

PHOT 222: Quantum Photonics

LECTURE 09

Michaël Barbier, Spring semester (2024-2025)

OVERVIEW OF THE COURSE

week	topic	Serway 9th	Young
Week 1	Relativity	Ch. 39	Ch. 37
Week 2	Waves and Particles	Ch. 40	Ch. 38-39
Week 3	Wave packets and Uncertainty	Ch. 40	Ch. 38-39
Week 4	The Schrödinger equation and Probability	Ch. 41	Ch. 39
Week 5	Midterm exam 1		
Week 6	Quantum particles in a potential	Ch. 41	Ch. 40
Week 7	Bayram		
Week 8	Harmonic oscillator	Ch. 41	Ch. 40
Week 9	Tunneling through a potential barrier	Ch. 41	Ch. 40
Week 10	Midterm exam 2		
Week 11	The hydrogen atom, absorption/emission spectra		
Week 12	Many-electron atoms & Pauli-exclusion principle		
Week 13	Atomic bonds and molecules		
Week 14	Crystalline materials and energy band structure		

Harmonic potential

CLASSICAL HARMONIC POTENTIAL WELL

Various models:

(1) Weight connected to spring

- Potential:

$$V(x) = \frac{1}{2}k'x^2$$

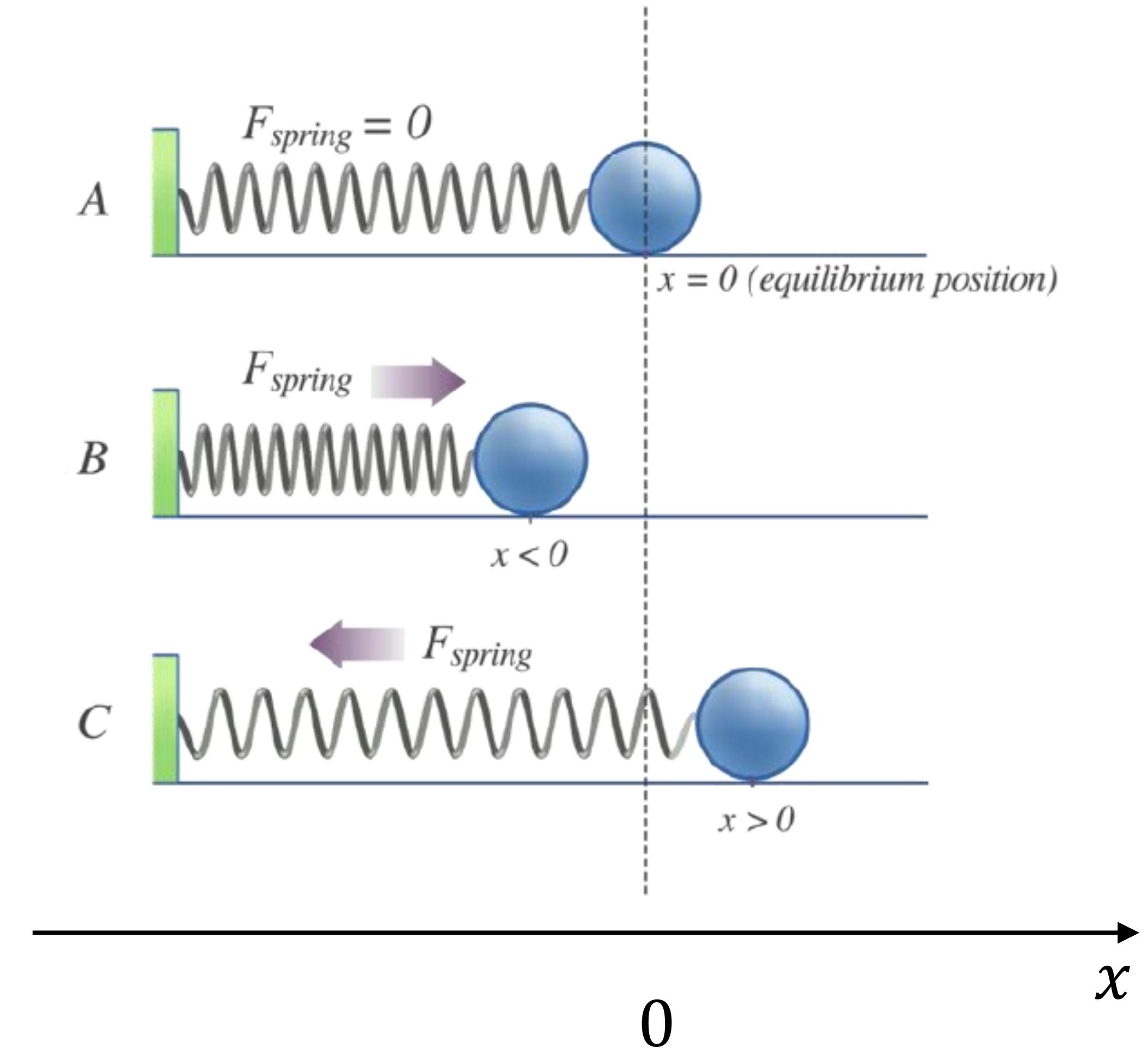
With Hooke's constant: k'

