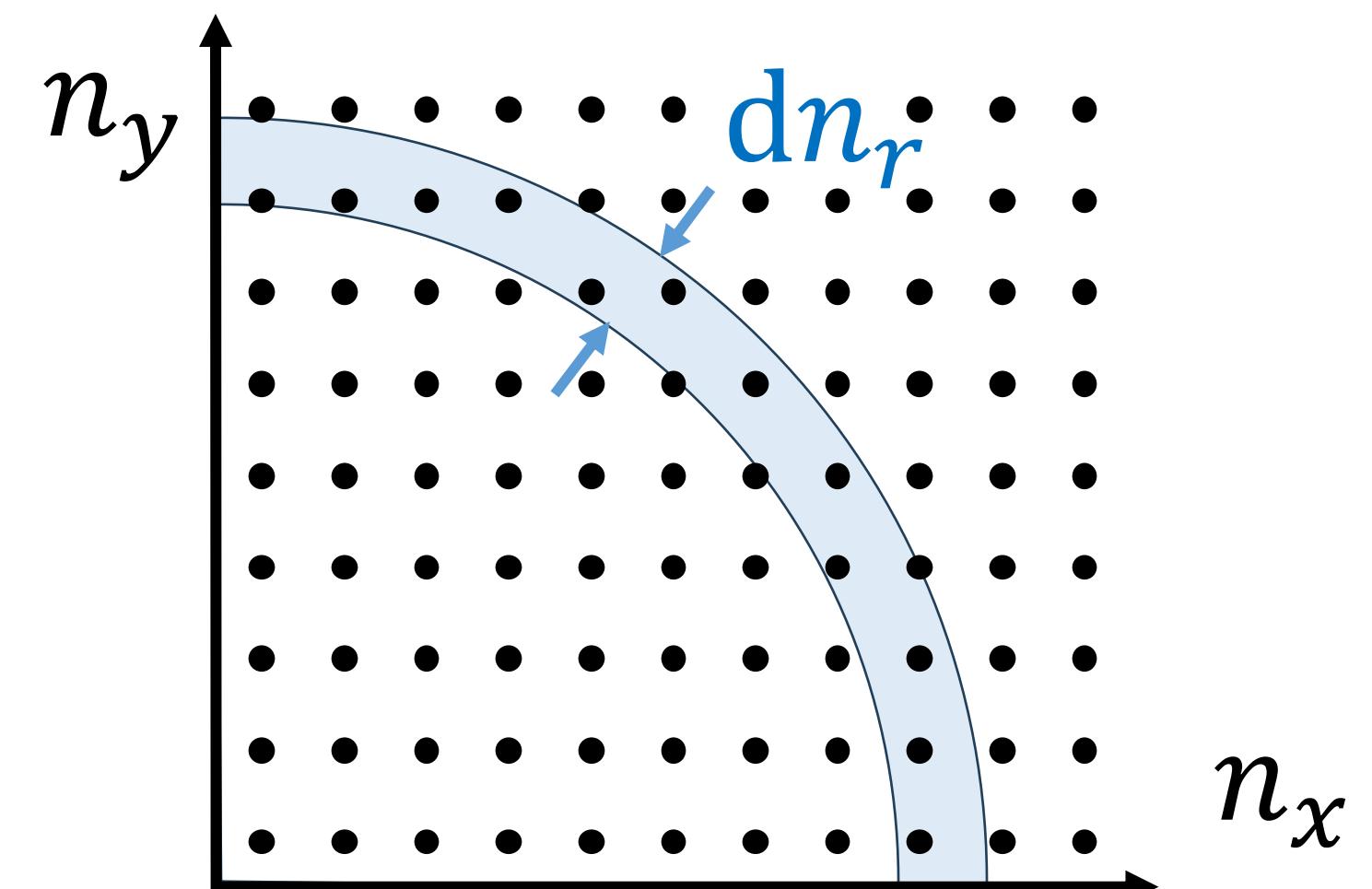
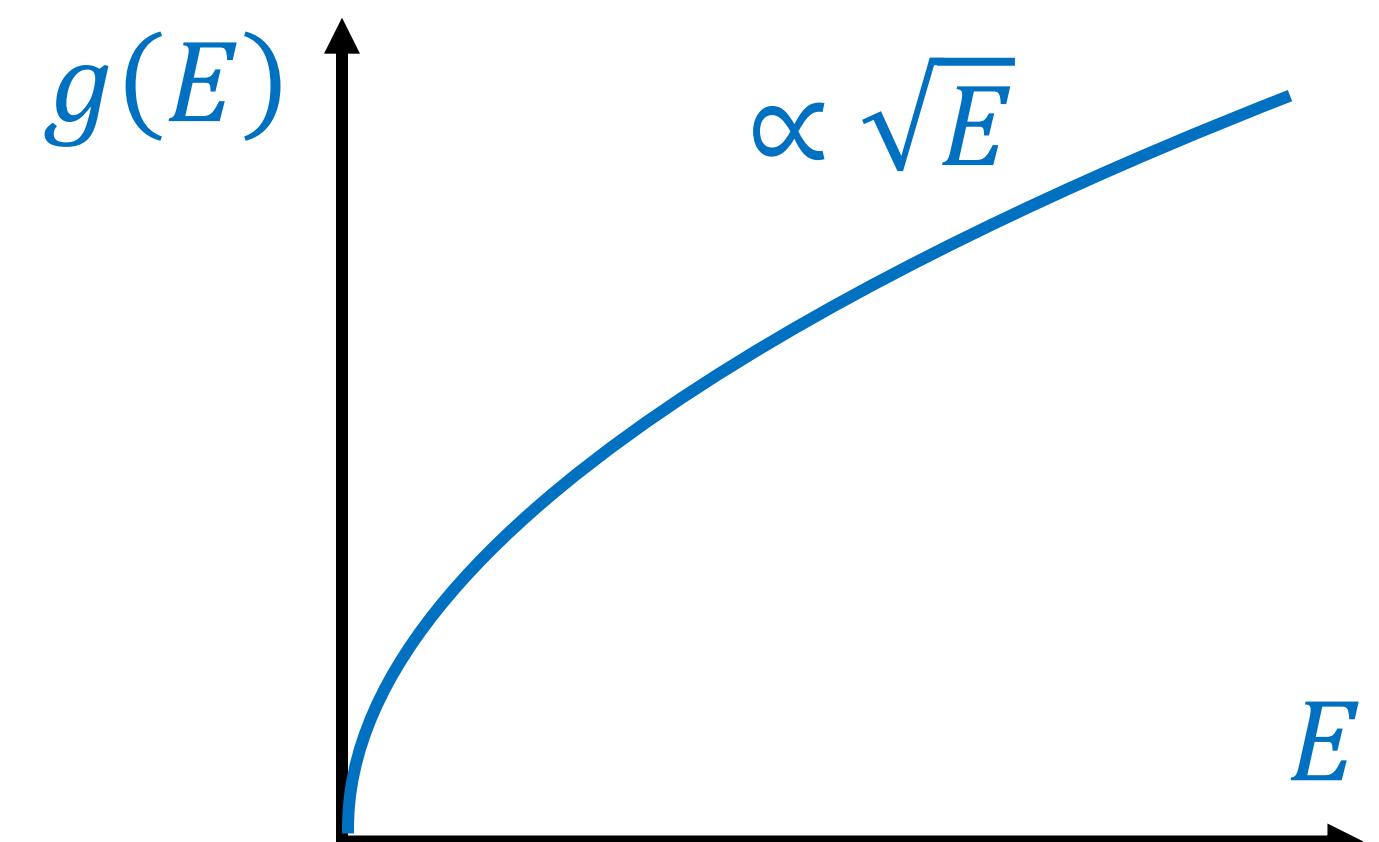
- Number of states increases with energy

$$n(E) = \frac{1}{8} \left(\frac{4}{3} \pi n_r^3 \right) 2 = \frac{\pi n_r^3}{3} = \frac{(2m)^{\frac{3}{2}} L^3 E^{\frac{3}{2}}}{3\pi^2 \hbar^3}$$

- Density of States $g(E)$:

