

PHOT 222: Quantum Photonics

LECTURE 15

Michaël Barbier, Spring semester (2024-2025)

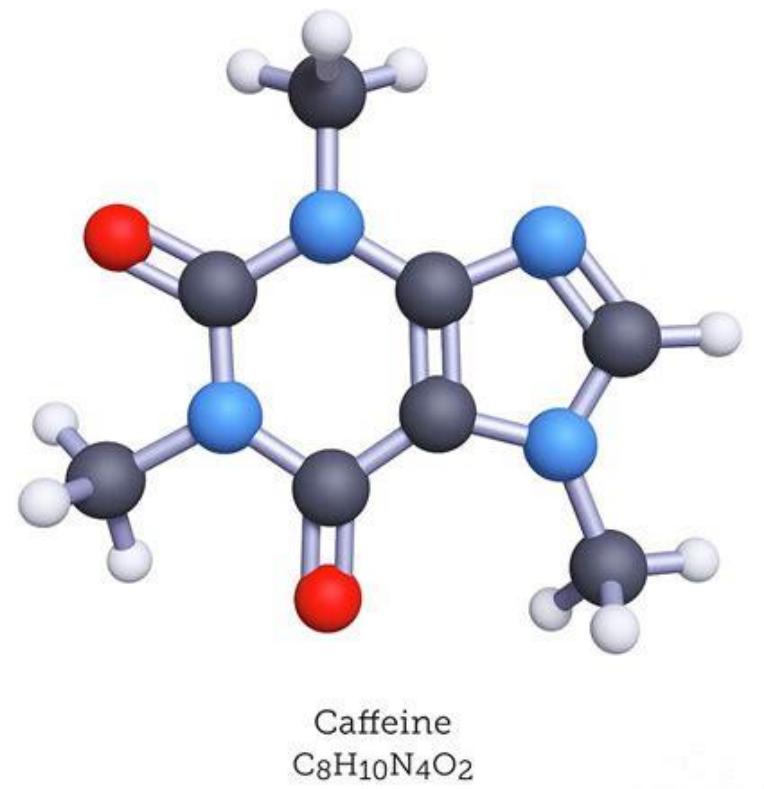
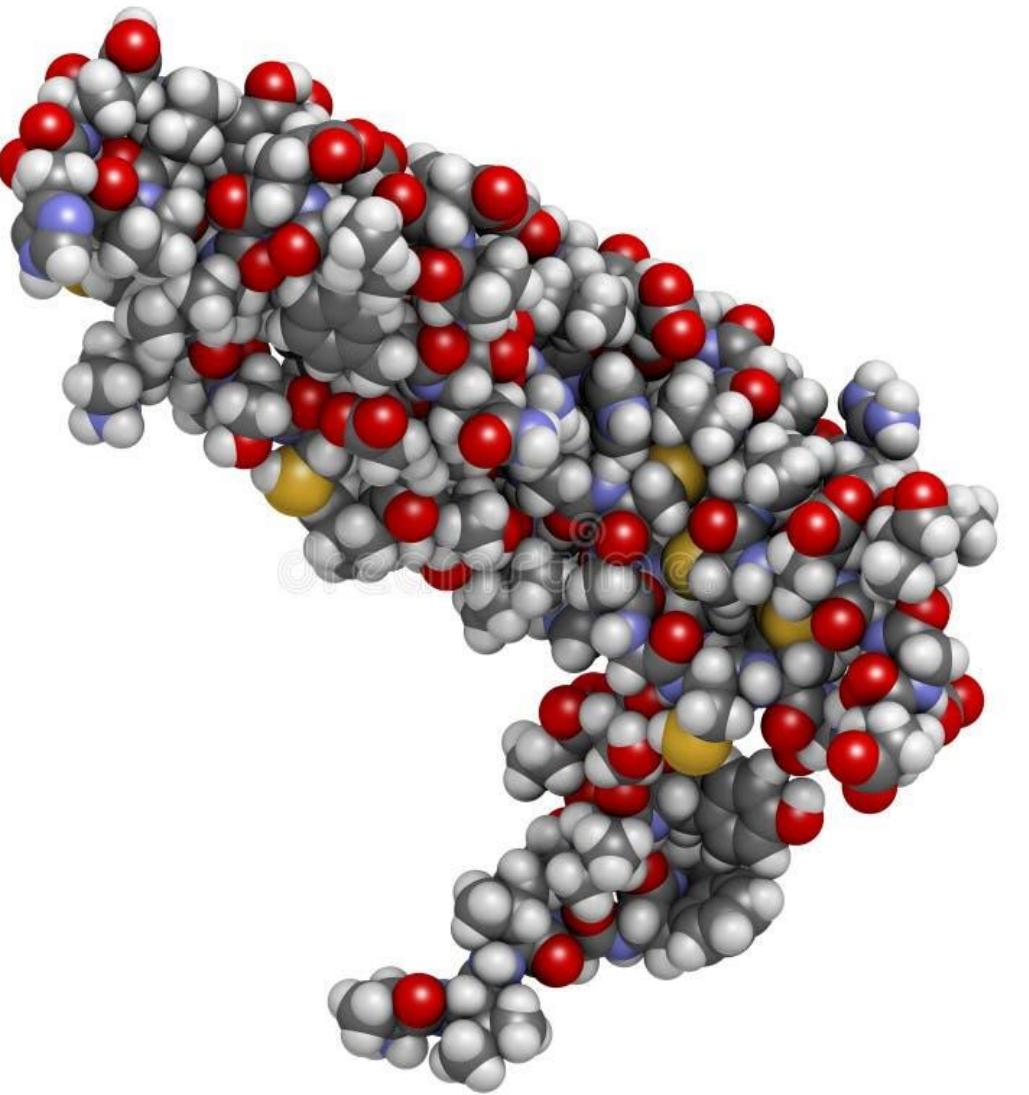
OVERVIEW OF THE COURSE

week	topic	Serway 9 th	Young
Week 1	Relativity	Ch. 39	Ch. 37
Week 2	Waves and Particles	Ch. 40	Ch. 38-39
Week 3	Wave packets and Uncertainty	Ch. 40	Ch. 38-39
Week 4	The Schrödinger equation and Probability	Ch. 41	Ch. 39
Week 5	Midterm exam 1		
Week 6	Quantum particles in a potential	Ch. 41	Ch. 40
Week 7	Bayram		
Week 8	Harmonic oscillator	Ch. 41	Ch. 40
Week 9	Tunneling through a potential barrier	Ch. 41	Ch. 40
Week 10	Midterm exam 2		
Week 11	Bohr's hydrogen atom, absorption/emission spectra	Ch. 42	Ch. 41
Week 12	Quantum mechanical model of the hydrogen atom	Ch. 42	Ch. 41
Week 13	Exercises		
Week 14	Spin / Many-electron atoms	Ch. 42	Ch. 41
Week 15	Molecules	Ch. 43	Ch. 42
Week 16	Crystalline materials & energy band structure	Ch. 43	Ch. 42

Molecules

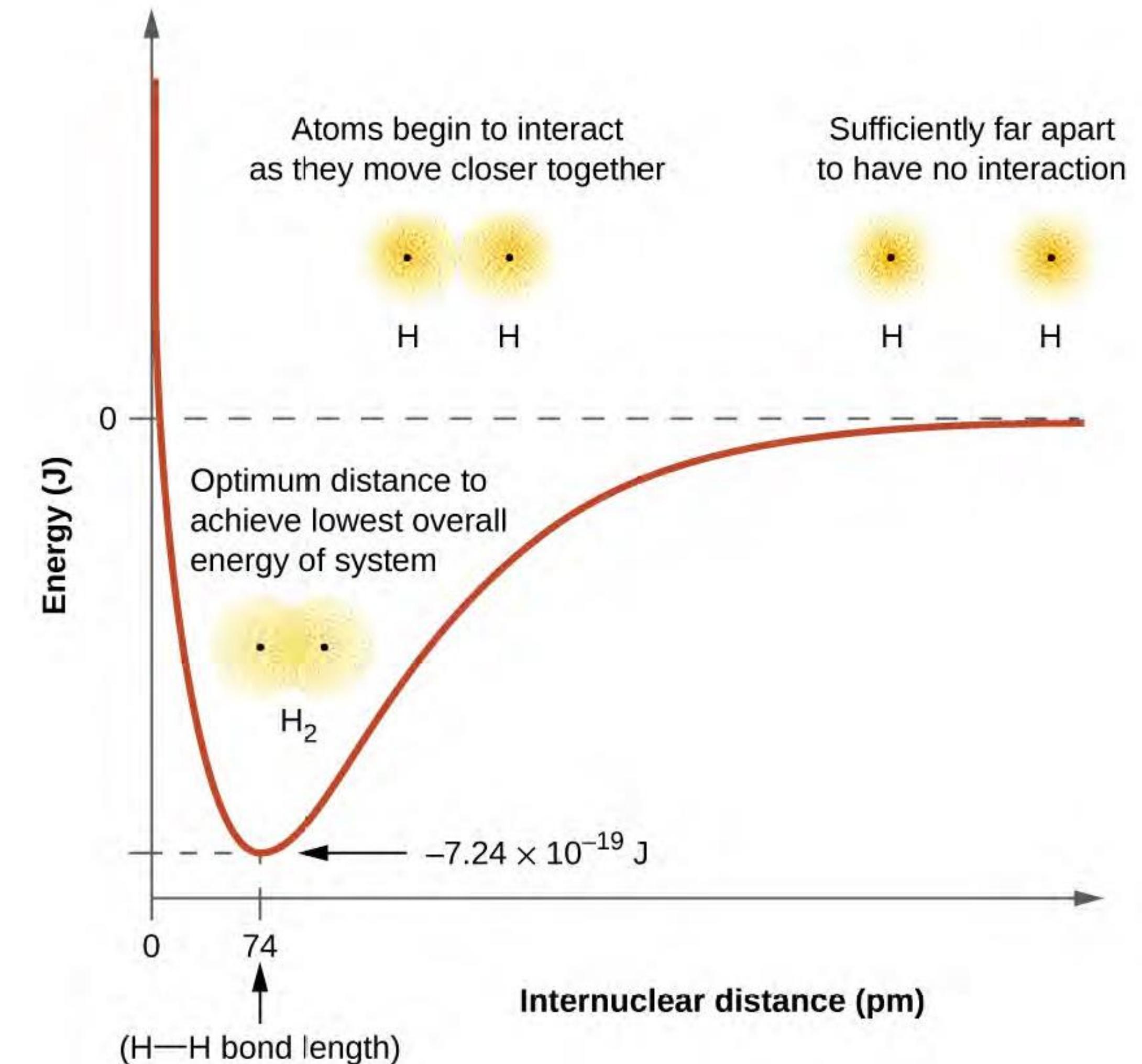
MOLECULES

- Materials:
 - single atoms,
 - molecules,
 - crystalline materials,
 - amorphous materials
- Materials can consist of many atoms
- Describing electrons in matter:
 - (Relative) positions of the nuclei
 - Positions of the electrons
 - Interactions between all nuclei and all electrons



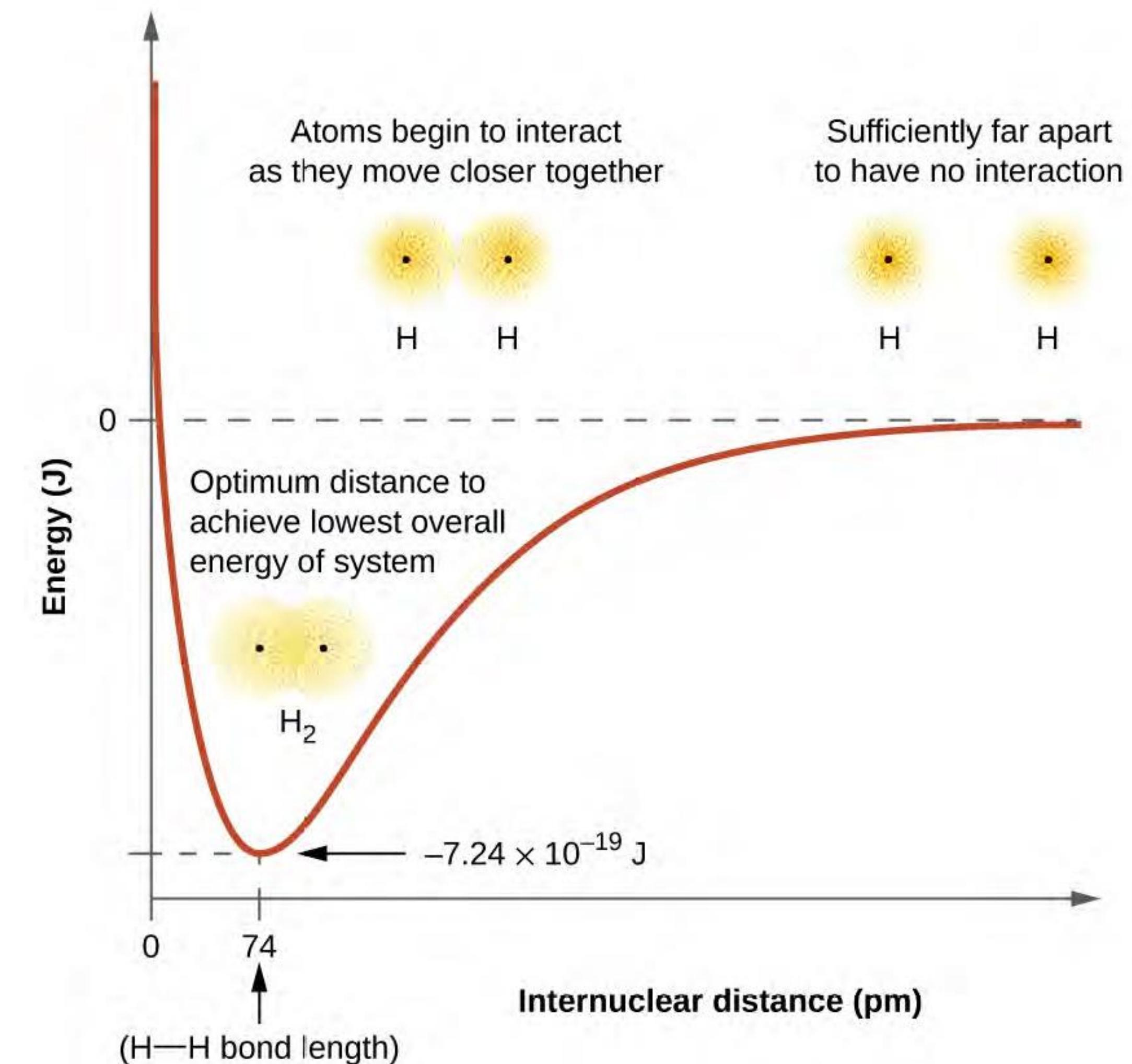
MOLECULAR BOND

- Bonding of atoms in a molecule
 - Electric forces between atoms
 - Coulomb force is conservative→ Potential landscape --> minima
- Potential energy function of a molecule:
 1. Repulsive force
 2. Attractive force when orbitals share electron