- Restoring force of spring:

$$F = -\frac{dV(x)}{dx} = -k'x$$

- Turning point distance: x_{\max}

$$\frac{1}{2}k'x_{\max}^2 = \frac{1}{2}mv_0^2$$



CLASSICAL HARMONIC POTENTIAL WELL

Various models:

(1) Weight connected to spring

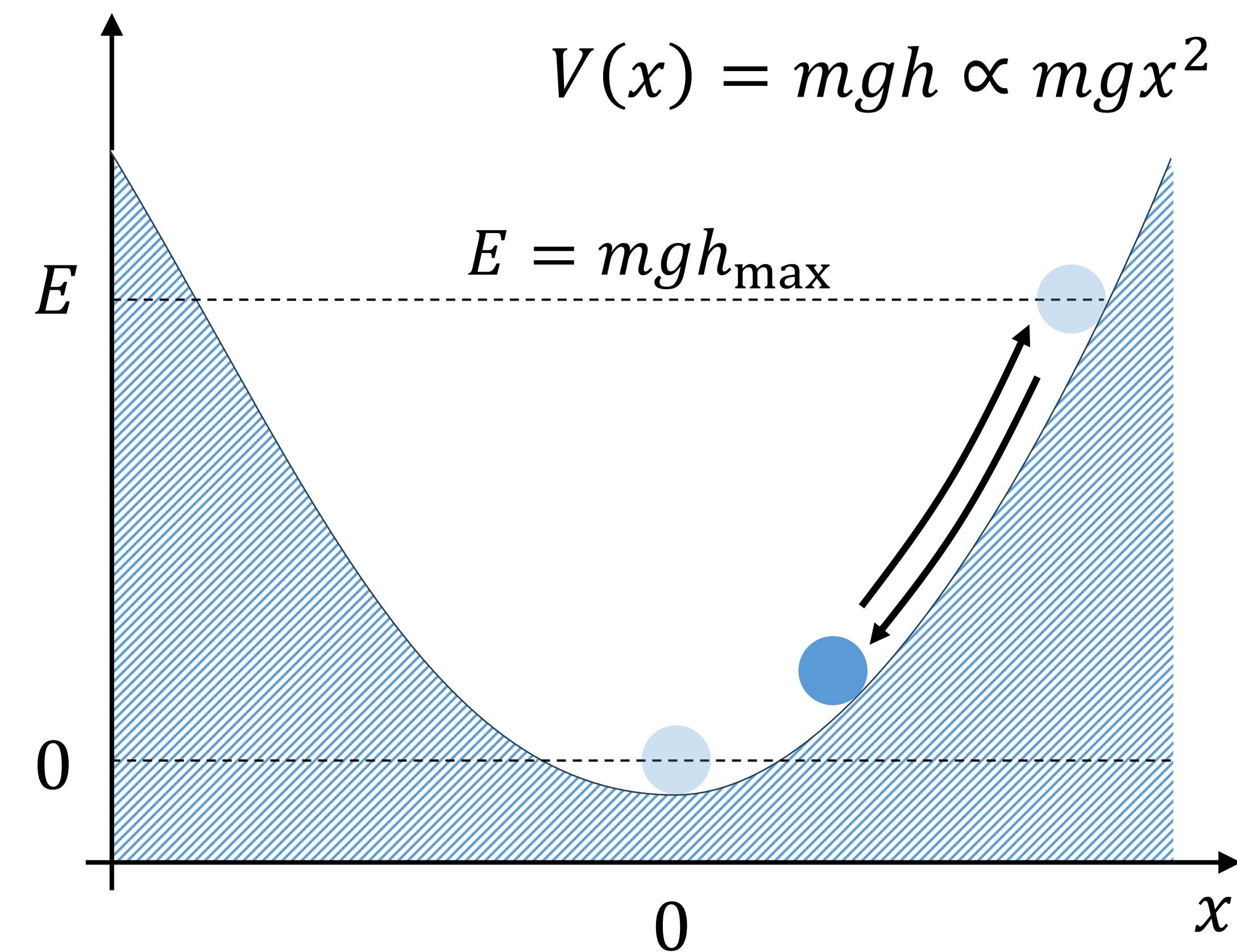
$$V(x) = \frac{1}{2}k'x^2$$

With Hooke's constant: k'