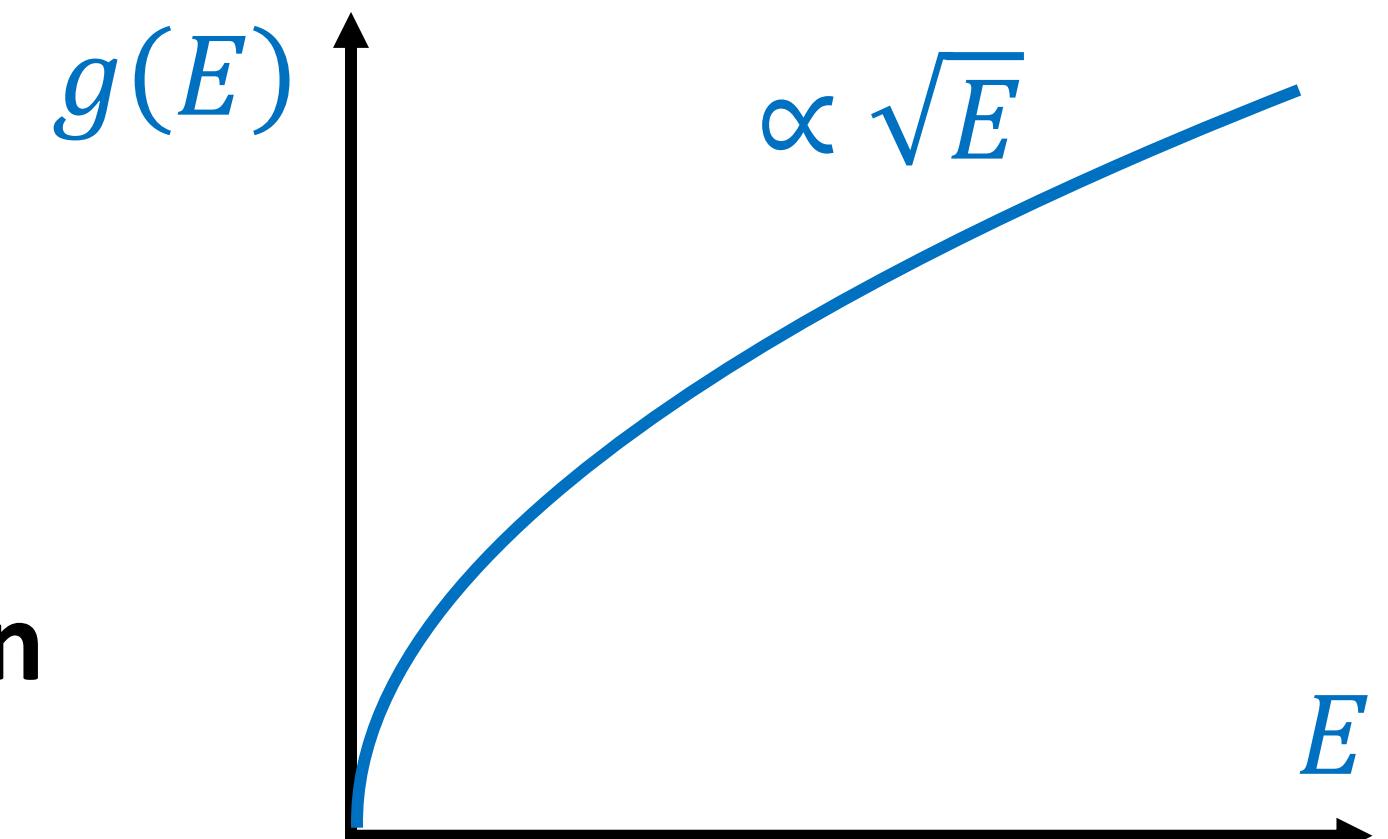
$$g(E) = \frac{dn}{dE} = \frac{(2m)^{\frac{3}{2}} V E^{\frac{1}{2}}}{2\pi^2 \hbar^3}$$

- How do the electrons fill the states?



FREE-ELECTRON MODEL: FERMI-DIRAC DISTRIBUTION

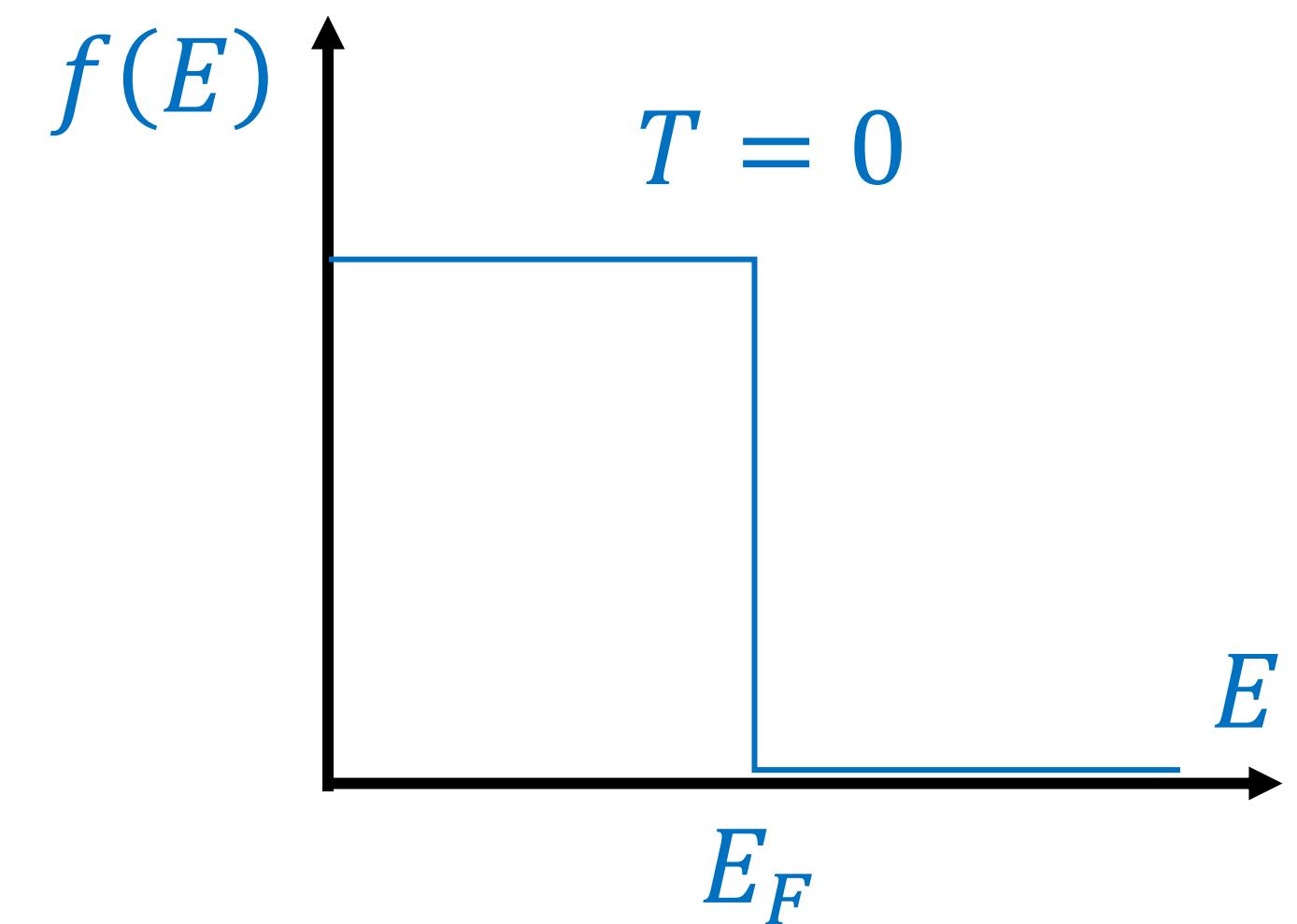
- Density of States: $g(E) = \frac{dn}{dE} = \frac{(2m)^{\frac{3}{2}} V E^{\frac{1}{2}}}{2\pi^2 \hbar^3}$



- Probability electron fill states: **Fermi-Dirac distribution**
 - **Classically:** Maxwell-Boltzmann $e^{-E/k_B T}$
 - Exclusion principle not satisfied
 - Electrons are indistinguishable