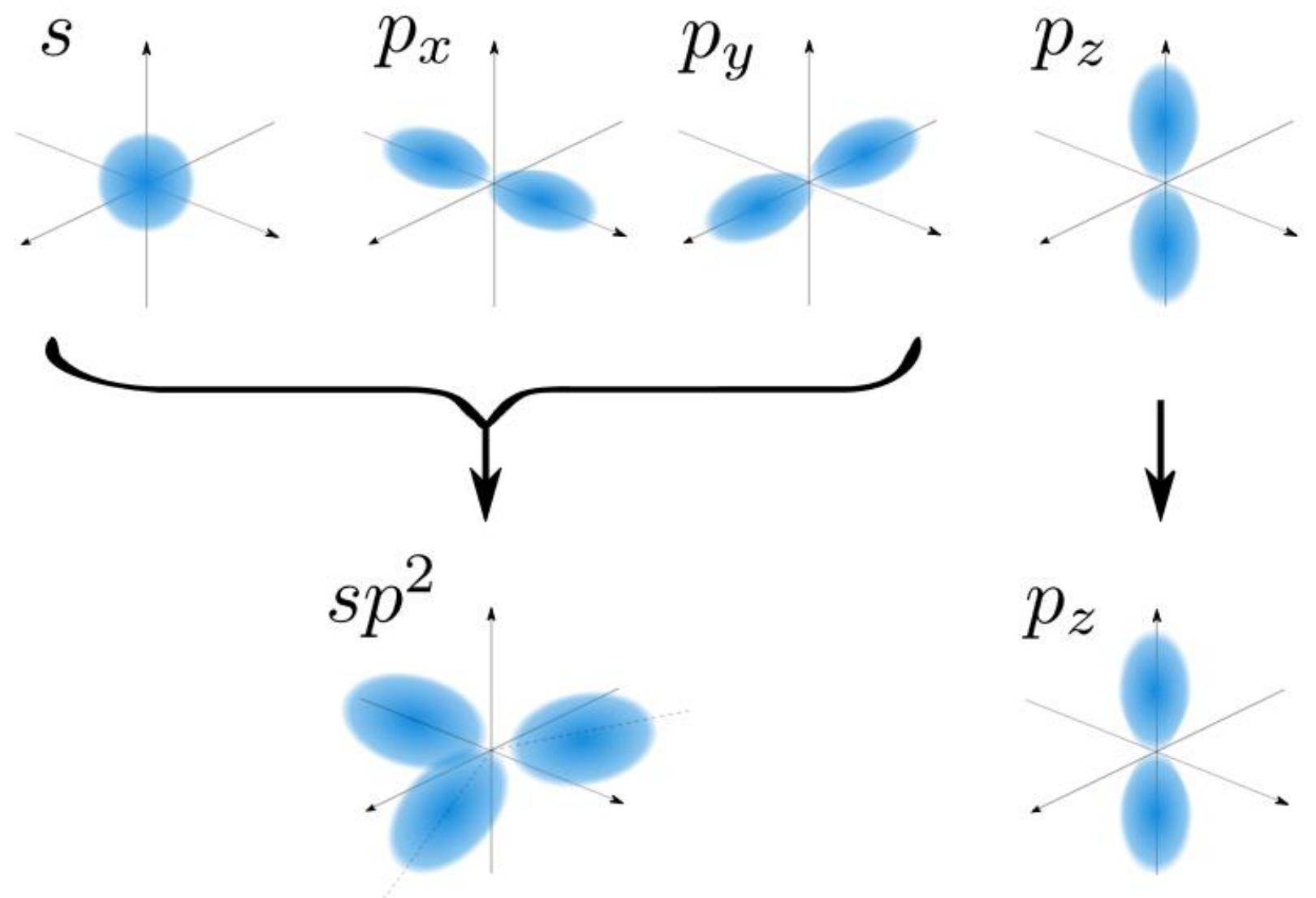
MOLECULAR BOND

- Molecular bond between atoms
- Different types of bonds
 - Ionic bonds
 - Covalent bonds
 - Vanderwaals bonds
 - Hydrogen bonds



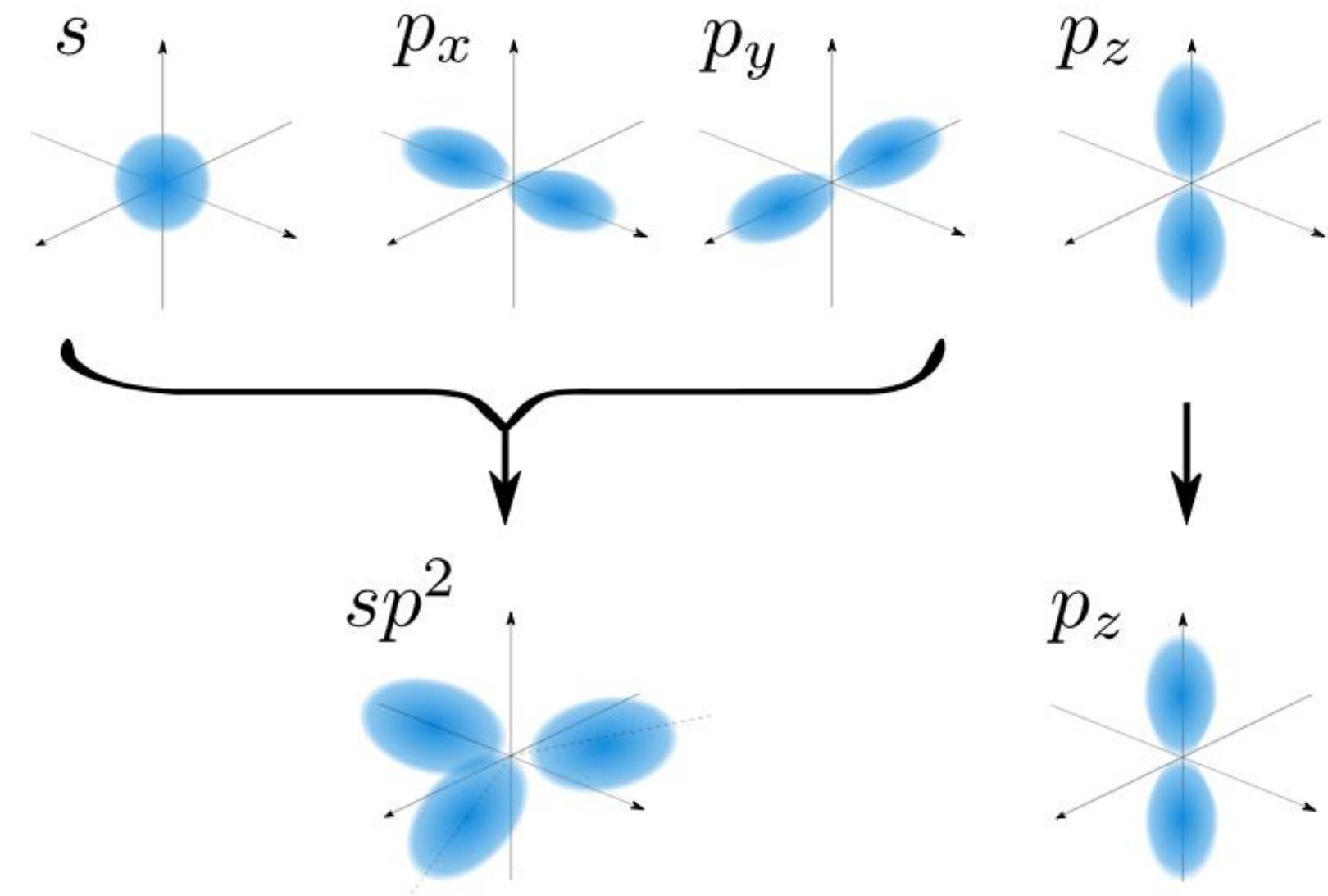
COVALENT BONDS: HYBRIDIZATION

- Superposition of orbitals: sp^2 -hybridization
 - Orbitals in the plane
 - s-orbital is now symmetric with p-orbitals
- Improved orbital overlap/access to all electrons

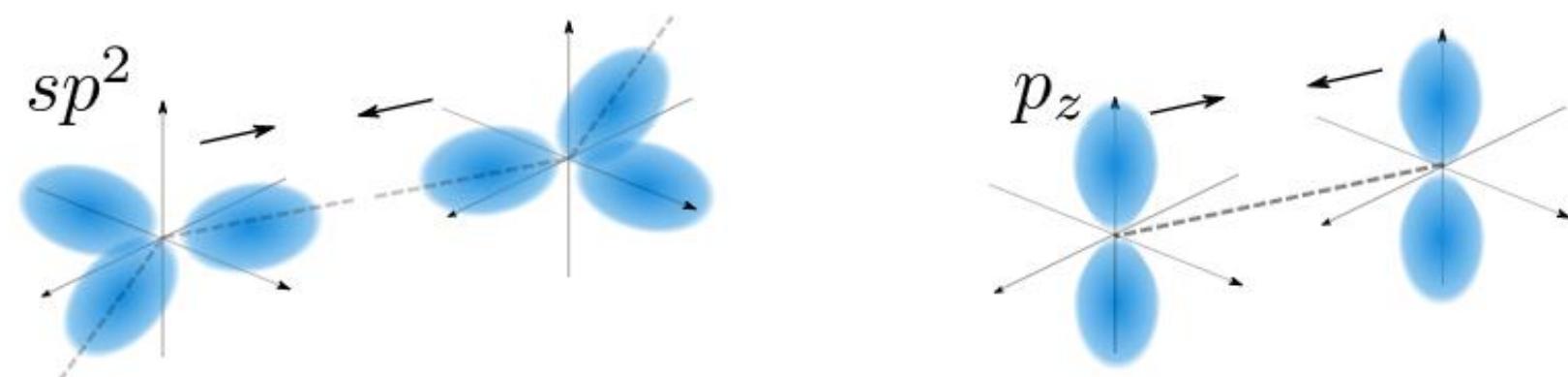


COVALENT BONDS: HYBRIDIZATION

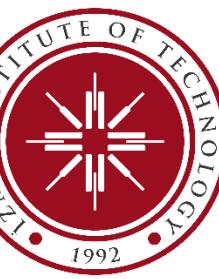
- Superposition of orbitals: sp^2 -hybridization
 - Orbitals in the plane
 - s-orbital is now symmetric with p-orbitals
- Improved orbital overlap/access to all electrons



σ - bonds: Strong overlap between sp^2 hybridized orbitals



π - bonds: Less overlap between p_z -orbitals (but also in the plane)



Molecular Spectra – Rotations & Vibrations

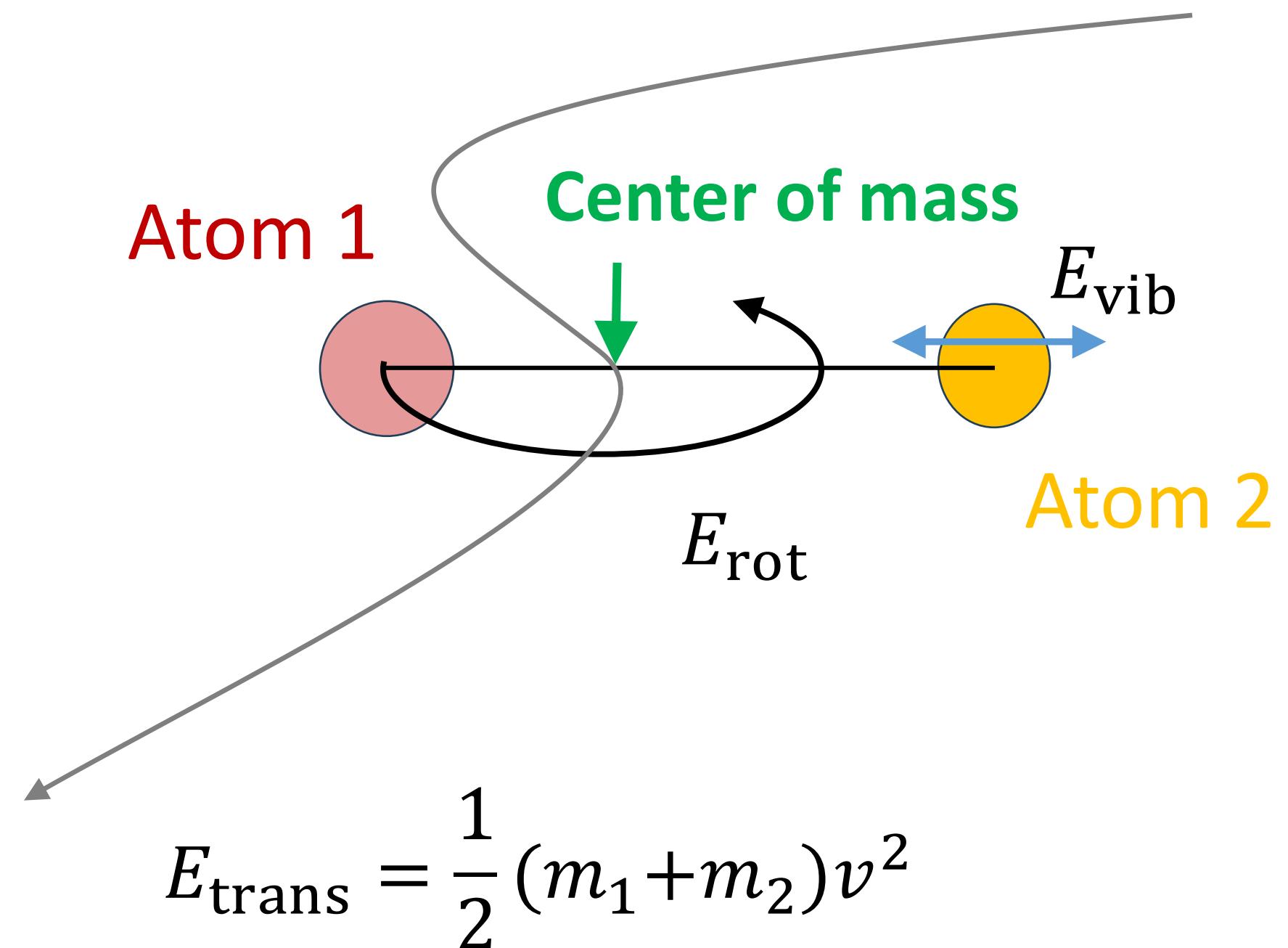
MOLECULAR SPECTRA

- Assume diatomic molecule
- Energy states:

$$E = E_{\text{electron}} + E_{\text{trans}} + E_{\text{rot}} + E_{\text{vib}}$$

- **Electronic energy** levels: complex
- **Translation** of whole molecule
- **Rotation** of whole molecule
- **Vibrations** in bonds