(2) Ball/car in a parabolic well

$$V(x) = mgh \propto mgx^2$$

(3) Pendulum or swing



THE HARMONIC POTENTIAL WELL

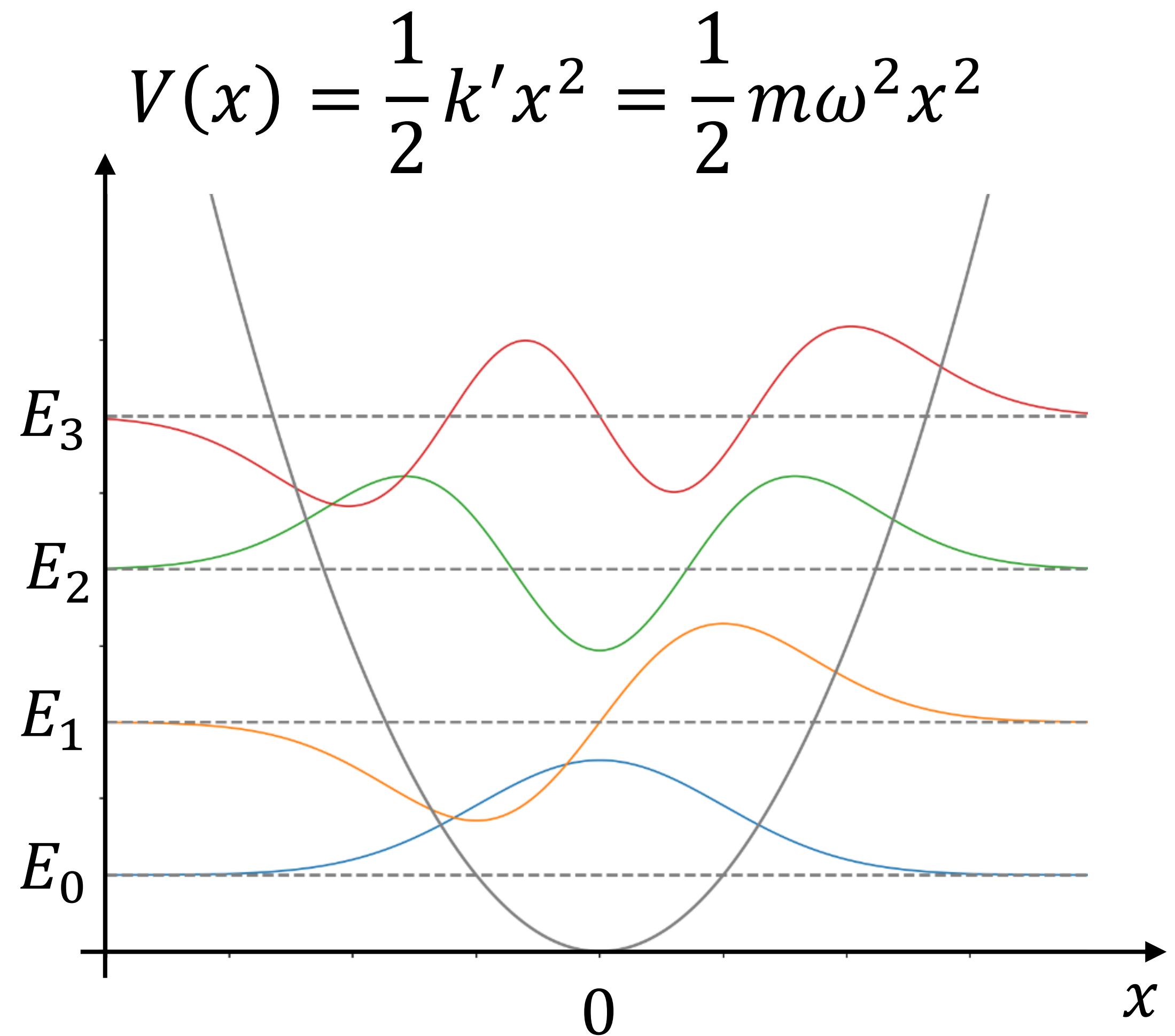
- The time-independent Schrodinger equation (TISE):

$$-\frac{\hbar^2}{2m} \frac{d^2\psi}{dx^2} - \frac{1}{2} m\omega^2 x^2 \psi = E\psi$$