$$f(E) = \frac{1}{e^{(E-E_F)/k_B T} + 1}$$

where E_F is the **Fermi-energy**



FREE-ELECTRON MODEL: FERMI-DIRAC DISTRIBUTION

- **Density of States:**

$$g(E) = \frac{(2m)^{\frac{3}{2}} V E^{\frac{1}{2}}}{2\pi^2 \hbar^3}$$

- **Fermi-Dirac distribution:** $f(E) = \frac{1}{e^{(E-E_F)/k_B T} + 1}$

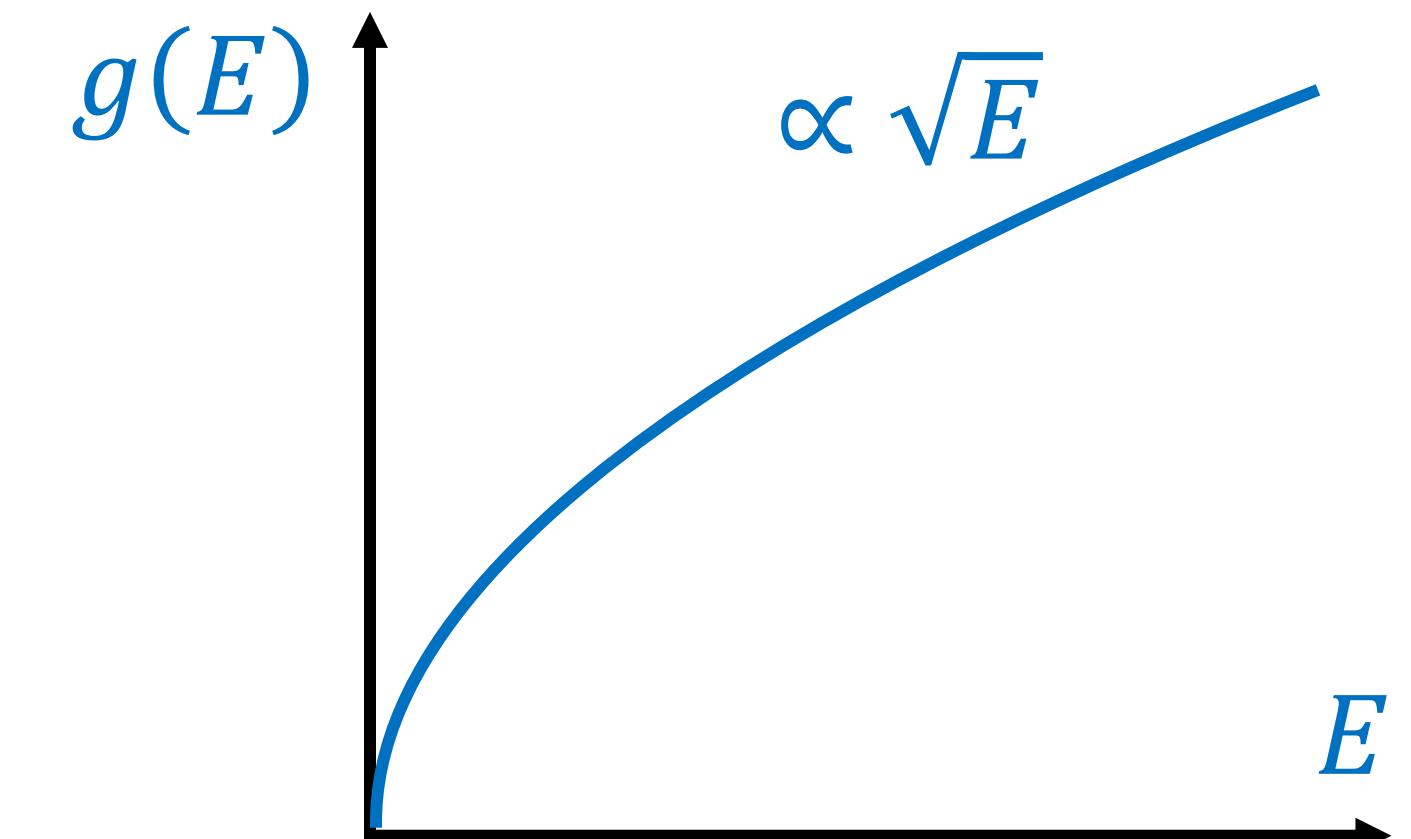
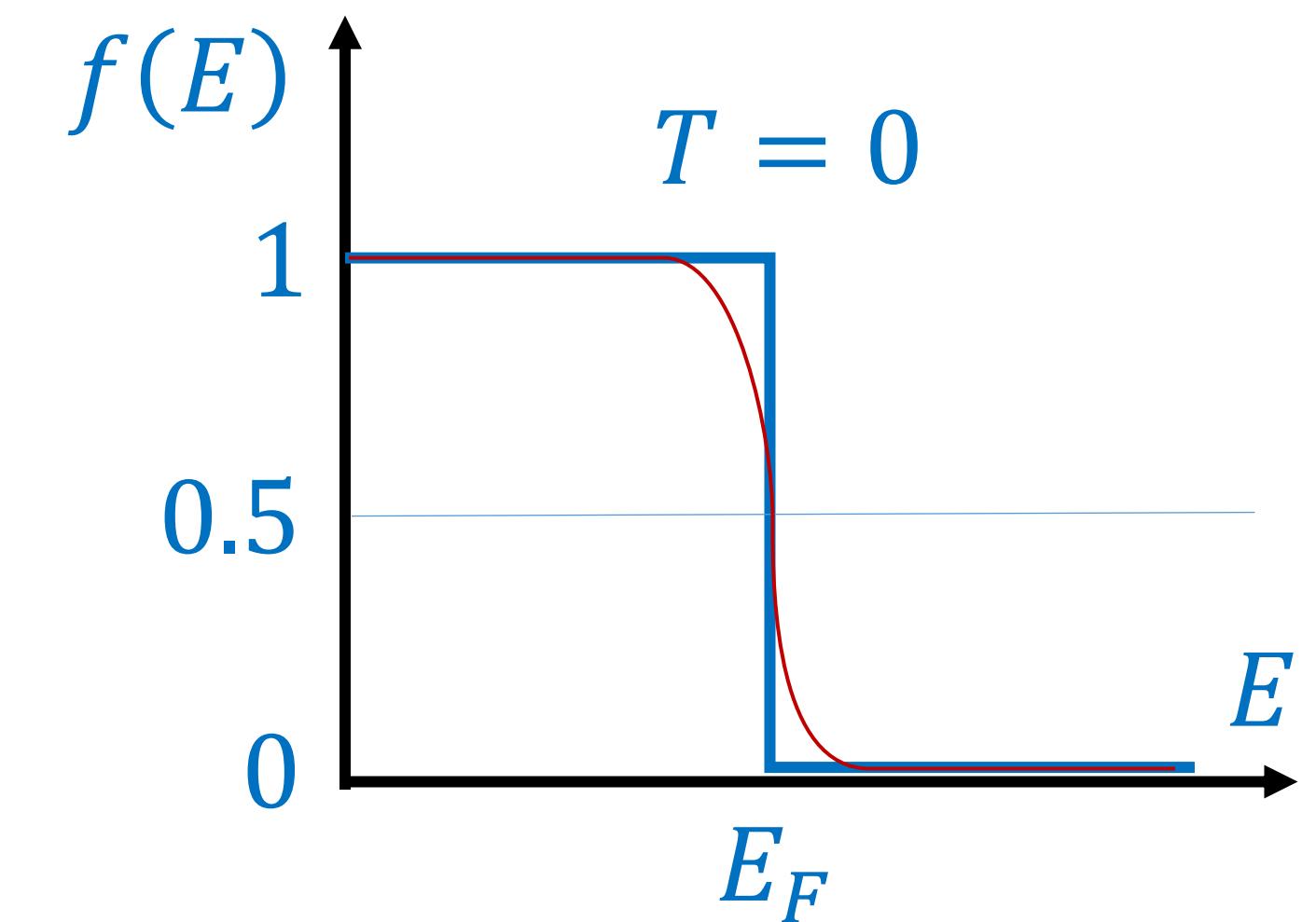
- E_F is the Fermi-energy