- Rotations and vibrations give **microwave** and **infrared** spectral lines

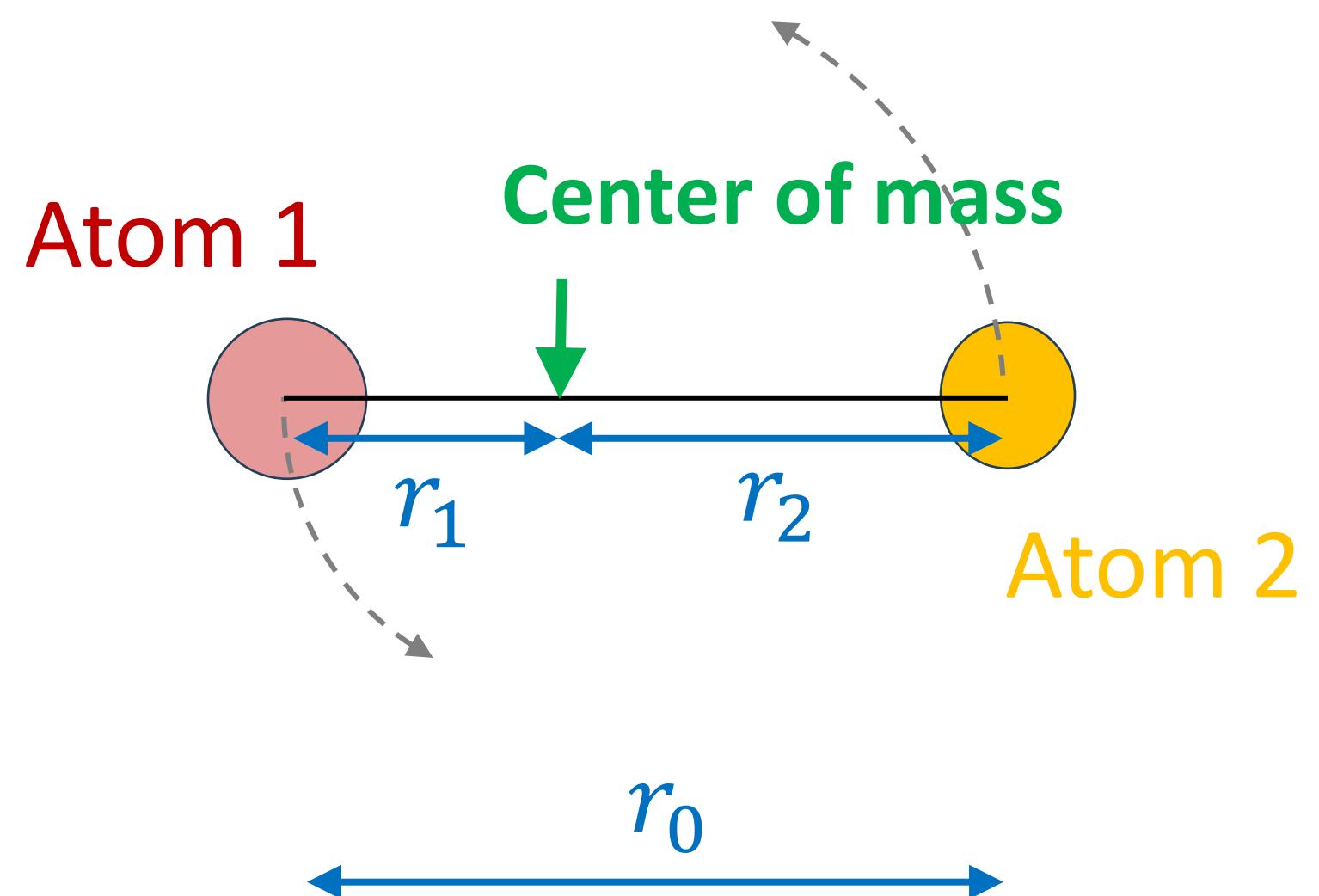


MOLECULAR SPECTRA: ROTATIONAL ENERGY-LEVELS

- Assume **diatomic** molecule
- **Angular momentum** rigid body: $L = I\omega$
- **Inertia** of a diatomic molecule: $I = \mu r_0^2$

$$I = m_1 r_1^2 + m_2 r_2^2 = \frac{m_1 m_2}{m_1 + m_2} r_0^2 = \mu r_0^2$$

$$r_1 = \frac{m_2}{m_1 + m_2} \cdot r_0, \quad r_2 = \frac{m_1}{m_1 + m_2} \cdot r_0$$



- Energy $E_{\text{rot}} = \frac{1}{2} I \omega^2 = \frac{L^2}{2I}$
- Angular momentum similar to hydrogen

MOLECULAR SPECTRA: ROTATIONAL ENERGY-LEVELS

- Rotational energy $E_{\text{rot}} = \frac{L^2}{2I}$
- Schrodinger equation center-symmetric potential:

$$\left\{ \begin{array}{l} -\frac{\hbar^2}{2\mu r^2} \frac{d}{dr} \left(r^2 \frac{dR}{dr} \right) + \left(\frac{\hbar^2 l(l+1)}{2\mu r^2} + U(r) \right) R(r) = E R(r) \\ -\frac{1}{\sin\theta} \left(\sin\theta \frac{d\Theta(\theta)}{d\theta} \right) + \left(l(l+1) - \frac{m_l^2}{\sin^2\theta} \right) \Theta(\theta) = 0 \\ \frac{d^2\Phi(\phi)}{d\phi^2} + m_l^2 \Phi(\phi) = 0 \end{array} \right.$$

- For a diatomic molecule: **radius fixed, potential $U(r) = 0$**

MOLECULAR SPECTRA: ROTATIONAL ENERGY-LEVELS

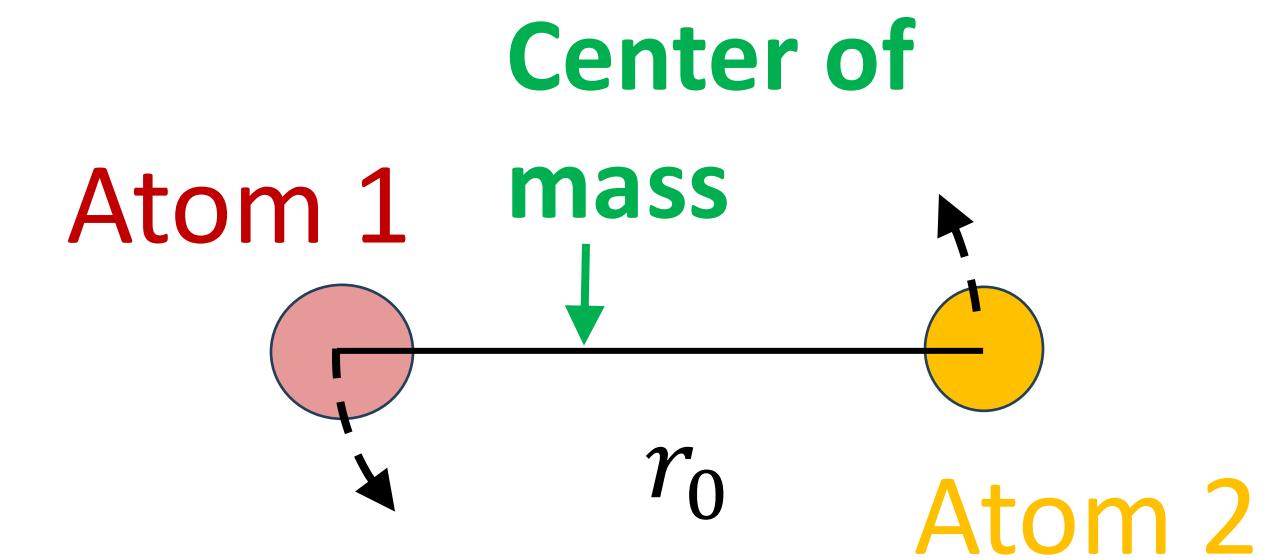
- Energy $E = \frac{L^2}{2I}$ with moment of inertia $I = \mu r_0^2$
- Diatomic molecule: **radius fixed, potential $U(r) = 0$**
- Radial part Schrodinger equation center-symmetric potential:

$$-\frac{\hbar^2}{2\mu r^2} \frac{d}{dr} \left(r^2 \frac{dR}{dr} \right) + \left(\frac{\hbar^2 l(l+1)}{2\mu r^2} + U(r) \right) R(r) = E R(r)$$

$$\Rightarrow \left(\frac{\hbar^2 l(l+1)}{2\mu r^2} \right) R(r) = E R(r)$$

$$\Rightarrow \frac{\hbar^2 l(l+1)}{2\mu r^2} = E$$

$$\Rightarrow E_l = \frac{\hbar^2 l(l+1)}{2\mu r_0^2} \Rightarrow L = \sqrt{l(l+1)} \hbar$$



$$\mu = \frac{m_1 m_2}{m_1 + m_2}$$

MOLECULAR SPECTRA: ROTATIONAL ENERGY-LEVELS

- Energy $E = \frac{L^2}{2I}$ with moment of inertia $I = \mu r_0^2$
- Diatomic molecule: **radius fixed, potential $U(r) = 0$**
- Radial part Schrodinger equation center-symmetric potential:

$$\begin{aligned} & -\frac{\hbar^2}{2\mu r^2} \frac{d}{dr} \left(r^2 \frac{dR}{dr} \right) + \left(\frac{\hbar^2 l(l+1)}{2\mu r^2} + U(r) \right) R(r) = E R(r) \\ \Rightarrow & \left(\frac{\hbar^2 l(l+1)}{2\mu r^2} \right) R(r) = E R(r) \\ \Rightarrow & \frac{\hbar^2 l(l+1)}{2\mu r^2} = E \\ \Rightarrow & E_l = \frac{\hbar^2 l(l+1)}{2\mu r_0^2} \quad \Rightarrow \quad L = \sqrt{l(l+1)} \hbar \end{aligned}$$

MOLECULAR SPECTRA: ROTATIONAL ENERGY-LEVELS

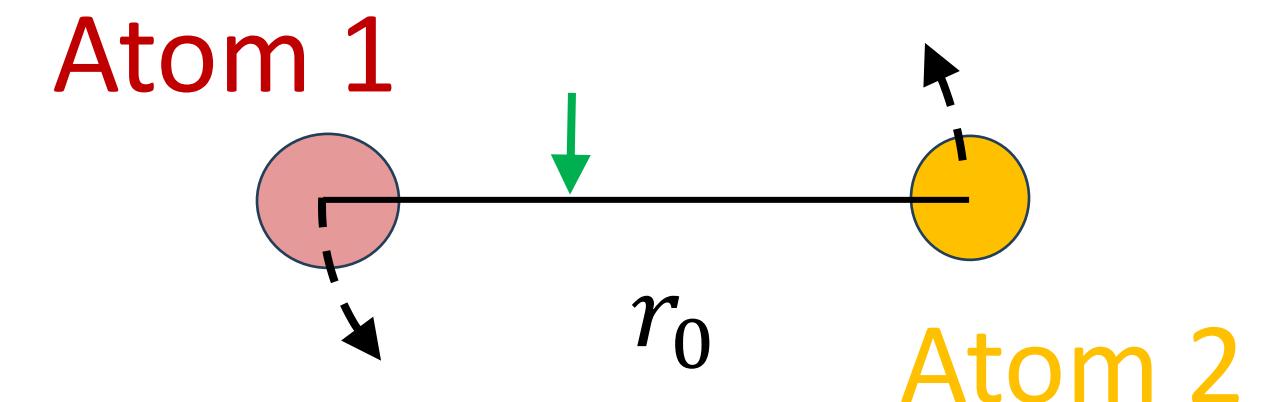
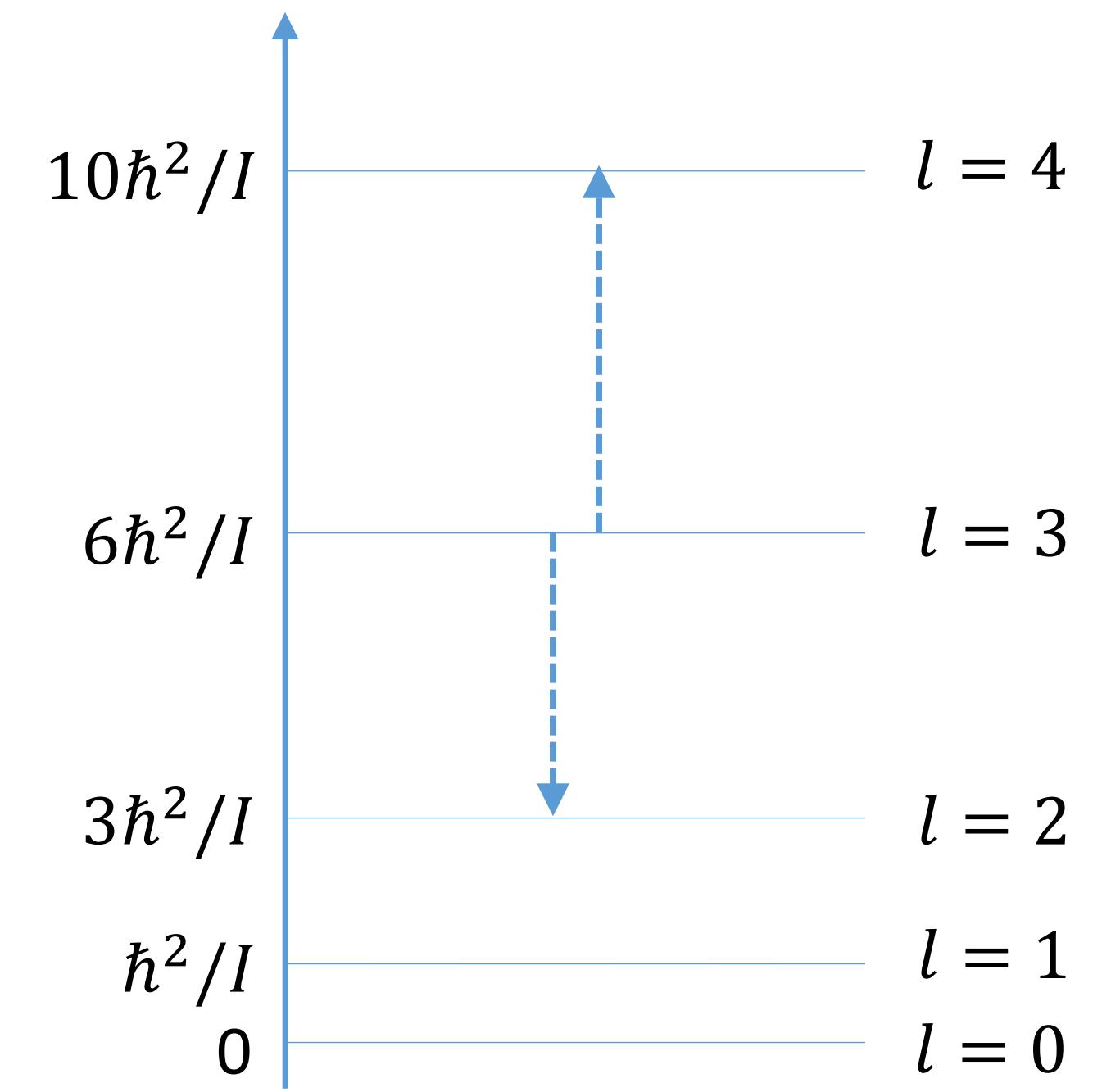
- Energy $E = \frac{L^2}{2I}$ with moment of inertia $I = \mu r_0^2$
- Diatomic molecule: **radius fixed, potential $U(r) = 0$**
- Radial part Schrodinger equation center-symmetric potential:

$$\begin{aligned} & -\frac{\hbar^2}{2\mu r^2} \frac{d}{dr} \left(r^2 \frac{dR}{dr} \right) + \left(\frac{\hbar^2 l(l+1)}{2\mu r^2} + U(r) \right) R(r) = E R(r) \\ & \Rightarrow \left(\frac{\hbar^2 l(l+1)}{2\mu r^2} \right) R(r) = E R(r) \\ & \Rightarrow \frac{\hbar^2 l(l+1)}{2\mu r^2} = E \\ & \Rightarrow E_l = \frac{\hbar^2 l(l+1)}{2\mu r_0^2} \quad \Rightarrow \quad L = \sqrt{l(l+1)} \hbar \end{aligned}$$