- Fermi-Dirac distribution **at $T = 0$ Kelvin:**

States below E_F are filled: $f(E < E_F) = 1$

States above E_F are empty: $f(E > E_F) = 0$

- Finite temperature $T > 0$ Kelvin: smoother



FREE-ELECTRON MODEL: FERMI-DIRAC DISTRIBUTION

- **Density of States:**

$$g(E) = \frac{(2m)^{\frac{3}{2}} V E^{\frac{1}{2}}}{2\pi^2 \hbar^3}$$

- **Fermi-Dirac distribution:** $f(E) = \frac{1}{e^{(E-E_F)/k_B T} + 1}$

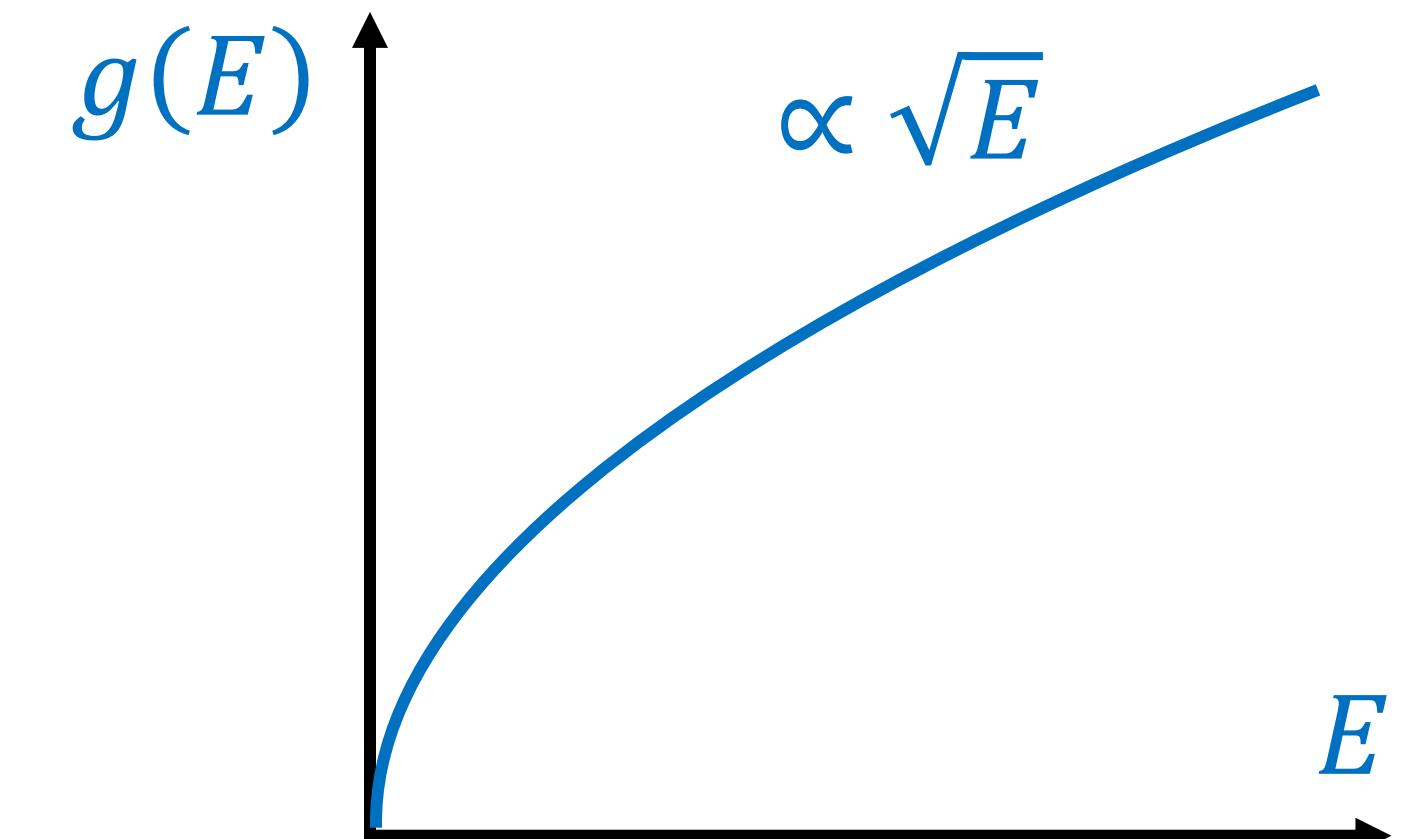
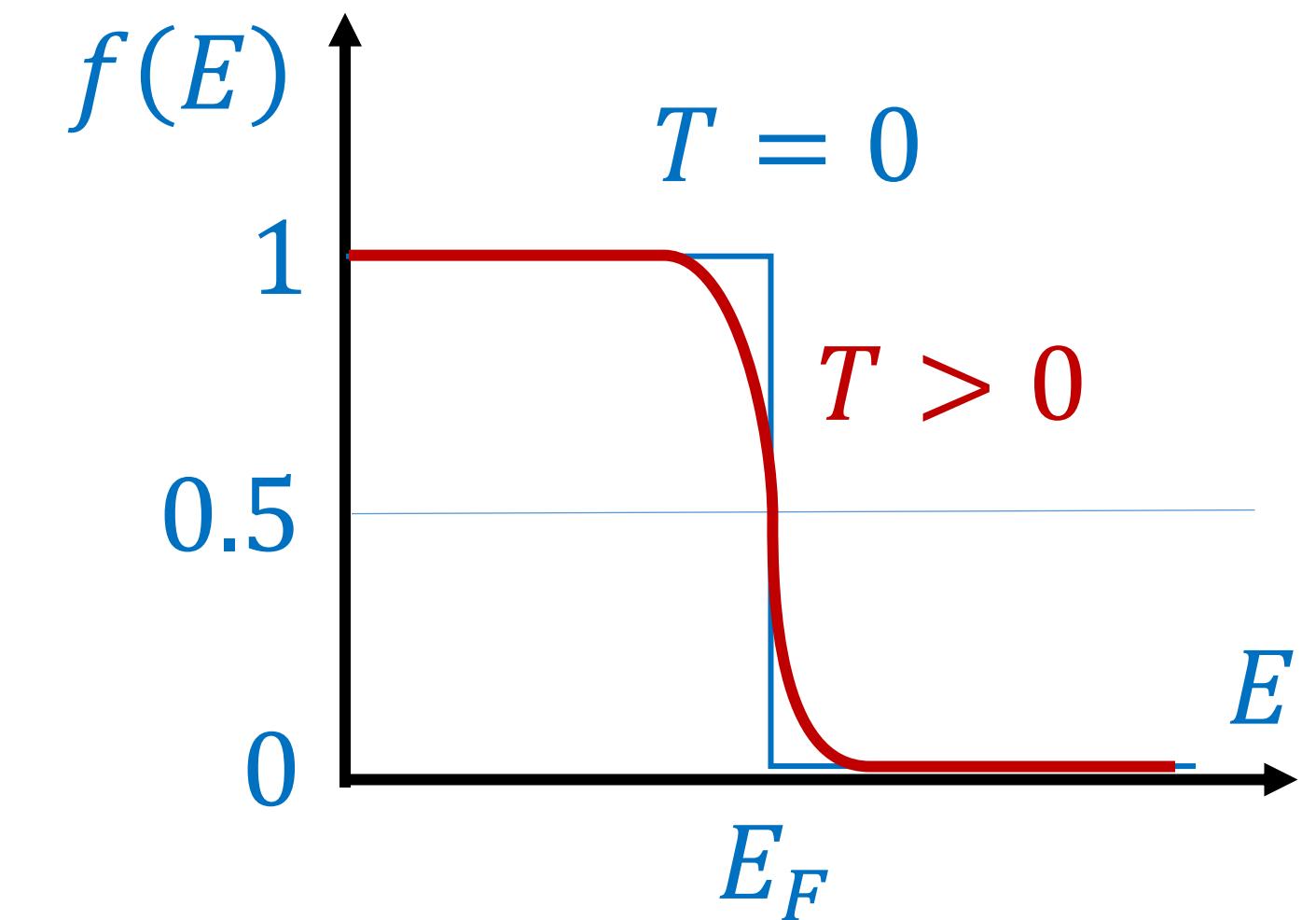
- E_F is the Fermi-energy

- Fermi-Dirac distribution at $T = 0$ Kelvin:

States below E_F are filled: $f(E < E_F) = 1$

States above E_F are empty: $f(E > E_F) = 0$

- Finite temperature $T > 0$ Kelvin: smoother



FREE-ELECTRON MODEL: ELECTRON DENSITY

- **Density of States:**

$$g(E) = \frac{(2m)^{\frac{3}{2}} V E^{\frac{1}{2}}}{2\pi^2 \hbar^3}$$

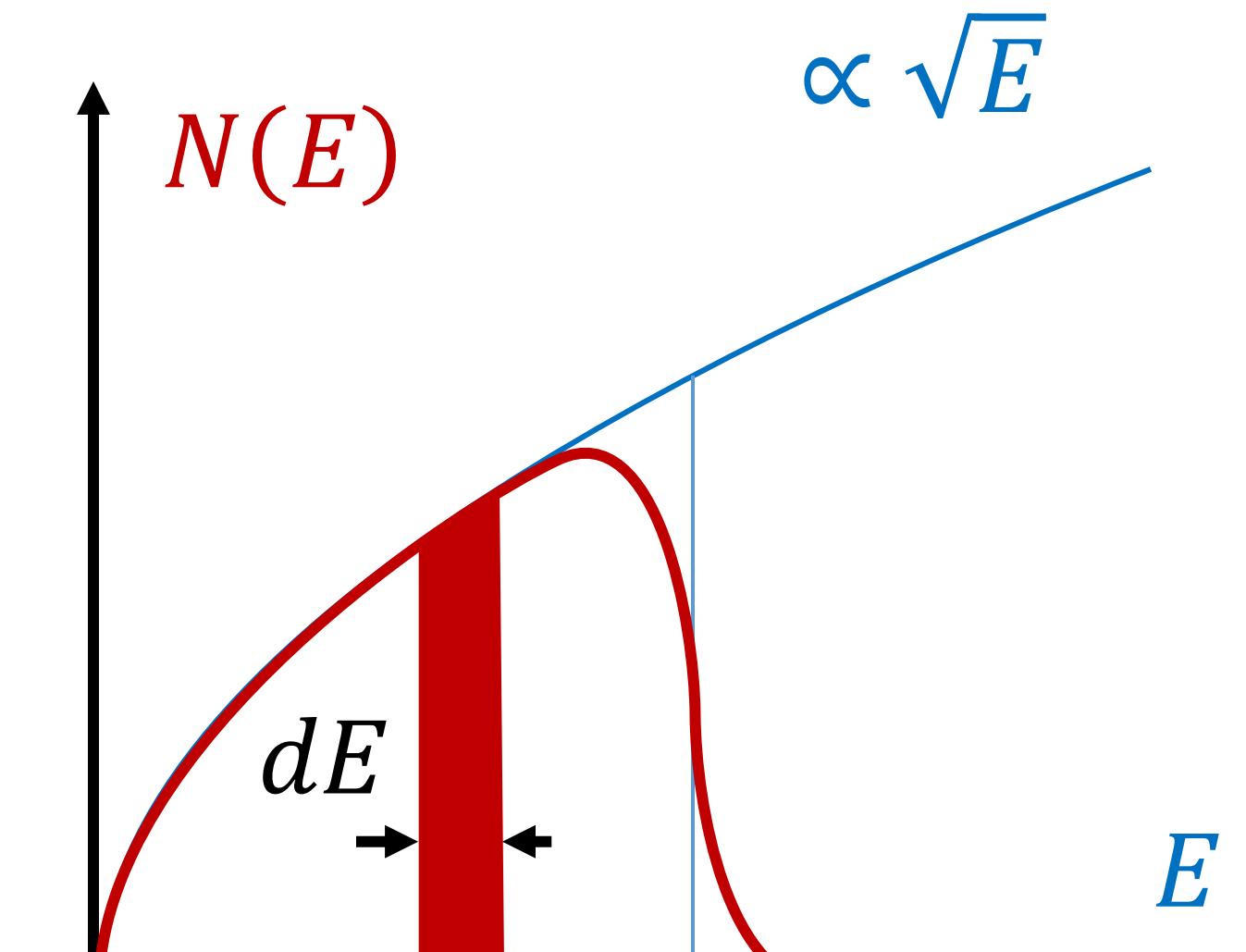
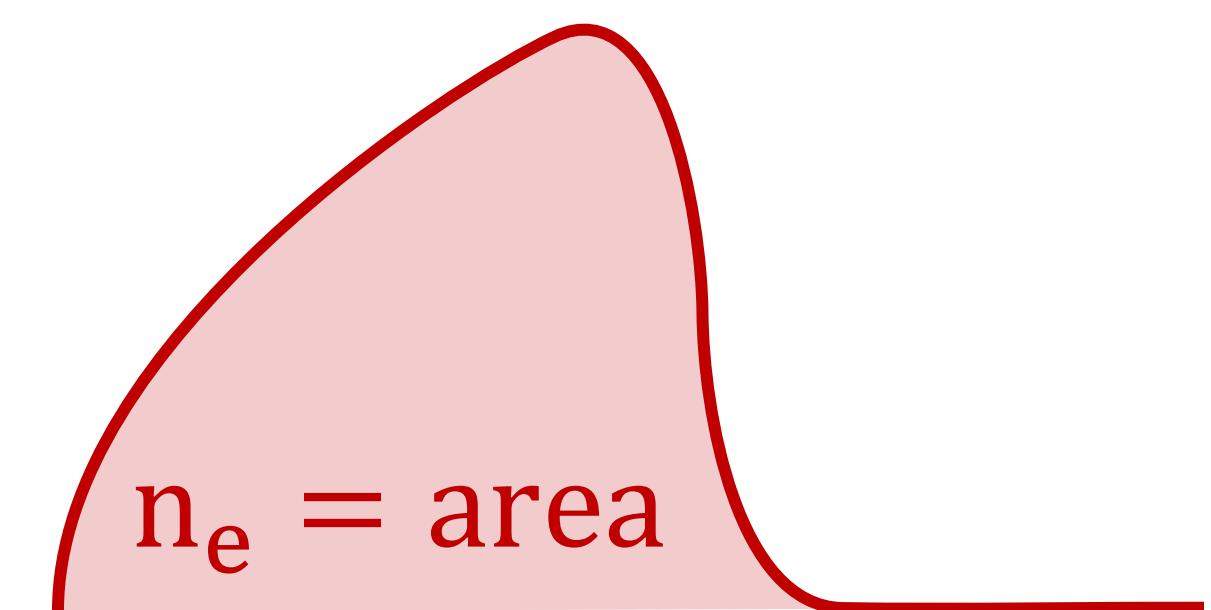
- **Fermi-Dirac distribution:**

$$f(E) = \frac{1}{e^{(E-E_F)/k_B T} + 1}$$

- Electron density (per energy & volume) $N(E)$:

$$N(E) dE = f(E) g(E) dE$$

- Electrons (per volume): $n_e = \int_0^{\infty} N(E) dE$



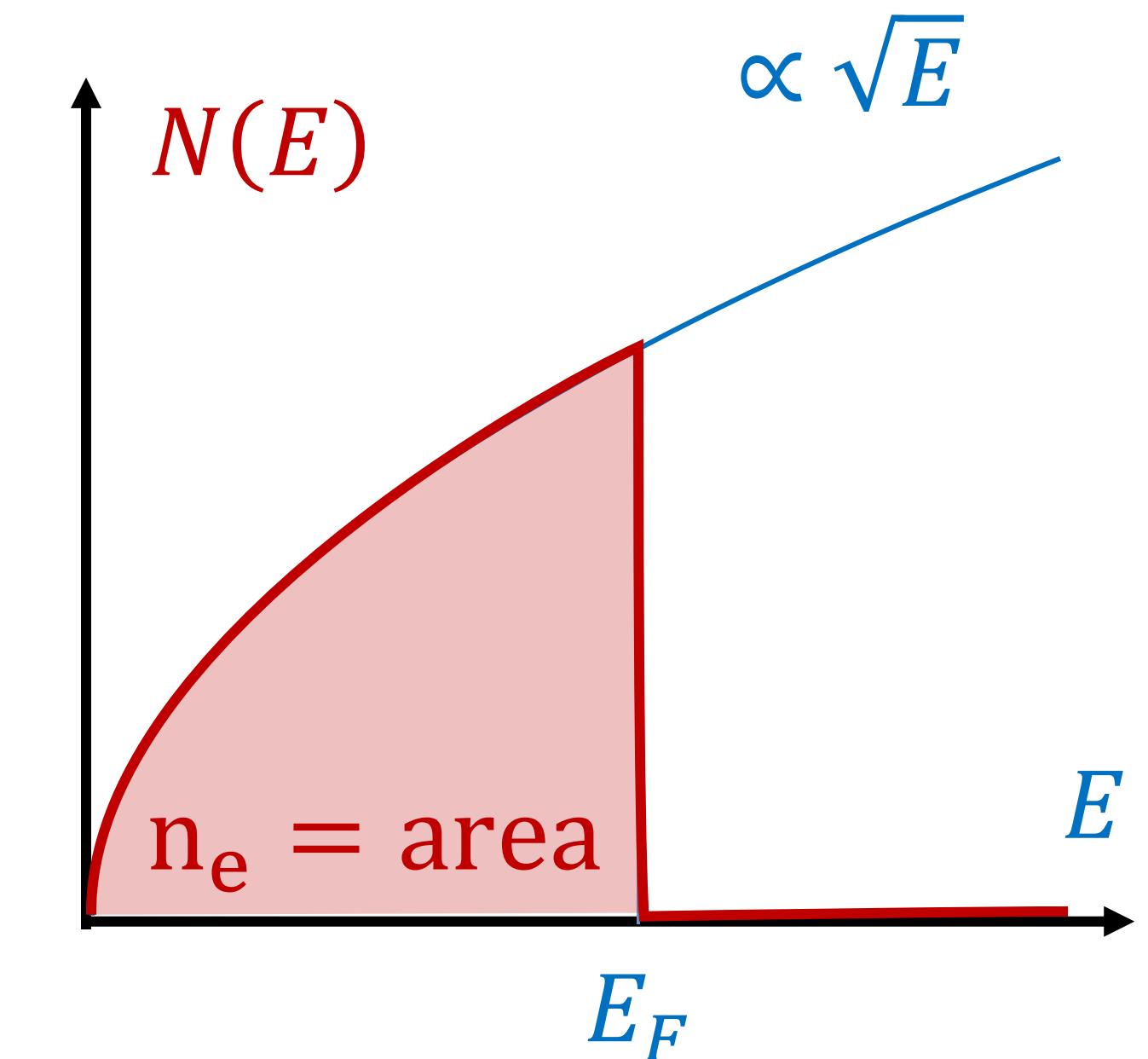
FREE-ELECTRON MODEL: FERMI-ENERGY FOR METALS

$$N(E) = f(E)g(E) = \frac{1}{e^{(E-E_F)/k_B T} + 1} \times \frac{(2m)^{\frac{3}{2}} E^{\frac{1}{2}}}{2\pi^2 \hbar^3}$$

- Electrons (per volume): $n_e = \int_0^\infty N(E) dE$
- Find Fermi-energy from n_e at zero temperature

$$n_e = \frac{(2m)^{\frac{3}{2}}}{2\pi^2 \hbar^3} \int_0^{E_F} \sqrt{E} dE = \frac{2}{3} \frac{(2m)^{\frac{3}{2}}}{2\pi^2 \hbar^3} E_F^{3/2}$$

$$\Rightarrow E_F(0) = \frac{\hbar^2}{2m} \left(\frac{3n_e}{8\pi} \right)^{2/3}$$