MOLECULAR SPECTRA: ROTATIONAL ENERGY-LEVELS

- Rotational energy $E_{\text{rot}} = \frac{L^2}{2I}$
- Schrodinger equation center-symmetric potential:

$$E_{\text{rot},l} = \frac{L^2}{2I} = l(l+1) \cdot \frac{\hbar^2}{2\mu r_0^2}$$



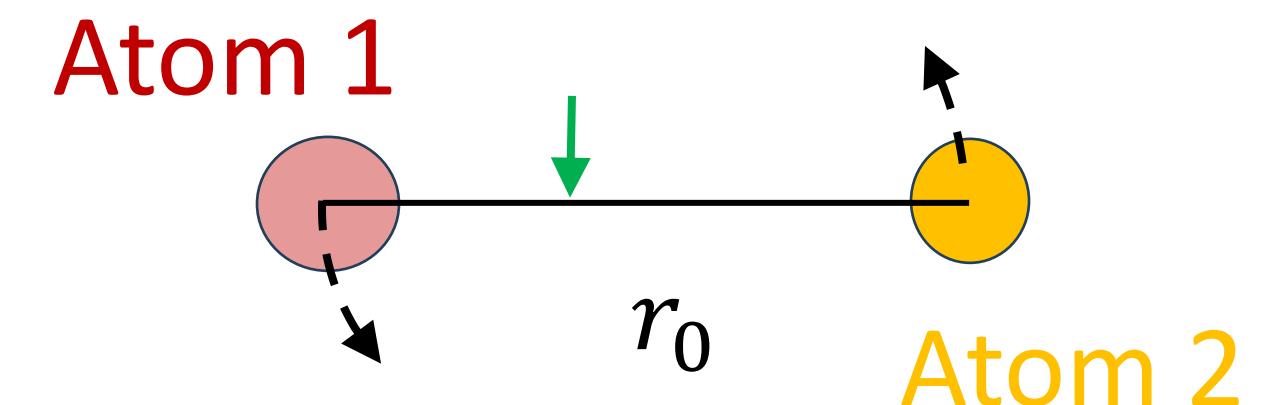
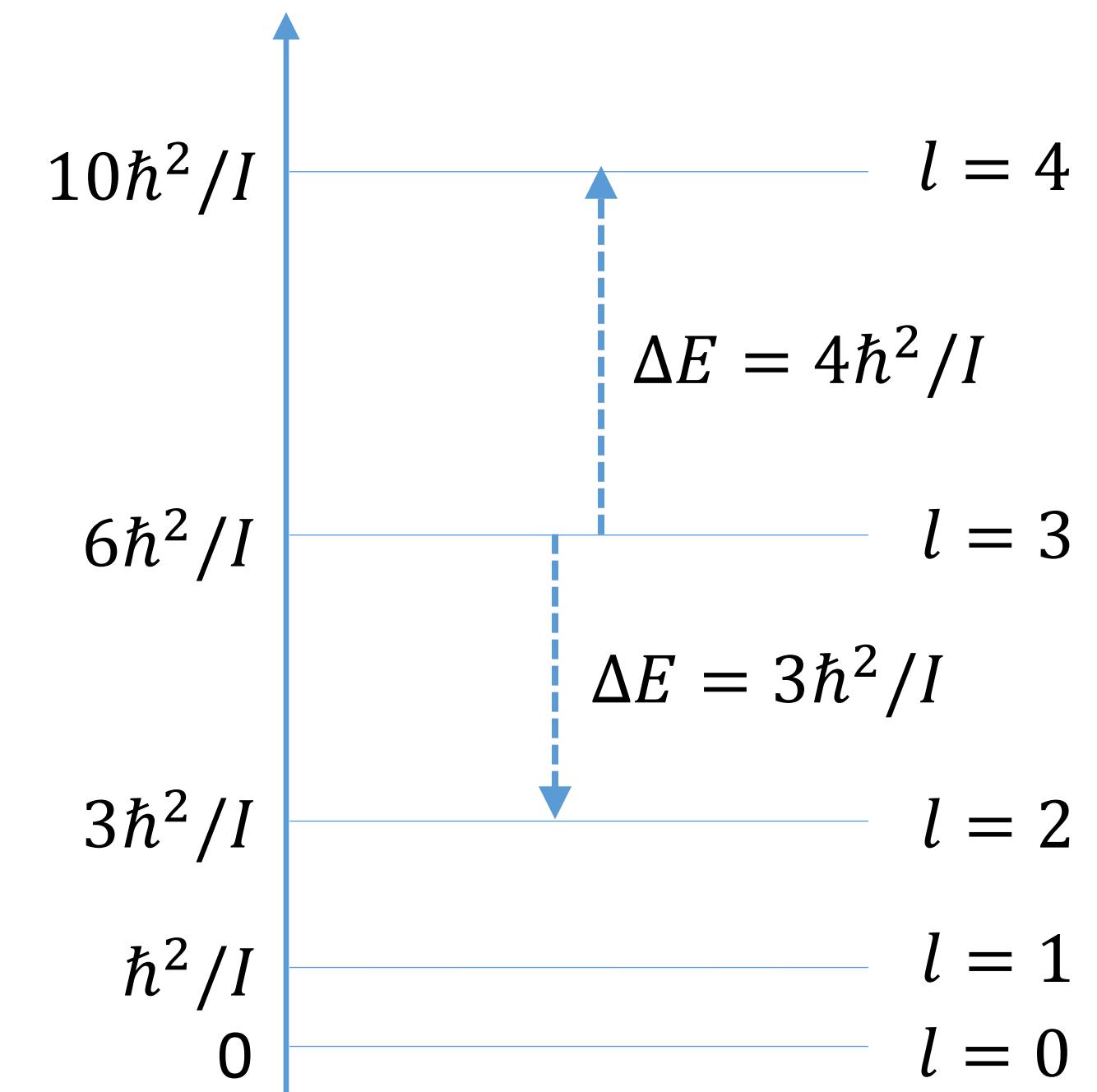
MOLECULAR SPECTRA: ROTATIONAL ENERGY-LEVELS

- Rotational energy $E_{\text{rot}} = \frac{L^2}{2I}$
- Schrodinger equation center-symmetric potential:

$$E_{\text{rot},l} = \frac{L^2}{2I} = l(l+1) \cdot \frac{\hbar^2}{2\mu r_0^2}$$

- **Spectral lines:** emission/absorption of photons
- **Selection rules:** $\Delta l = \pm 1$

$$\Delta E_{\text{rot}} = (l(l+1) - l(l-1)) \cdot \frac{\hbar^2}{2I} = \frac{l\hbar^2}{I}$$



MOLECULAR SPECTRA: CLASSICAL ROTATION FREQUENCY

- **Angular momentum** rigid body: $L = I\omega$
- **Inertia** of a diatomic molecule: $I = \mu r_0^2$
- **Rotational energy**

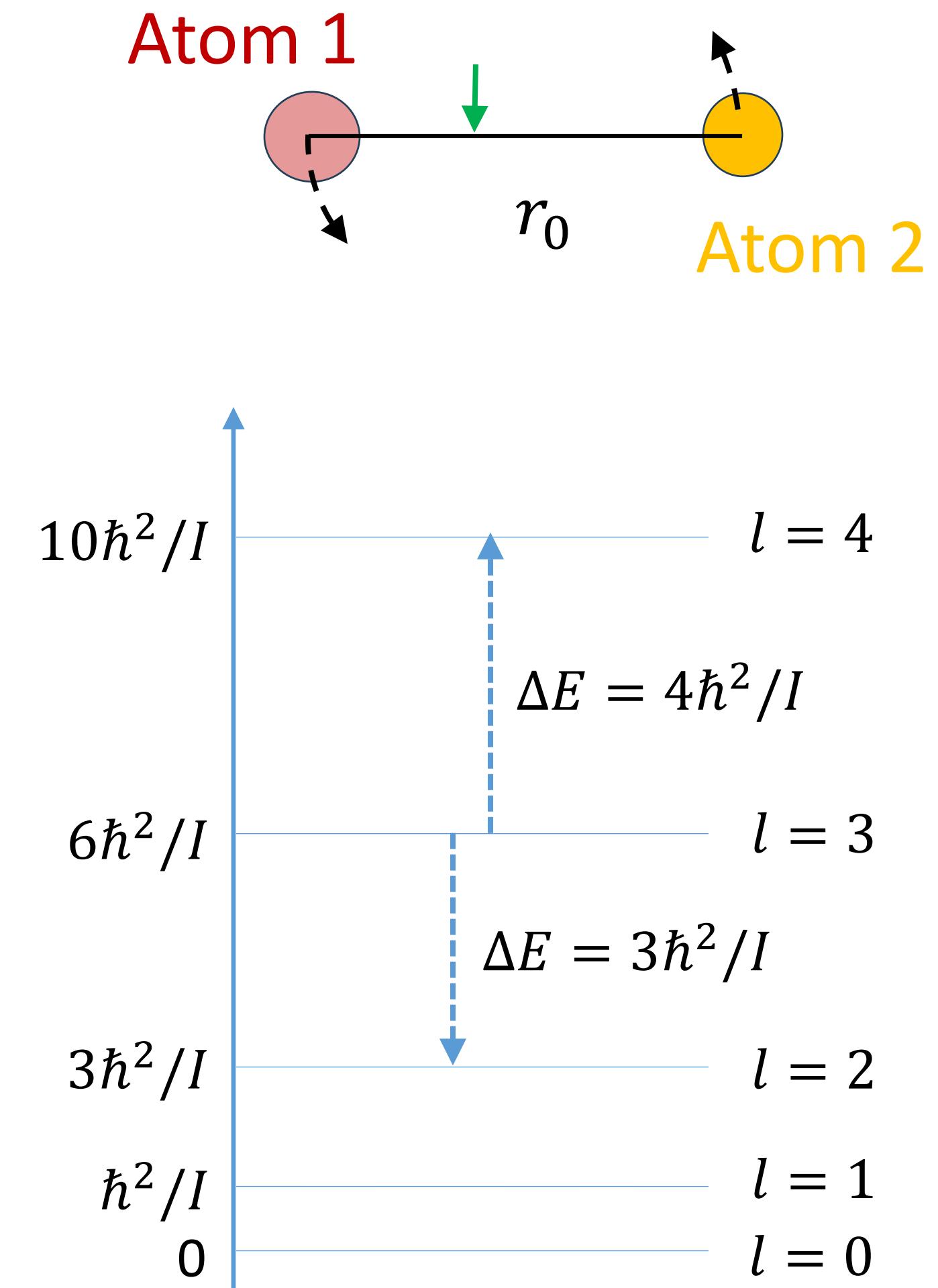
$$E_{\text{rot},l} = \frac{L^2}{2I} = l(l + 1) \cdot \frac{\hbar^2}{2\mu r_0^2}$$

- **Spectral lines**: emission/absorption of photons

$$\Delta E_{\text{rot}} = \frac{l\hbar^2}{I}$$

- **Classical rotation frequency**:

$$\omega = \sqrt{l(l + 1)} \frac{\hbar}{\mu r_0^2}$$

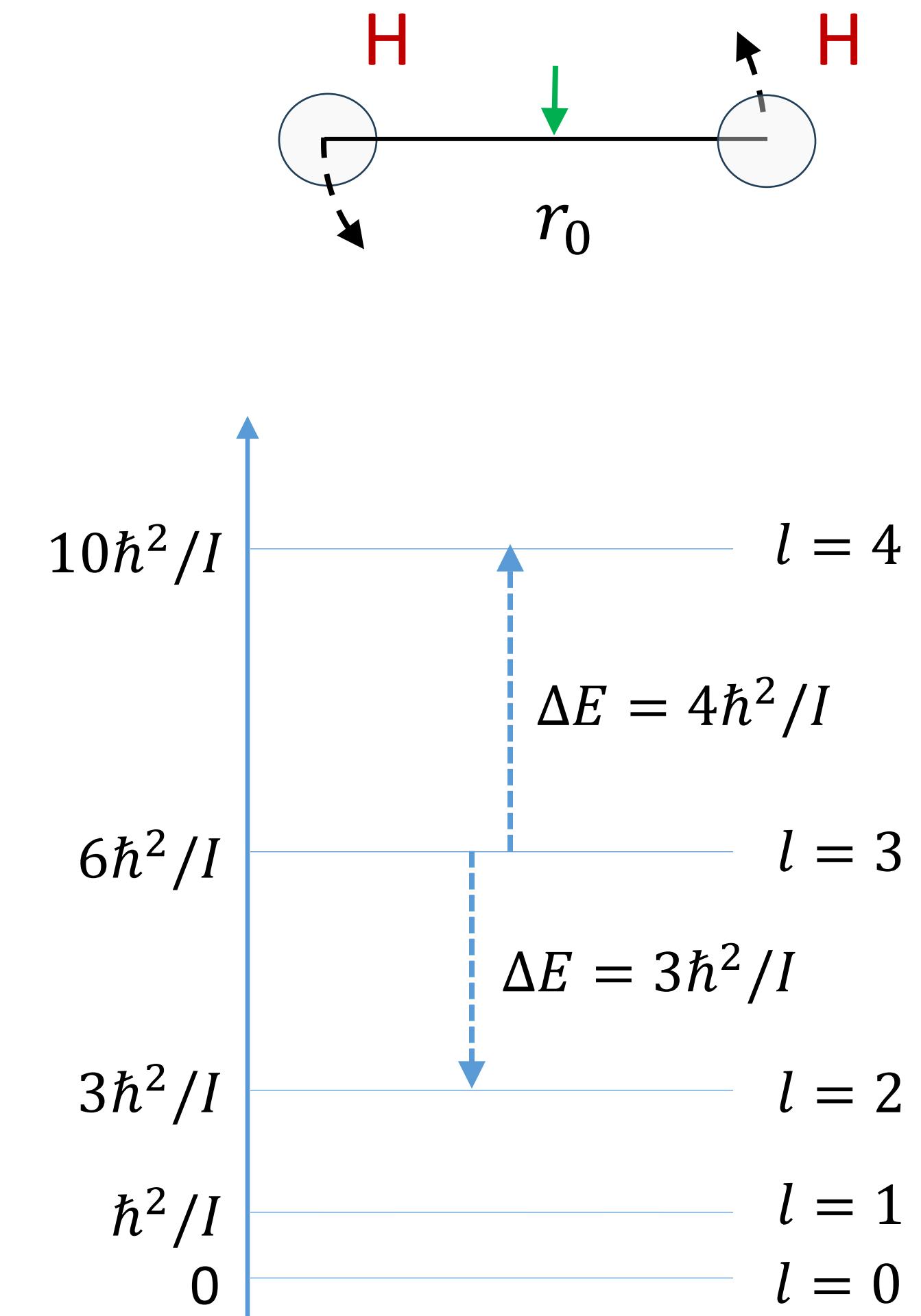


EXERCISE ROTATIONAL ENERGY-LEVELS

Exercise: An H_2 molecule exist of two hydrogen atoms separated 0.74 \AA apart ($1 \text{ \AA} = 10^{-10} \text{ m}$). Calculate the first 4 rotational energy-levels for an H_2 molecule. Then assume that the molecule is in a (rotational) state with $l = 3$ and emits a photon, what is the wavelength of the photon?