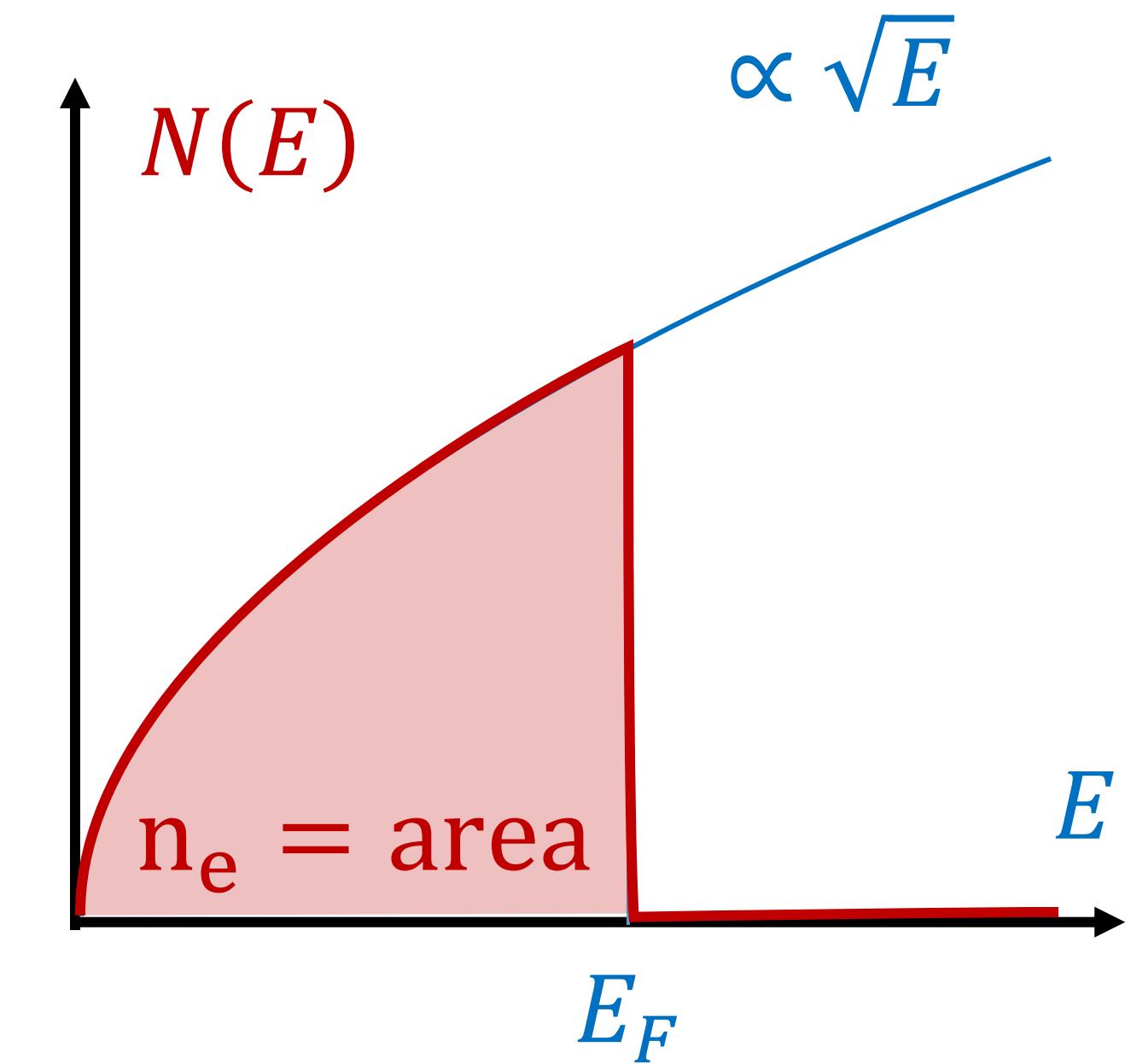


FREE-ELECTRON MODEL: FERMI-ENERGY FOR METALS

$$E_F(0) = \frac{h^2}{2m} \left(\frac{3n_e}{8\pi} \right)^{2/3}$$

- Derive concentration of electrons n_e from number of atoms and valence electrons

Metal	n_e (in 10^{28} m^{-3})	Fermi energy (eV)
Li	4.70	4.72
Na	2.65	3.23
K	1.40	2.12
Cu	8.46	7.05
Ag	5.85	5.48
Au	5.90	5.53