$$E_{\text{rot},l} = l(l+1) \cdot \frac{\hbar^2}{2I} \quad \text{with} \quad I = \mu r_0^2$$

$$\Delta E_{\text{rot}} = \frac{l\hbar^2}{I}$$



EXERCISE ROTATIONAL ENERGY-LEVELS

Exercise: An H_2 molecule exist of two hydrogen atoms separated 0.74 \AA apart ($1 \text{ \AA} = 10^{-10} \text{ m}$). Calculate the first 4 rotational energy-levels for an H_2 molecule. Then assume that the molecule is in a (rotational) state with $l = 3$ and emits a photon, what is the wavelength of the photon?

$$E_{\text{rot},l} = l(l+1) \cdot \frac{\hbar^2}{2I} \quad \text{with} \quad I = \mu r_0^2$$

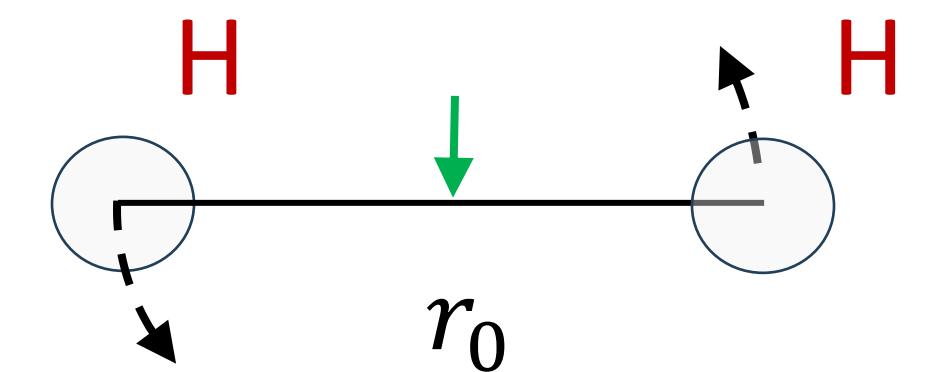
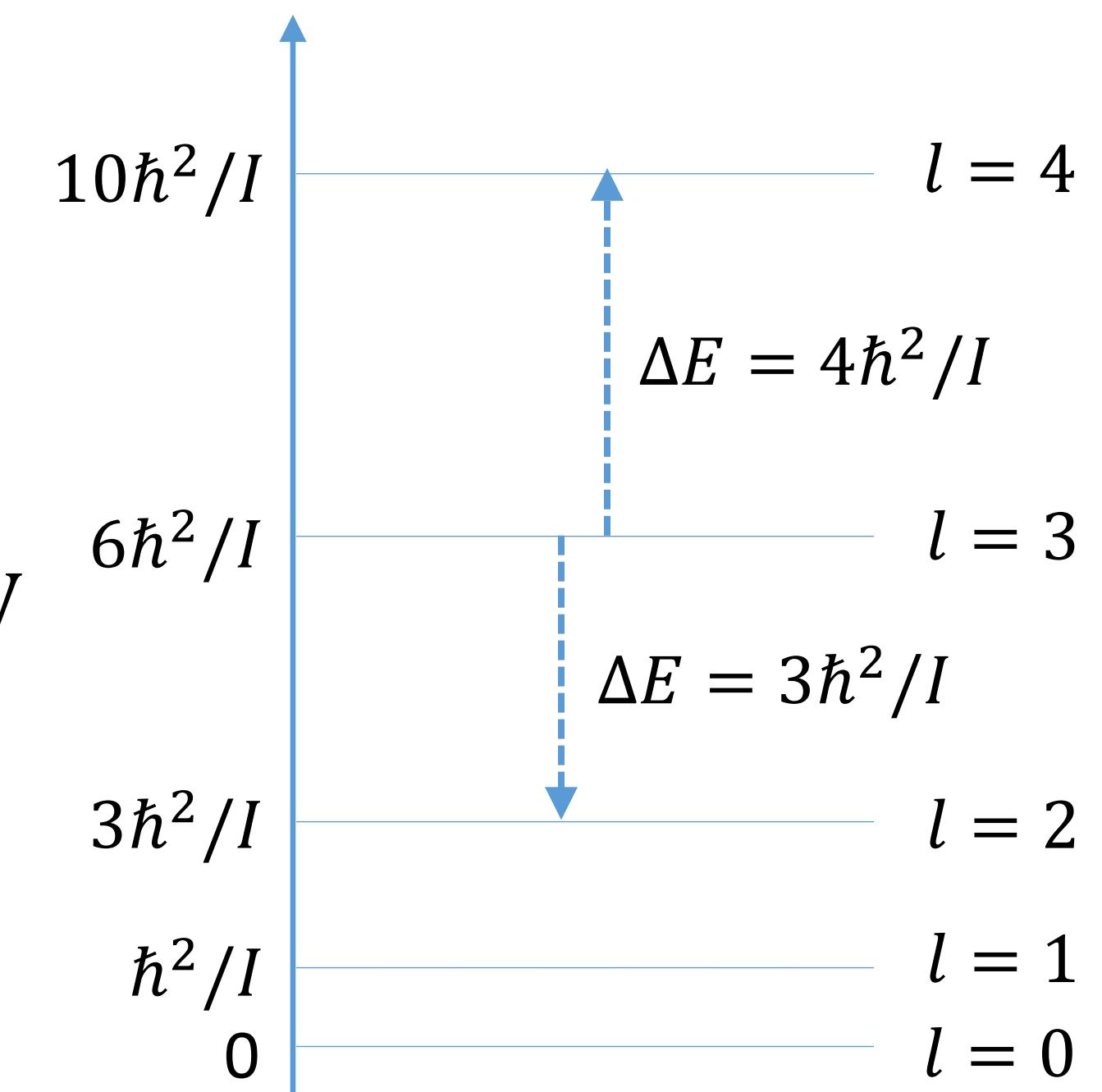
$$\Delta E_{\text{rot}} = \frac{l\hbar^2}{I}$$

Answer: Moment of inertia $I = \mu r_0^2 = \left(\frac{m_p}{2}\right) (7.4 \times 10^{-2} \text{ nm})^2$

$$\Delta E_{\text{rot}} = \frac{l\hbar^2}{I} = \frac{3 \cdot 2 \cdot \hbar^2 c^2}{4\pi^2 m_p c^2 r_0^2} \approx \frac{3 (1240 \text{ eV nm})^2}{2\pi^2 1836 \cdot 0.511 \text{ MeV} \cdot 7.4^2 \times 10^{-4} \text{ nm}^2} \approx 0.8 \text{ eV}$$

The wavelength:

$$\lambda = \frac{hc}{\Delta E_{\text{rot}}} = \frac{4\pi^2 m_p c^2 r_0^2}{6hc} \approx 2.5 \times 10^4 \text{ nm}$$



EXERCISE ROTATIONAL ENERGY-LEVELS

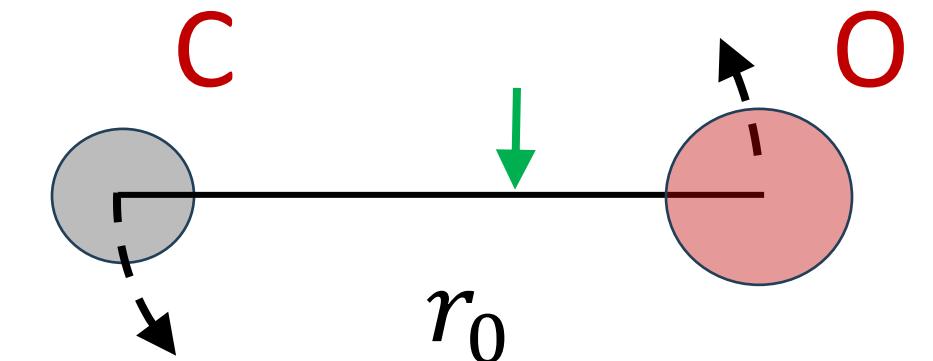
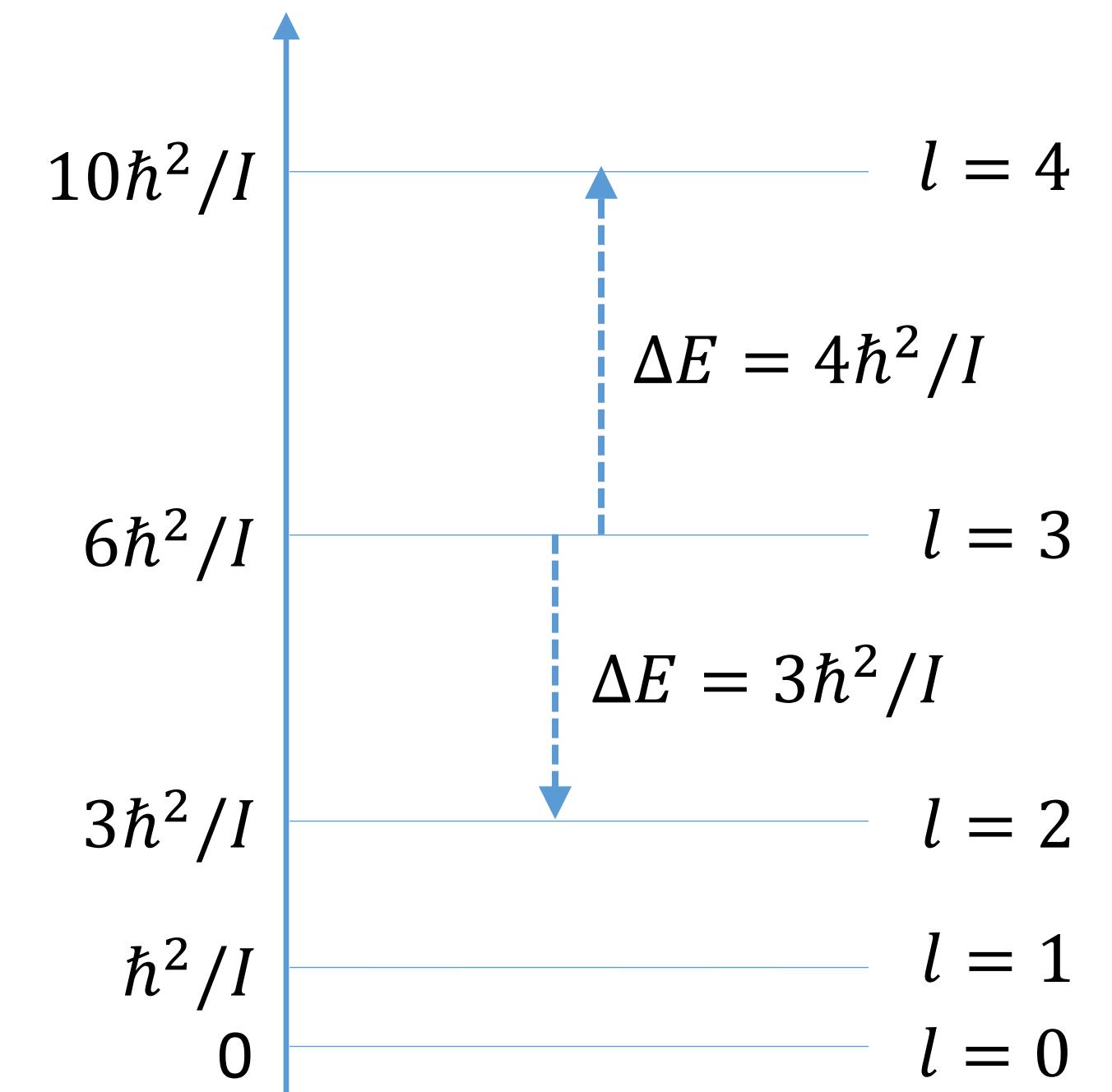
Exercise: An CO molecule exist of a carbon and an oxygen atom separated by distance r_0 . If you know that the rotational state transitions from $l = 0$ to $l = 1$ by a photon with frequency $f = 115$ GHz

(a) what is the moment of inertia of CO?

(b) What is the separation distance r_0

$$E_{\text{rot},l} = l(l+1) \cdot \frac{\hbar^2}{2I} \quad \text{with} \quad I = \mu r_0^2 \quad \text{and} \quad \mu = \frac{m_1 m_2}{m_1 + m_2}$$

$$\Delta E_{\text{rot}} = \frac{l\hbar^2}{I}. \quad \text{One atomic unit (au)} \approx 1.66 \times 10^{-27} \text{ kg}$$



EXERCISE ROTATIONAL ENERGY-LEVELS

Exercise: An CO molecule exist of a carbon and an oxygen atom separated by distance r_0 . If you know that the rotational state transitions from $l = 0$ to $l = 1$ by a photon with frequency $f = 115$ GHz

- (a) what is the moment of inertia of CO?
- (b) What is the separation distance r_0

$$E_{\text{rot},l} = l(l+1) \cdot \frac{\hbar^2}{2I} \text{ with } I = \mu r_0^2 \text{ and } \mu = \frac{m_1 m_2}{m_1 + m_2}$$

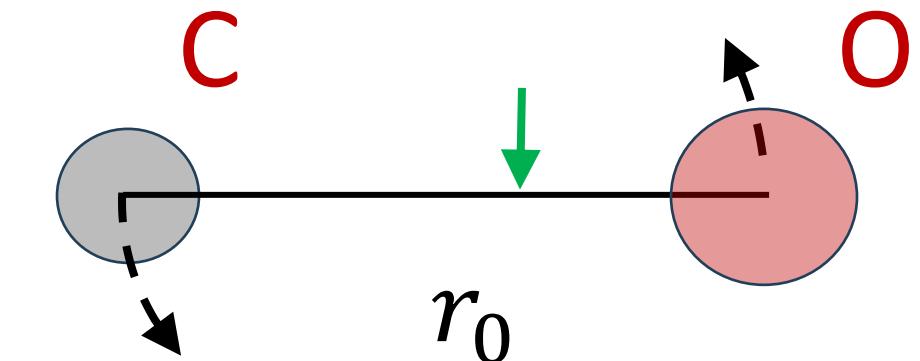
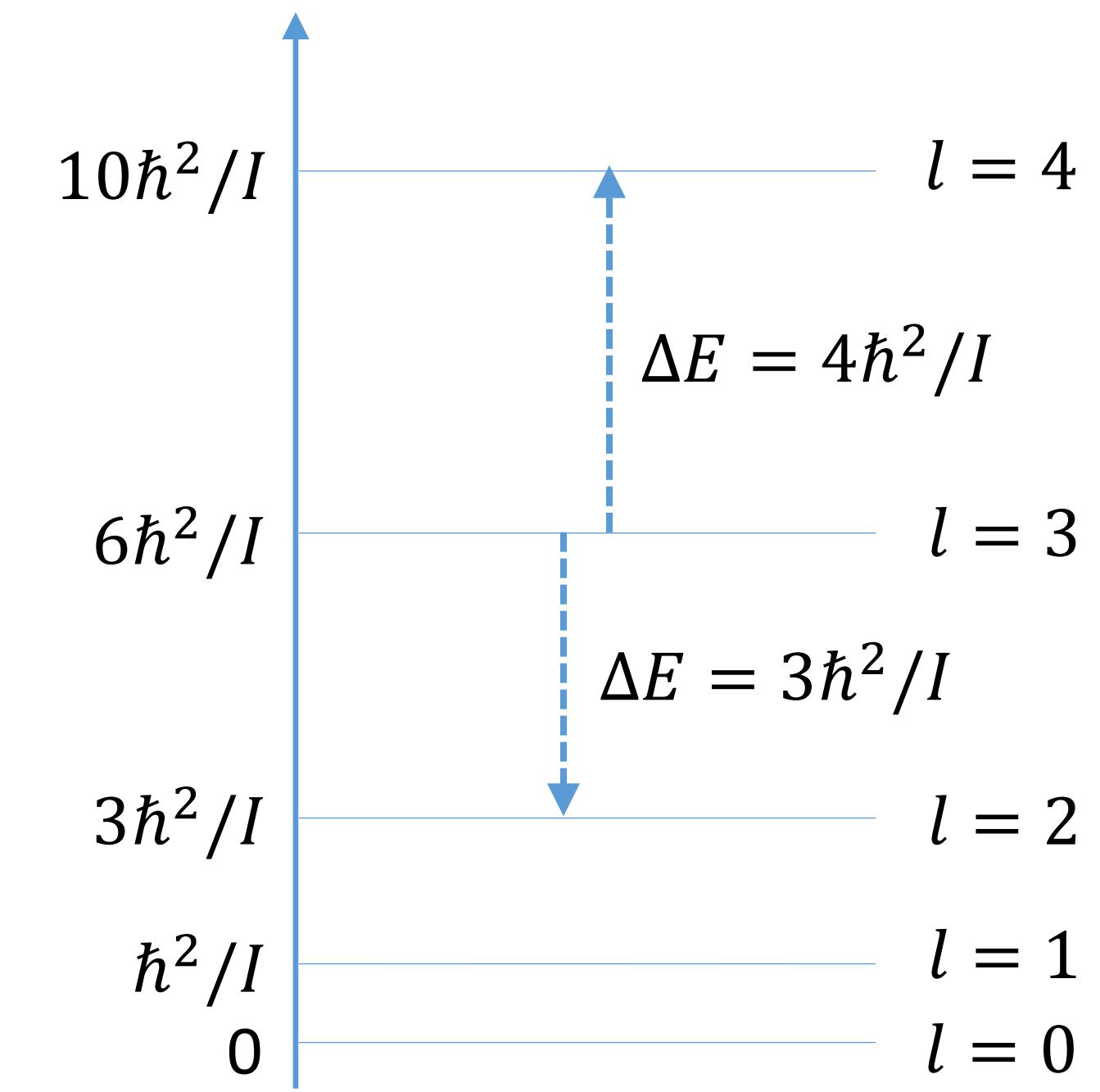
$$\Delta E_{\text{rot}} = \frac{l\hbar^2}{I}. \text{ One atomic unit (au) } \approx 1.66 \times 10^{-27} \text{ kg}$$

Answer: Energy photon $hf = \Delta E_{\text{rot},1} \Rightarrow hf = \frac{1\hbar^2}{I}$

$$\Rightarrow I = \frac{h}{4\pi^2 f} \approx \frac{(6.63 \times 10^{-34} \text{ J} \cdot \text{s})}{4\pi^2 1.15 \times 10^{11} \text{ s}^{-1}} \approx 1.5 \times 10^{-46} \text{ kg} \cdot \text{m}^2$$

The distance:

$$I = \mu r_0^2 \Rightarrow r_0 = \sqrt{\frac{I}{\mu}} = \sqrt{\frac{1.5 \times 10^{-46} \text{ kg} \cdot \text{m}^2}{\frac{12 \cdot 16}{12+16} \text{ au}}} \approx \sqrt{\frac{\frac{3}{2} \times 10^{-46} \text{ kg} \cdot \text{m}^2}{\frac{12 \cdot 16}{12+16} \left(\frac{5}{3} \times 10^{-27} \text{ kg}\right)}} \approx 0.113 \text{ nm}$$

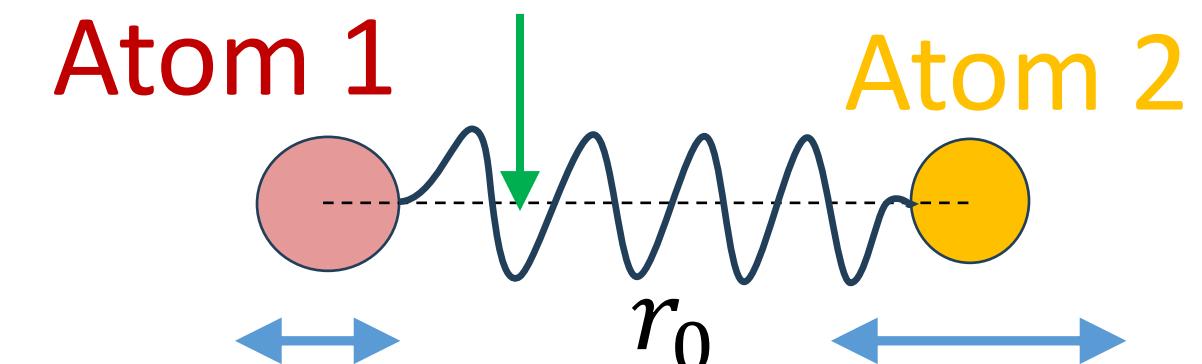
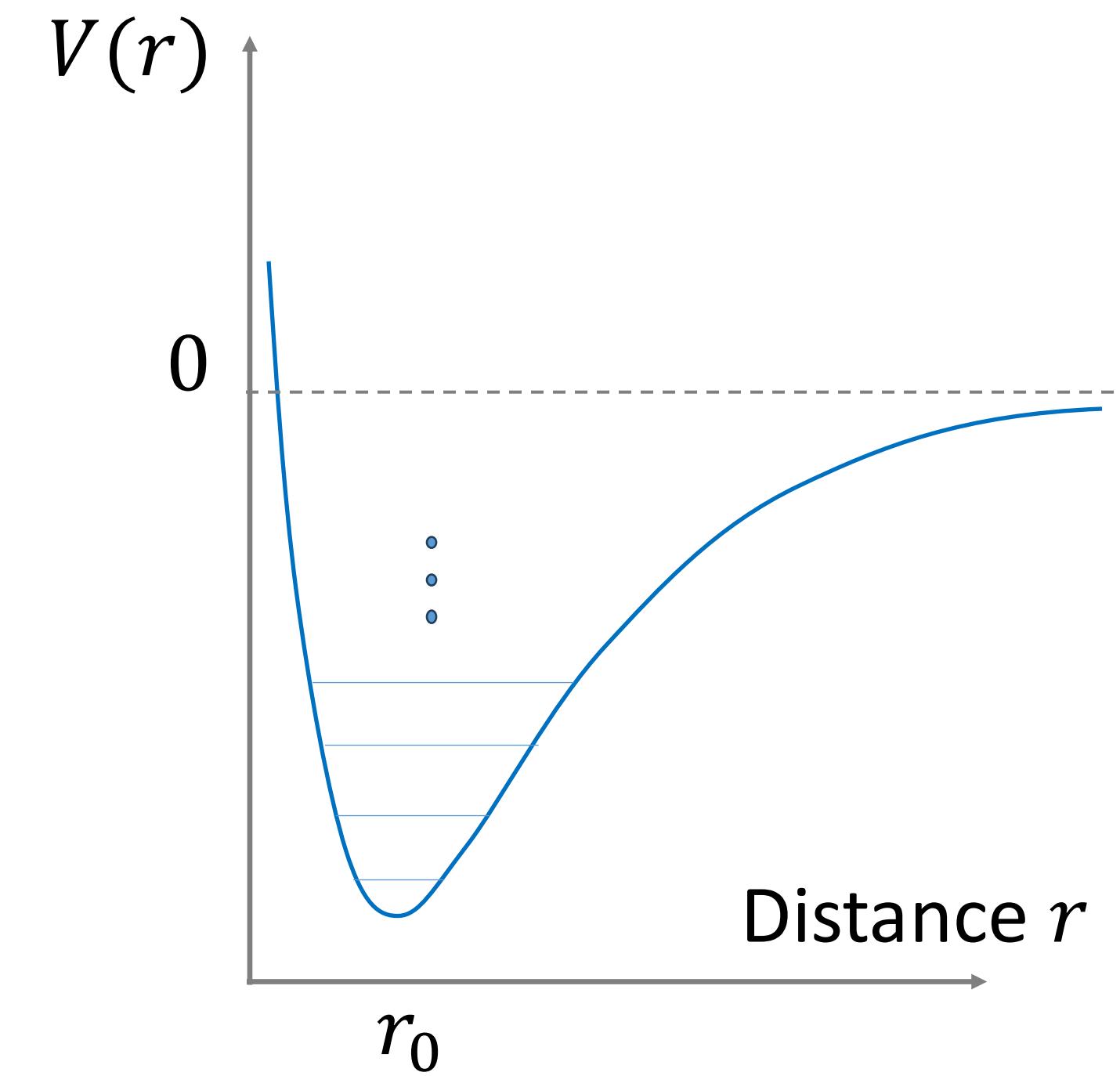


MOLECULAR SPECTRA: VIBRATIONAL ENERGY-LEVELS

- Approximate potential by parabola
- Similar to spring-ball model
- Quantum Harmonic Oscillator potential:

$$V(r) = \frac{1}{2} \mu \omega^2 r^2 = \frac{1}{2} k' r^2$$

- Connection vibration: $\omega = \sqrt{\frac{k'}{\mu}}$



MOLECULAR SPECTRA: VIBRATIONAL ENERGY-LEVELS

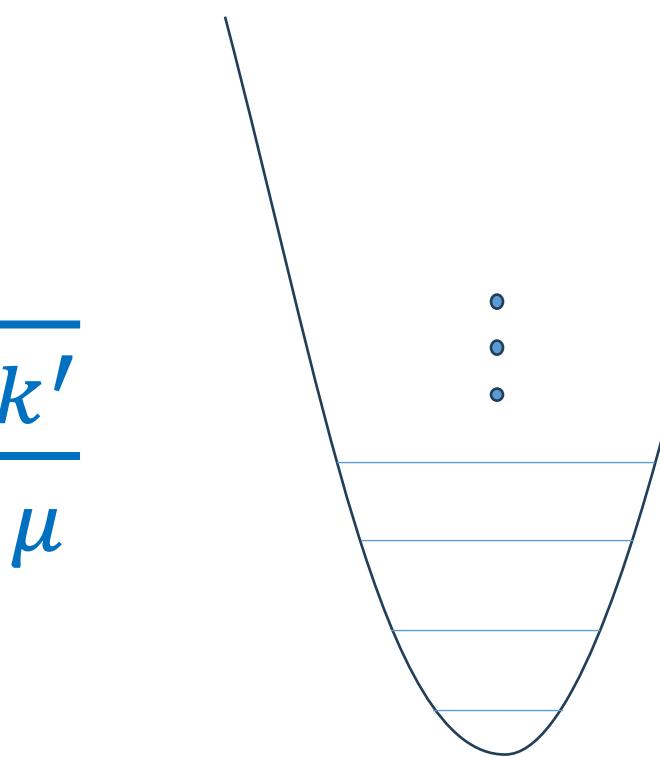
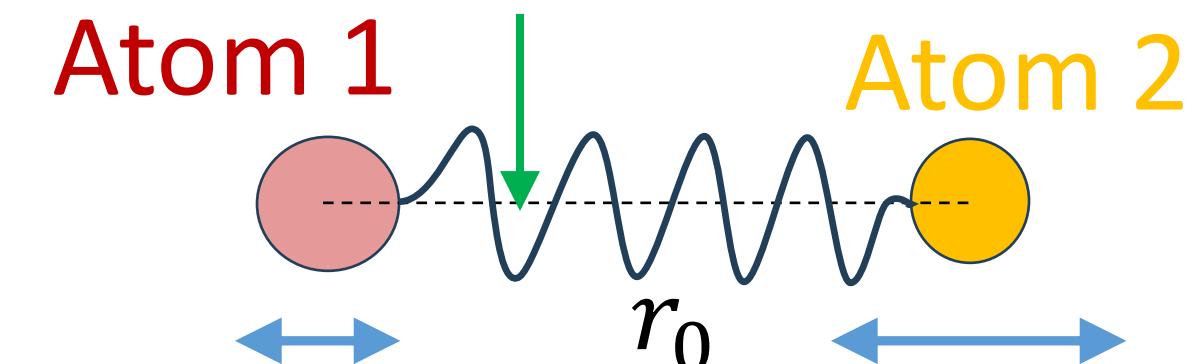
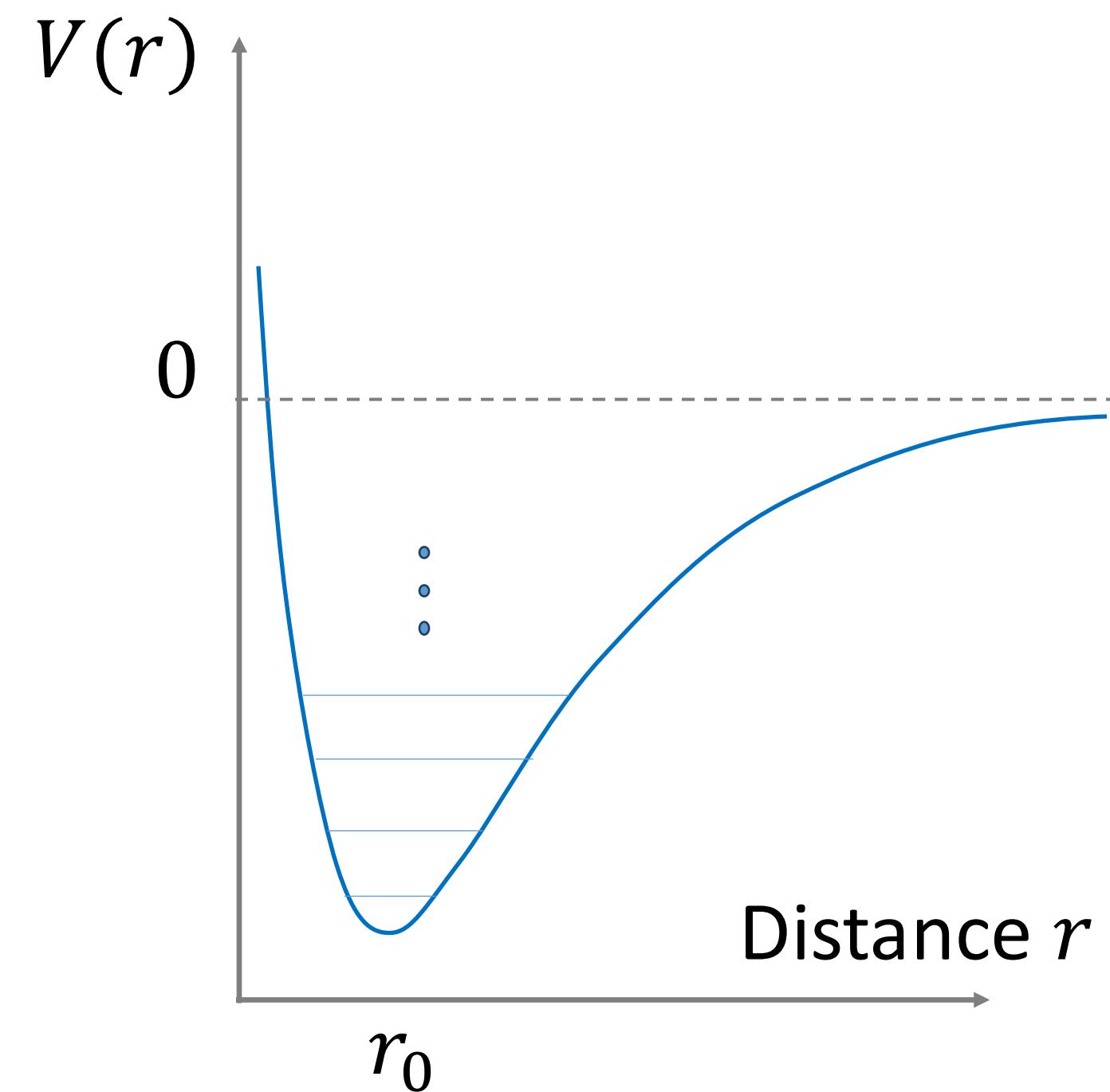
- Approximate potential by parabola
- Similar to spring-ball model
- Quantum Harmonic Oscillator potential:

$$V(r) = \frac{1}{2} \mu \omega^2 r^2 = \frac{1}{2} k' r^2$$

- Connection vibration: $\omega = \sqrt{\frac{k'}{\mu}}$

- Energy levels $E_{\text{vib},n}$:

$$E_{\text{vib},n} = \left(n + \frac{1}{2}\right) \hbar \omega = \left(n + \frac{1}{2}\right) \hbar \sqrt{\frac{k'}{\mu}}$$



MOLECULAR SPECTRA: VIBRATIONAL ENERGY-LEVELS

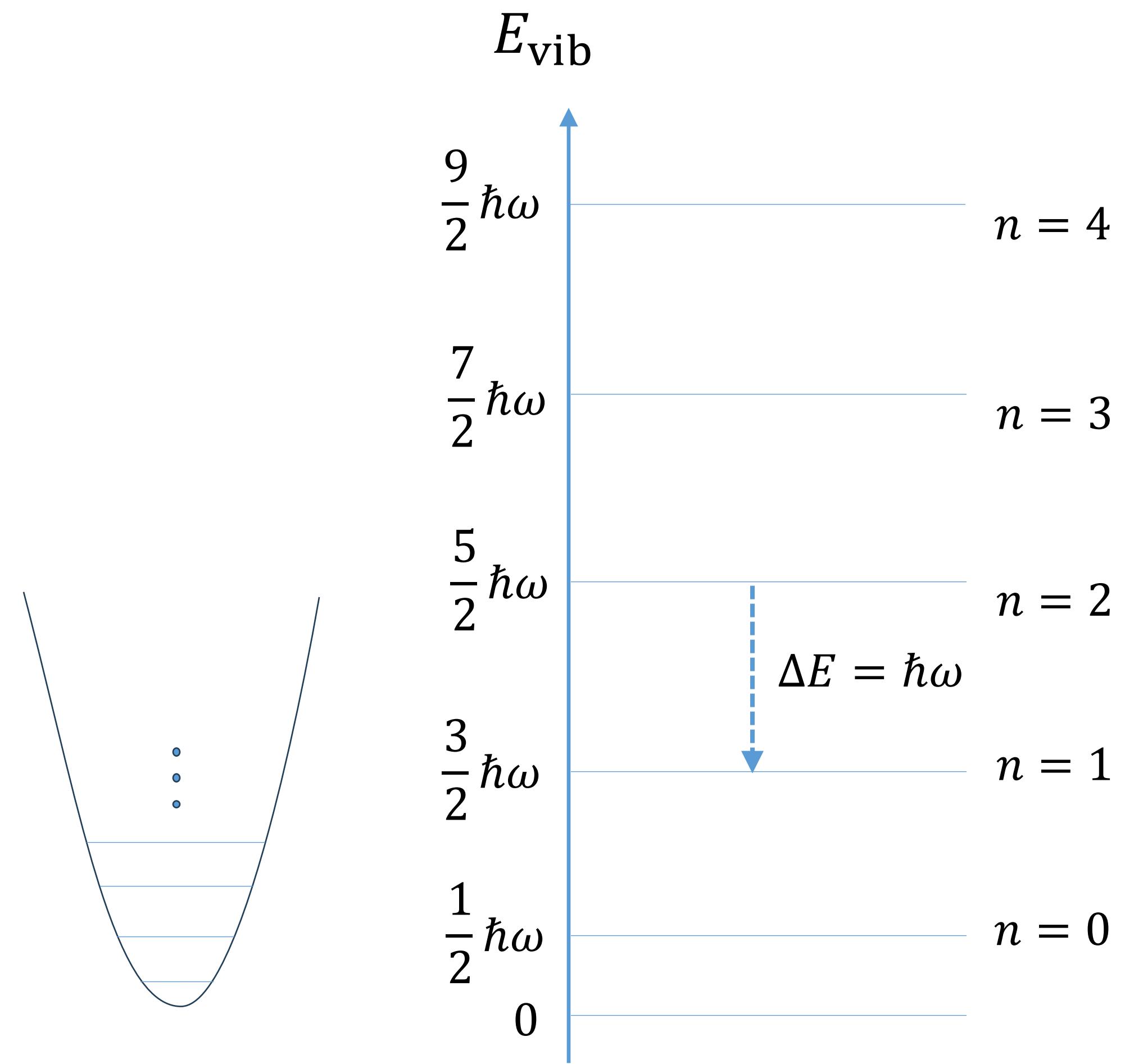
- Energy levels $E_{\text{vib},n}$:

$$E_{\text{vib},n} = \left(n + \frac{1}{2}\right) \hbar\omega = \left(n + \frac{1}{2}\right) \hbar \sqrt{\frac{k'}{\mu}}$$

- Selection rules (vibration transitions):

- Emitting a photon: $\Delta n = -1$
- Absorbing a photon: $\Delta n = 1$
- Higher transitions $\Delta n = \pm 2, \pm 3, \dots$
possible but much smaller probability

- Transitions: $\Delta E_{\text{vib}} = \pm \hbar\omega$



MOLECULAR SPECTRA: CLASSICAL AMPLITUDE/TURNING

- Energy levels $E_{\text{vib},n}$:

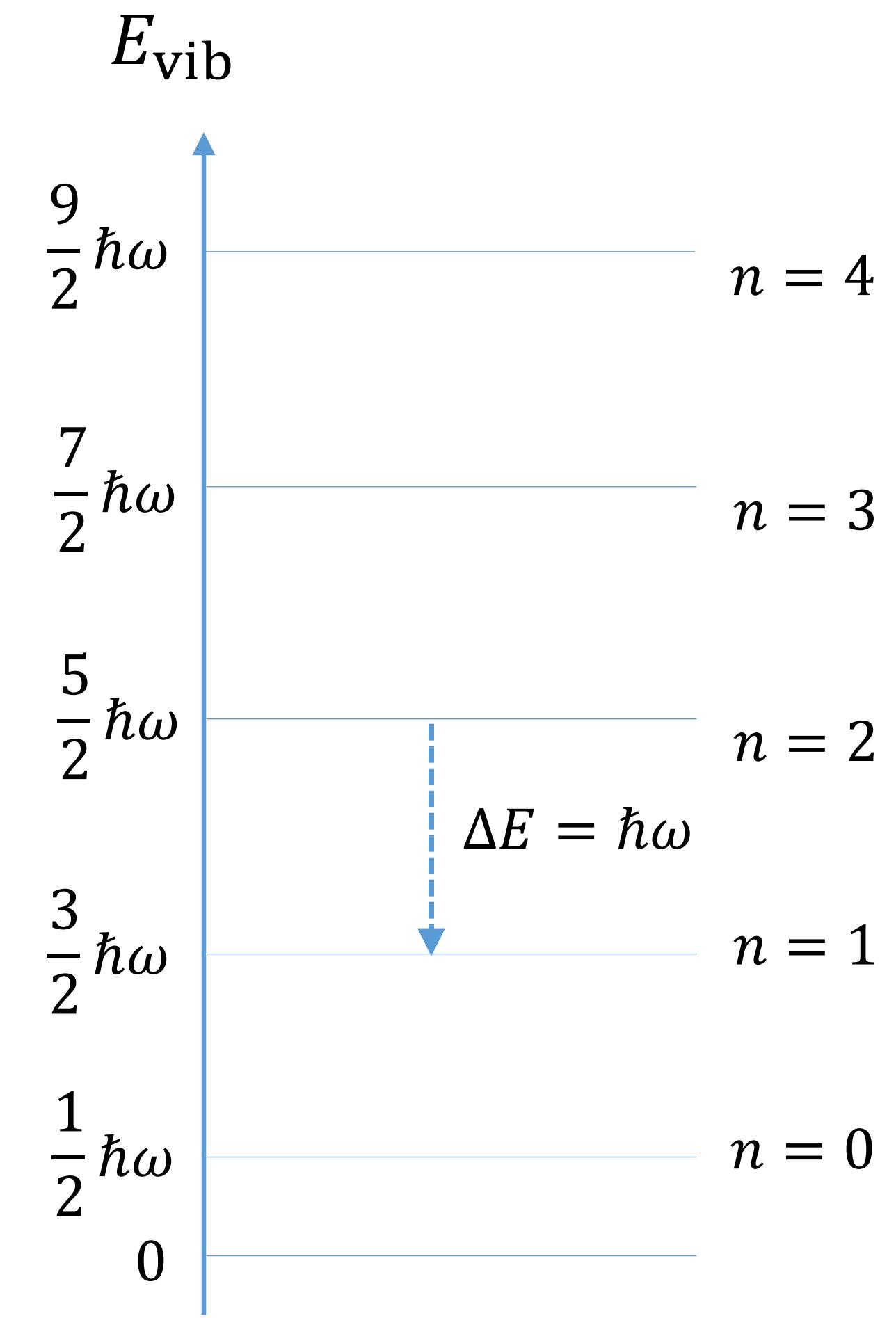
$$E_{\text{vib},n} = \left(n + \frac{1}{2}\right) \hbar\omega = \left(n + \frac{1}{2}\right) \hbar \sqrt{\frac{k'}{\mu}}$$

- Transitions: $\Delta E_{\text{vib}} = \pm \hbar\omega$

- Classical potential energy: $U = \frac{1}{2} k' A^2$

- Amplitude A or “turning point”:

$$U = E_{\text{vib},n} \Rightarrow A = \sqrt{\frac{2E_{\text{vib},n}}{k'}}$$



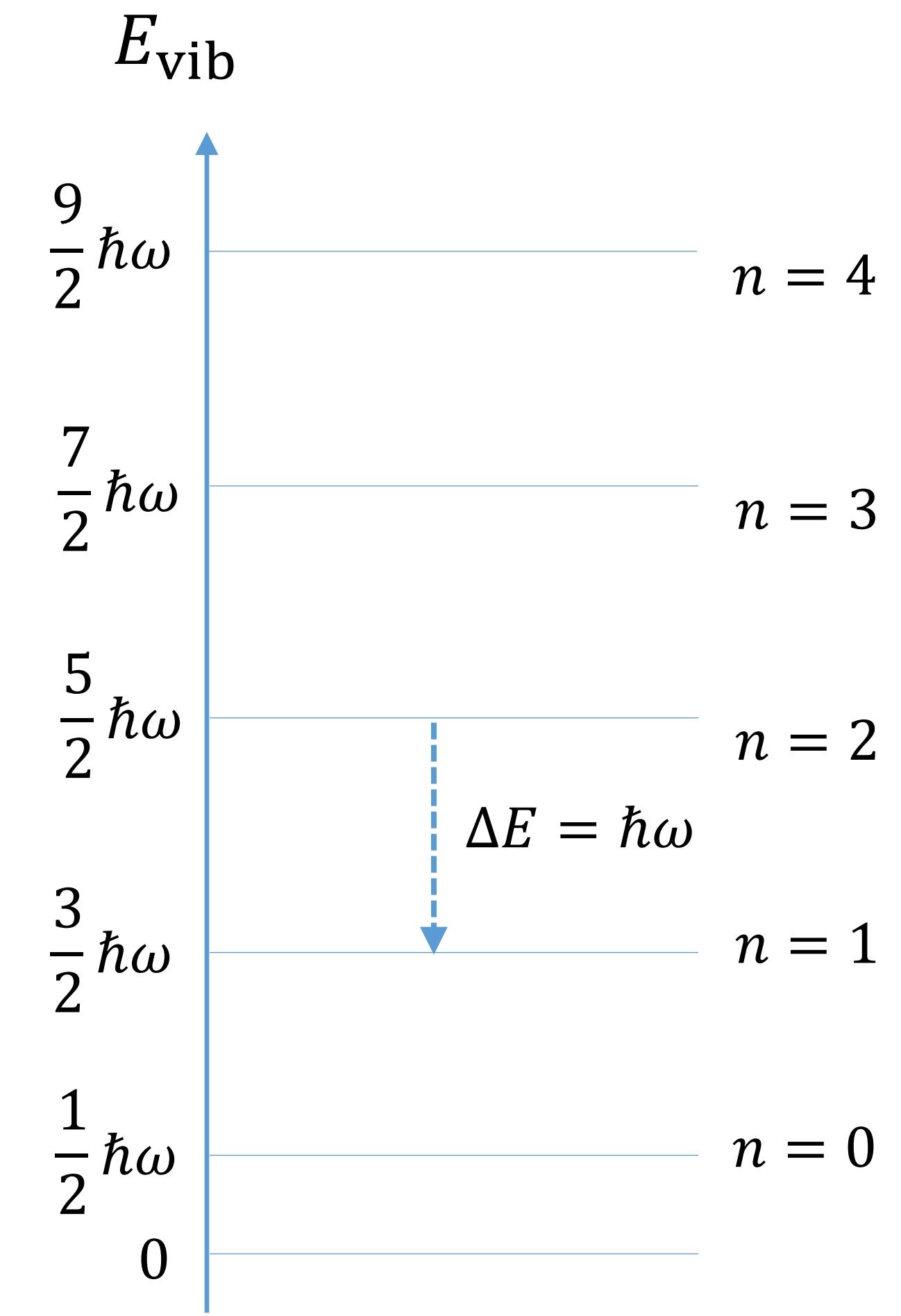
EXERCISE: VIBRATIONAL ENERGY-LEVELS

Exercise: A carbon monoxide CO molecule exist of a carbon and an oxygen atom. If you know that the vibrational state transitions from $n = 0$ to $n = 1$ by a photon with frequency $f = 64.2$ THz.