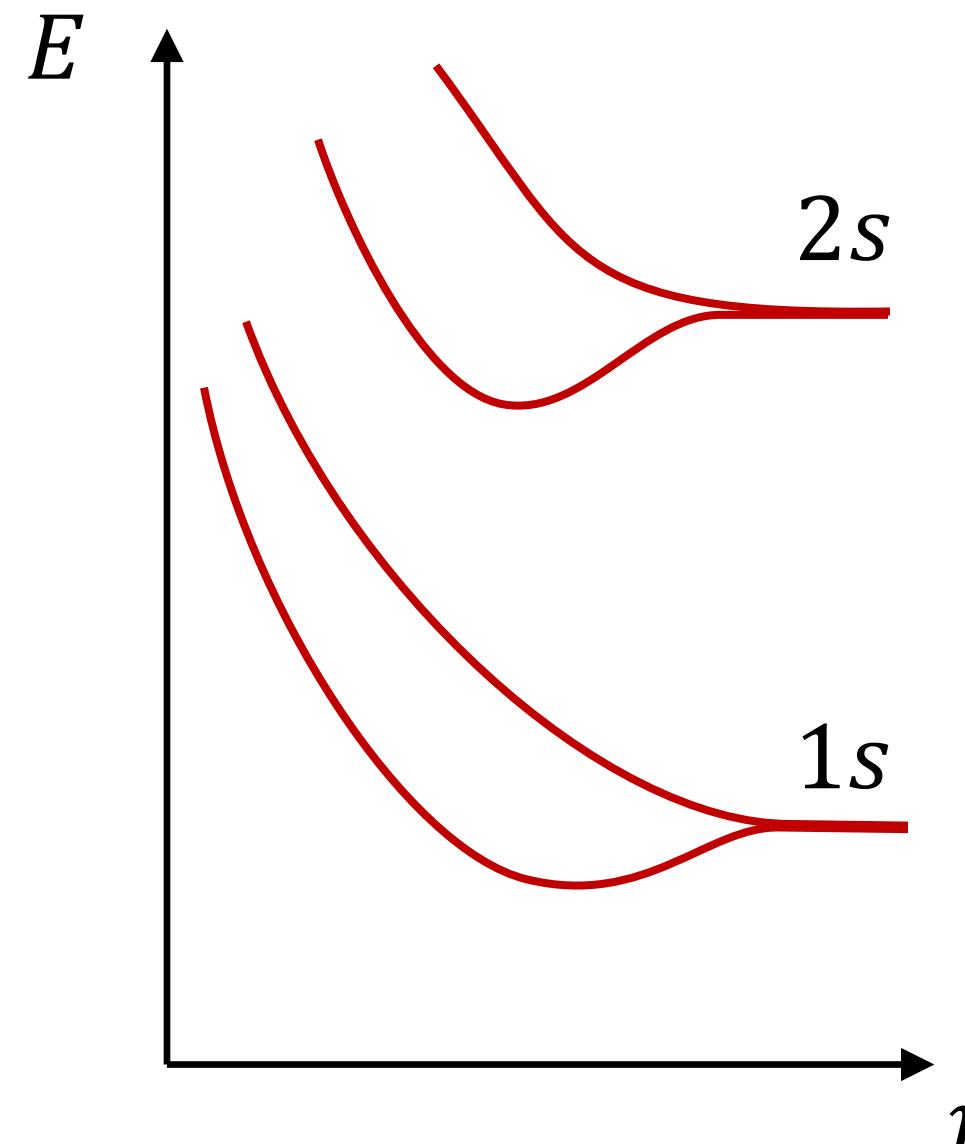


Energy bandstructure

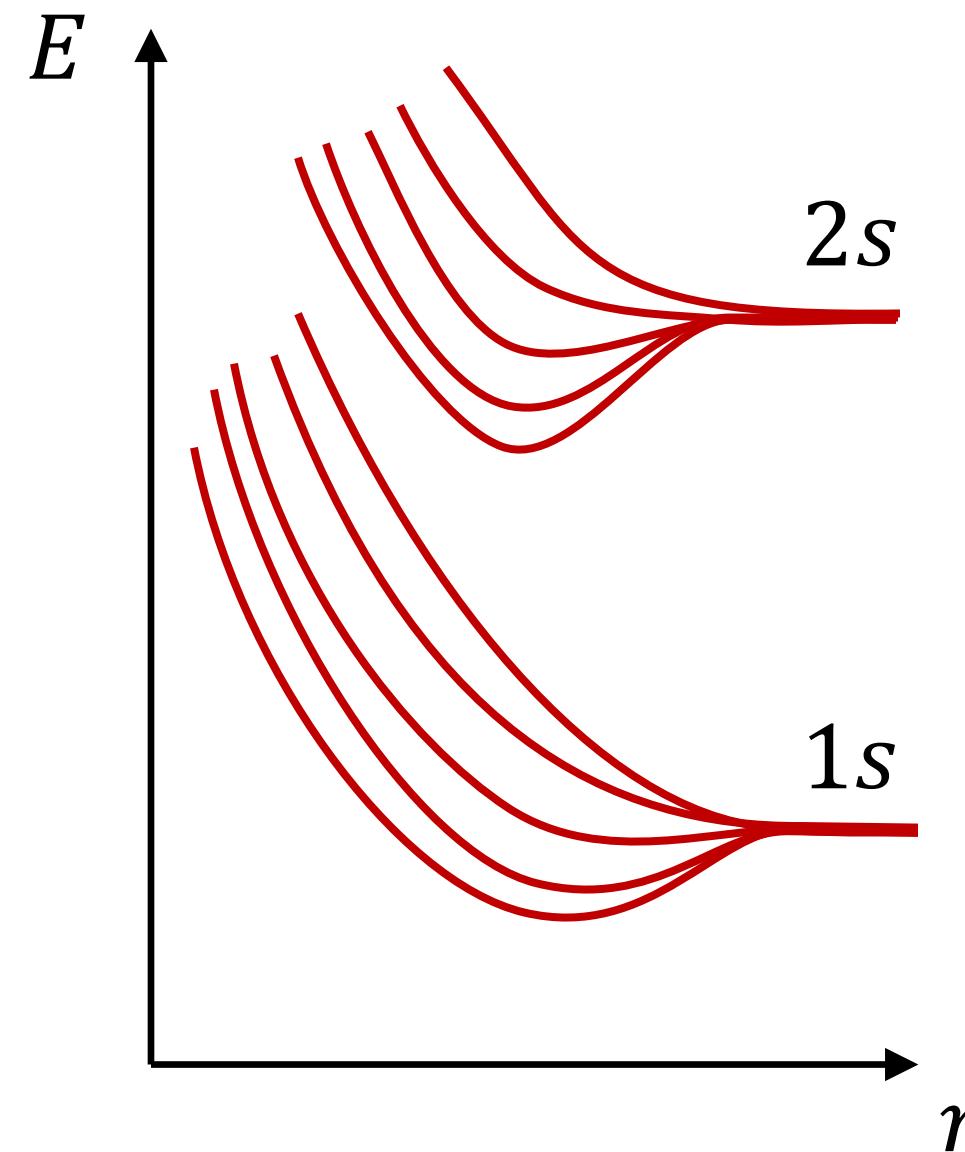
ENERGY BANDS

- Atoms close to each other have overlapping orbitals
- Splitting of their energy levels