- (a) Calculate the force constant k'
- (b) What is the classical amplitude (turning point)?

$$E_{\text{vib},n} = \left(n + \frac{1}{2}\right) \hbar\omega = \left(n + \frac{1}{2}\right) \hbar \sqrt{\frac{k'}{\mu}}$$

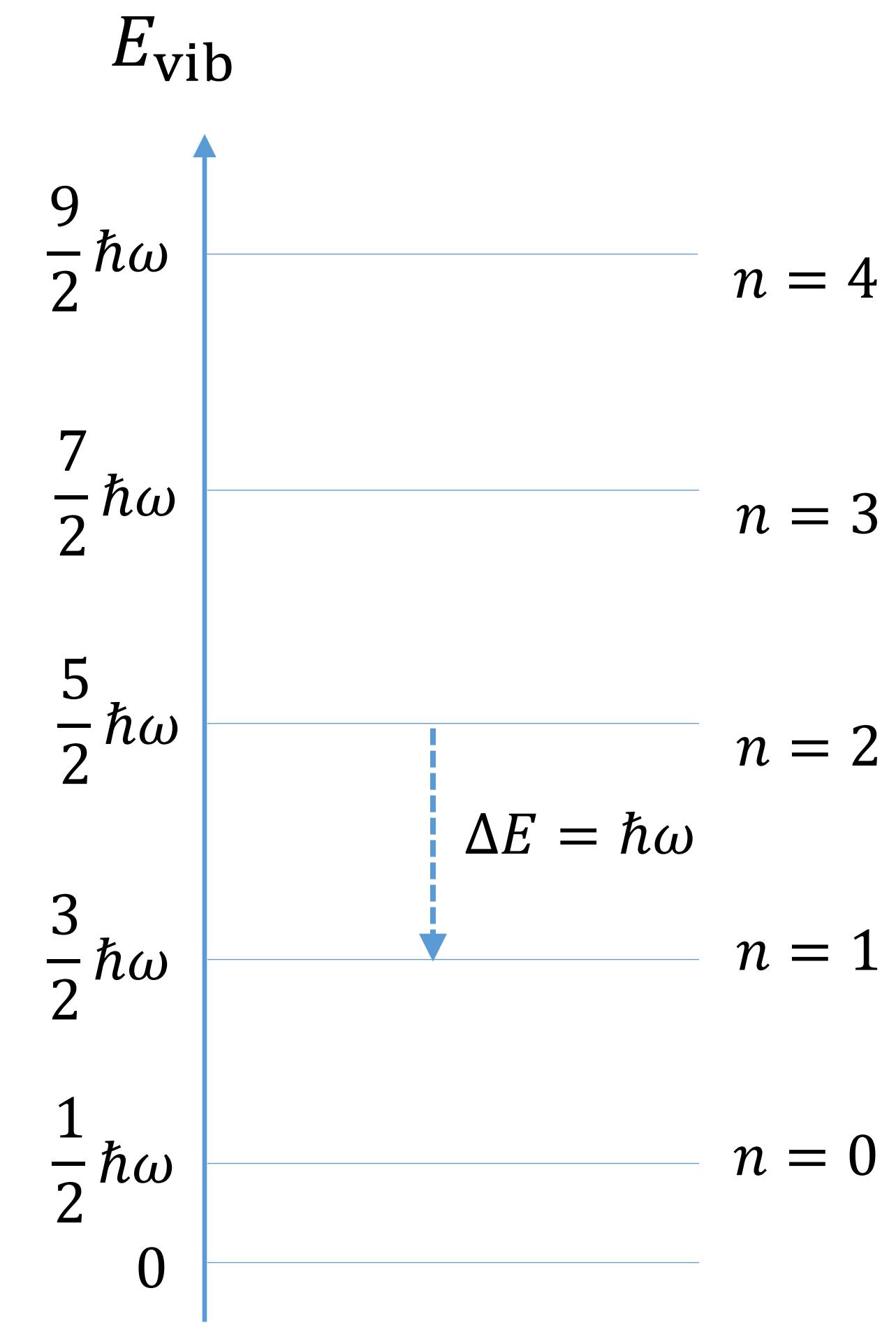
$$\text{At turning point: } U = E_{\text{vib},n} \Rightarrow A = \sqrt{\frac{2E_{\text{vib},n}}{k'}}$$



EXERCISE: VIBRATIONAL ENERGY-LEVELS

Exercise: A carbon monoxide CO molecule exist of a carbon and an oxygen atom separated 1.13 Å apart ($1 \text{ \AA} = 10^{-10} \text{ m}$). The energy difference for CO is $\hbar\omega = 0.269 \text{ eV}$. What is the frequency of the **molecule vibration** when in state $n = 5$. Assume then the molecule absorbs a photon thereby reaching a state with $n = 6$, what is the frequency of the **photon**?

$$E_{\text{vib},n} = \left(n + \frac{1}{2}\right) \hbar\omega = \left(n + \frac{1}{2}\right) \hbar \sqrt{\frac{k'}{\mu}}$$

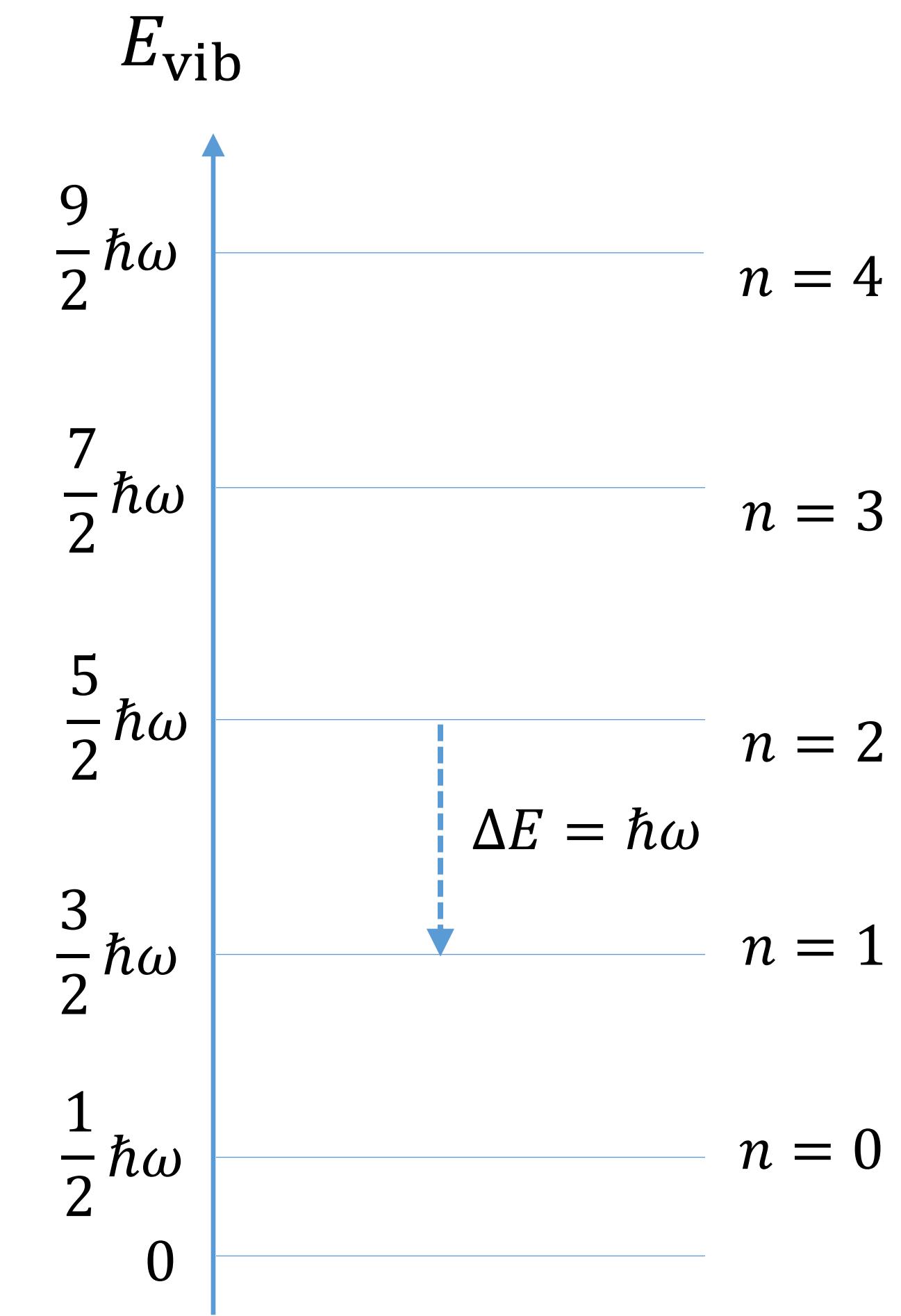


EXERCISE: VIBRATIONAL ENERGY-LEVELS

Exercise: A carbon monoxide CO molecule exist of a carbon and an oxygen atom separated 1.13 Å apart ($1 \text{ \AA} = 10^{-10} \text{ m}$). The energy difference for CO is $\hbar\omega = 0.269 \text{ eV}$. What is the frequency of the **molecule vibration** when in state $n = 5$. Assume then the molecule absorbs a photon thereby reaching a state with $n = 6$, what is the frequency of the **photon**?

$$E_{\text{vib},n} = \left(n + \frac{1}{2}\right) \hbar\omega = \left(n + \frac{1}{2}\right) \hbar \sqrt{\frac{k'}{\mu}}$$

Answer:

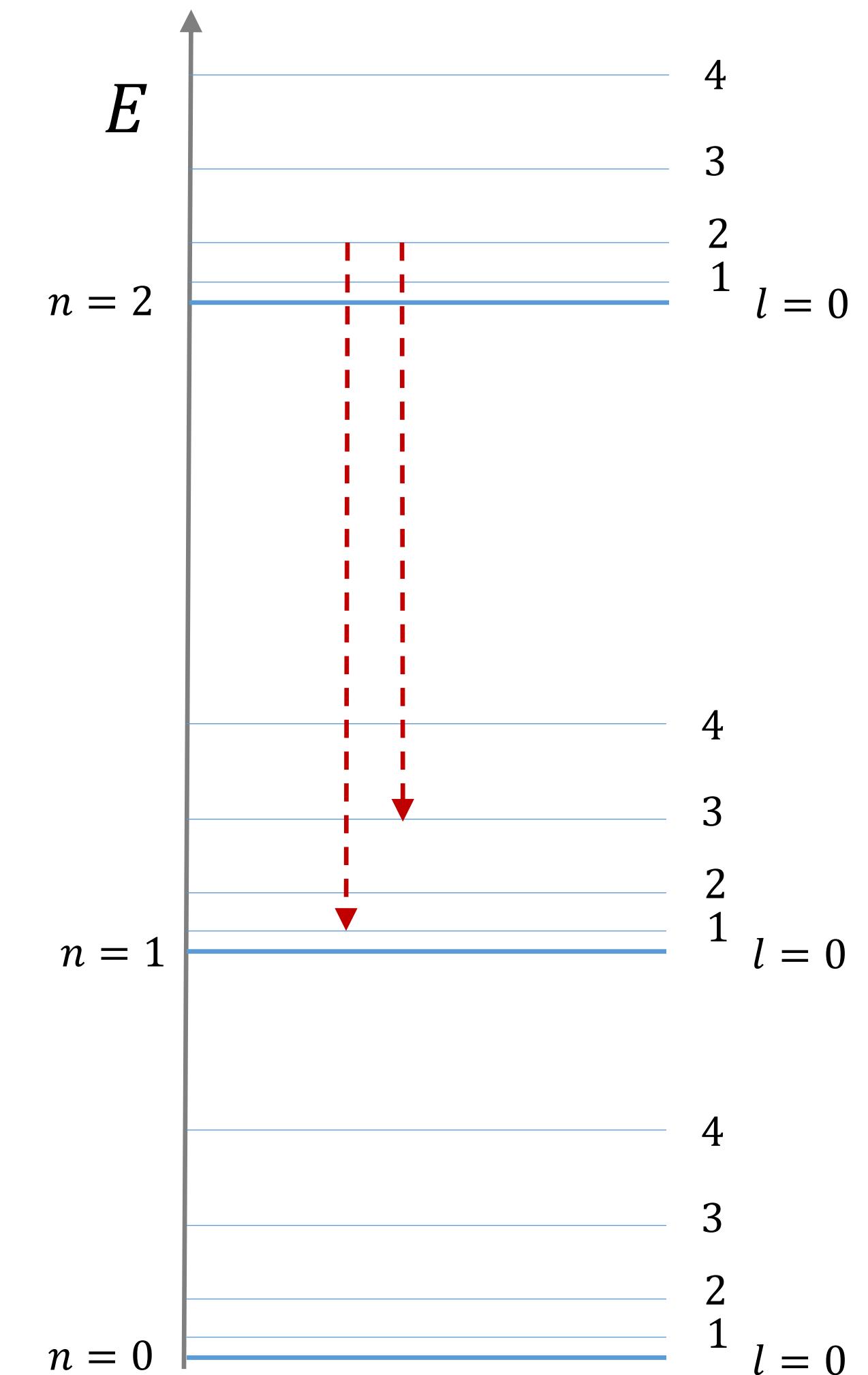


ROTATIONS AND VIBRATIONS

- Combined rotations and vibrations
- Energy levels $E_{l,n}$:

$$E_{l,n} = l(l+1) \frac{\hbar^2}{2I} + \left(n + \frac{1}{2}\right) \hbar \sqrt{\frac{k'}{\mu}}$$

- Vibration selection rules:
 - Emitting a photon: $\Delta n = -1$
 - Absorbing a photon: $\Delta n = 1$
- Rotational selection rules: $\Delta l = \pm 1$



ROTATIONS AND VIBRATIONS

- Combined energy rotations and vibrations

$$E_{l,n} = l(l+1) \frac{\hbar^2}{2I} + \left(n + \frac{1}{2}\right) \hbar\omega$$

- Absorption: $\Delta n = 1$ and $\Delta l = \pm 1$

$$\Delta E_+ = \hbar\omega + (l+1) \frac{\hbar^2}{I} \quad l = 0, 1, 2, \dots$$

$$\Delta E_- = \hbar\omega - l \frac{\hbar^2}{I} \quad l = 1, 2, \dots$$