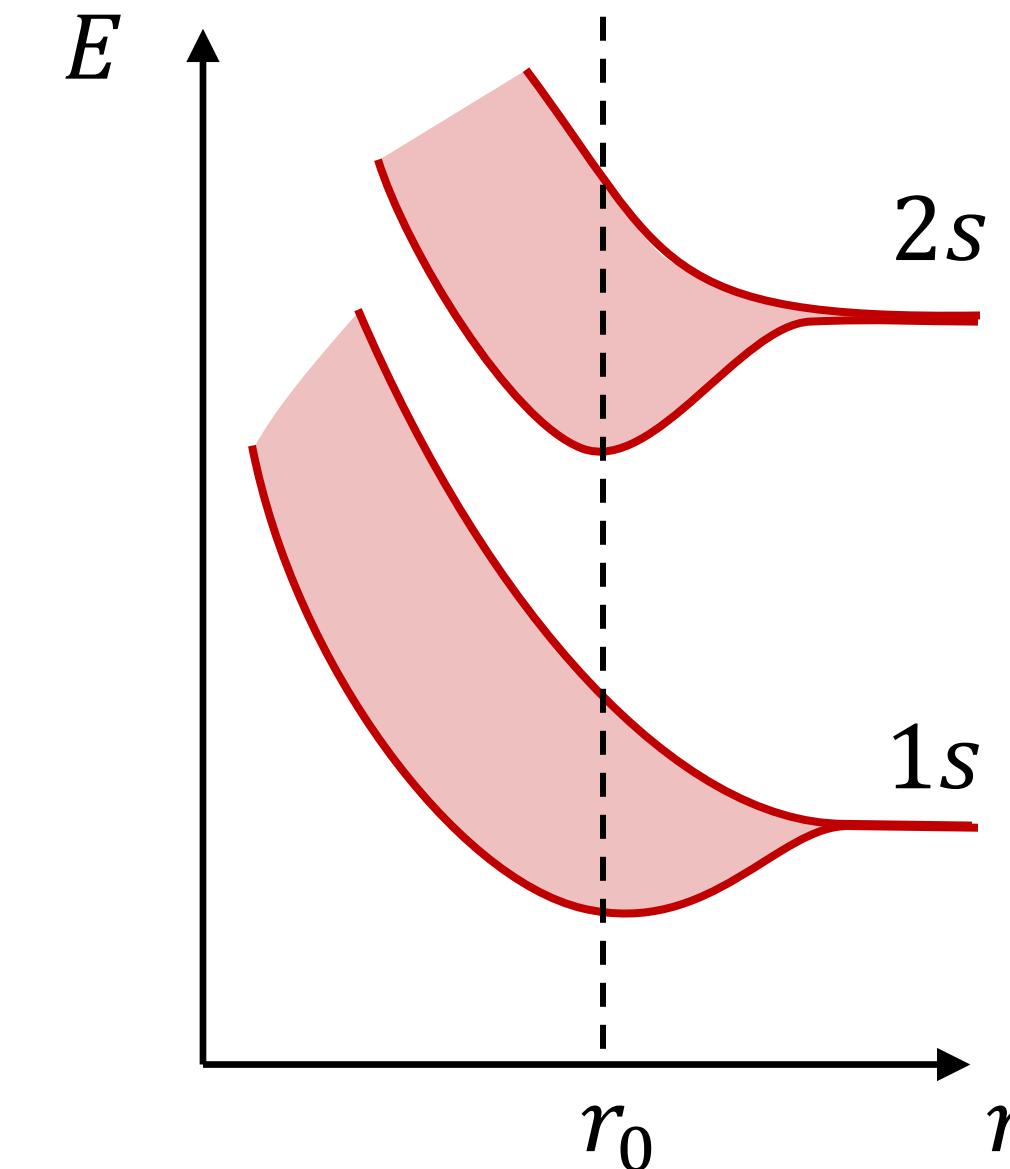
Distance defines the energy levels



$N = 5$ atoms results in 5 energy levels



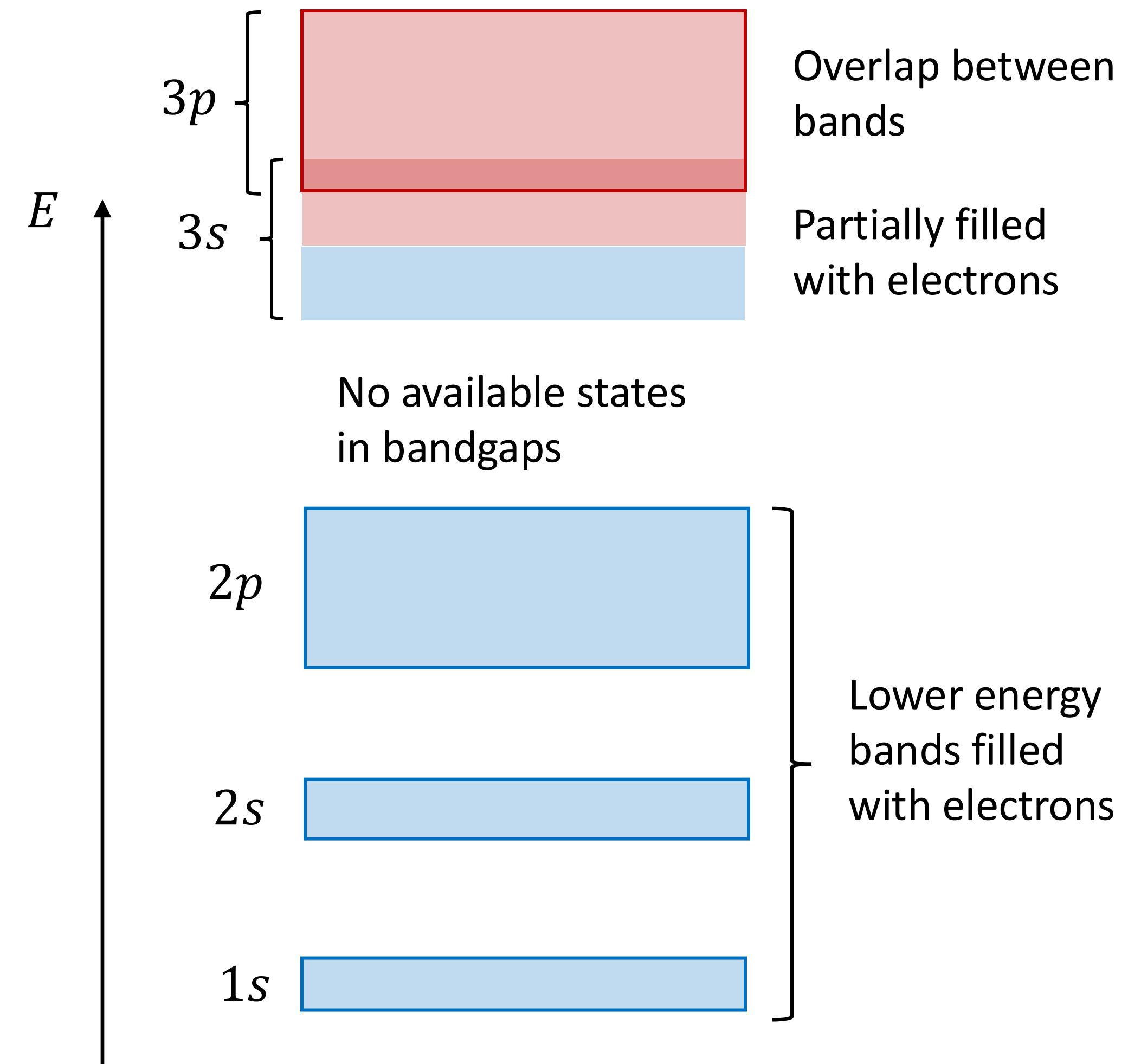
$N \gg 1$ atoms results in dense energy bands



ENERGY BANDS

- Atoms close to each other have overlapping orbitals
- Overlap of orbitals results in splitting their energy levels
- N atoms results in $N \times$ splitting
- For macroscopic materials N is on the order of 10^{23} atoms per cubic centimeter

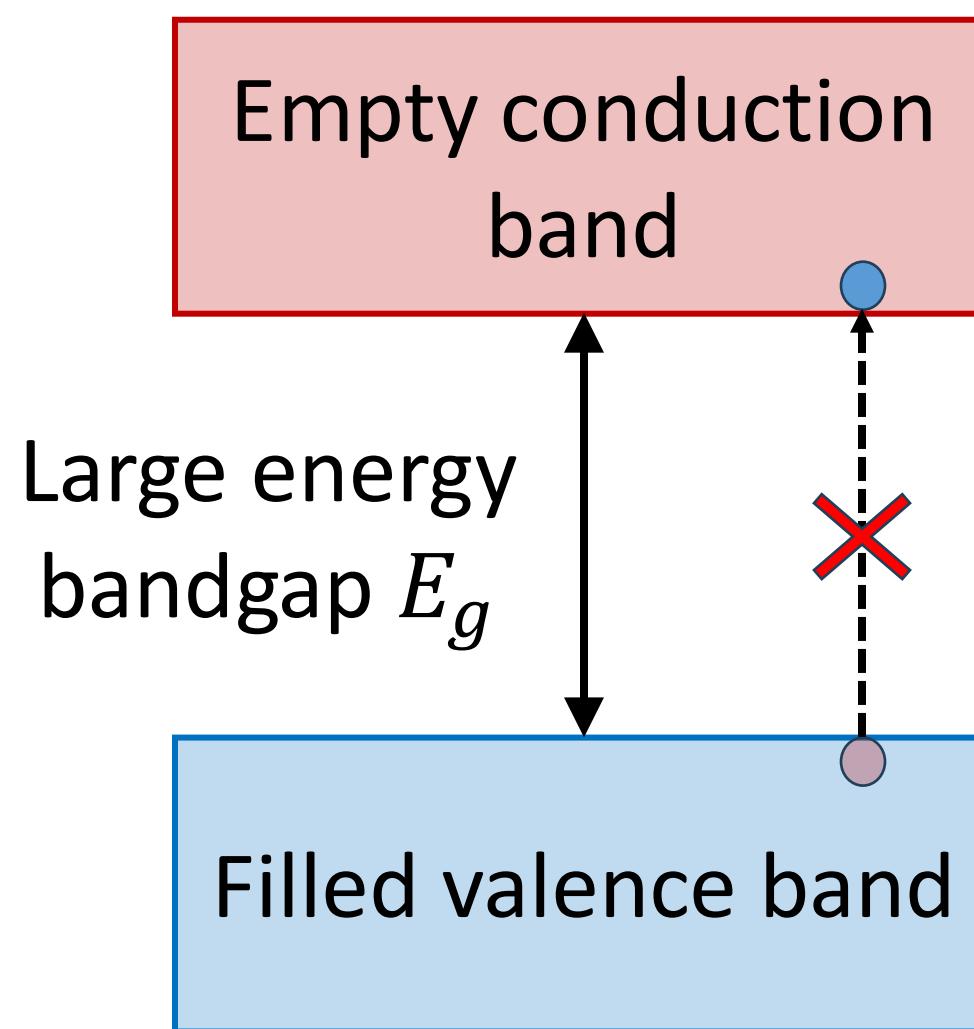
Many energy levels become indistinguishable and form a continuum **energy band**



ENERGY BANDSTRUCTURE TYPES

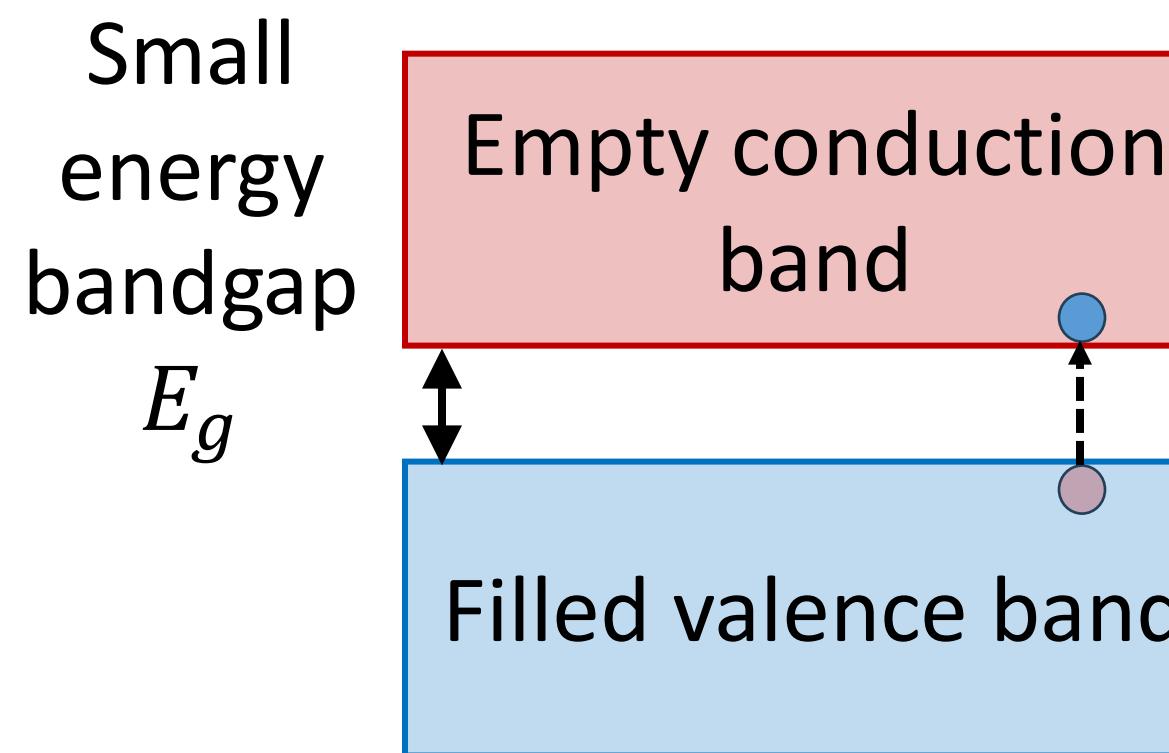
Insulators

- Empty conduction band at $T = 0 \text{ K}$
- Large E_g prevents excitation to conduction band



Semiconductors

- Empty conduction band at $T = 0 \text{ K}$
- Small E_g allows limited conduction at $T > 0 \text{ K}$



Conductors

- Electrons in the conduction band at $T = 0 \text{ K}$
- High conductivity