Solutions ψ_n, E_n :

$$E_n = \left(n + \frac{1}{2}\right) \hbar\omega, n = 0, 1, 2, \dots$$

$$\psi_n = A_n H_n e^{-\frac{m\omega}{2\hbar}x^2}$$



THE HARMONIC POTENTIAL WELL

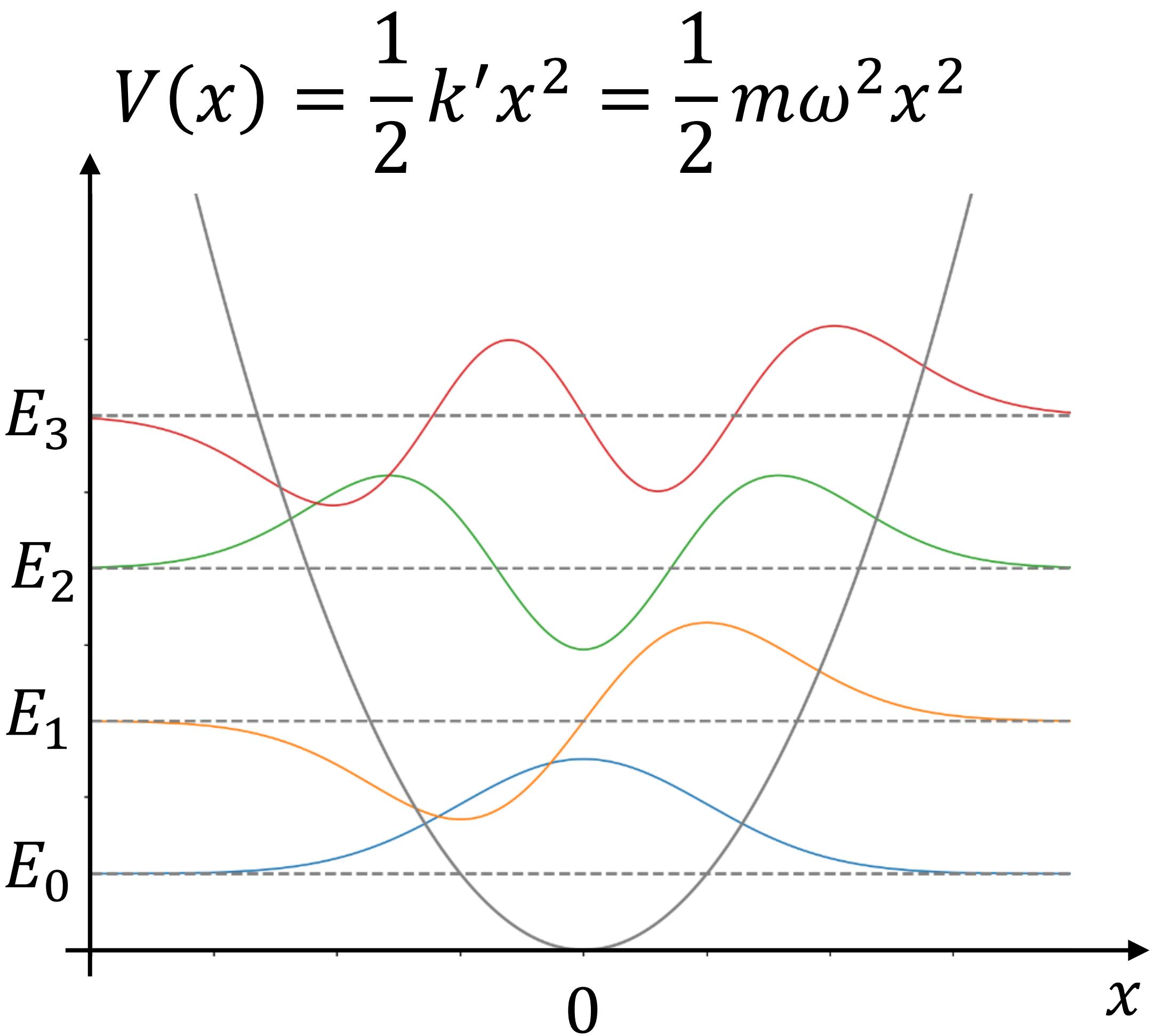
$$E_n = \left(n + \frac{1}{2}\right) \hbar\omega, \quad n = 0, 1, 2, \dots$$

- Energy levels are evenly spaced
- Difference between levels depends on frequency as Max Planck predicted:

$$n\hbar\omega = nhf$$

- There is a zero-point energy

$$E_0 = \frac{1}{2} \hbar\omega \neq 0$$



THE HARMONIC POTENTIAL WELL

- Solutions for the wave function:

$$\psi_n = \frac{1}{\sqrt{2^n n!}} \left(\frac{m\omega}{\pi\hbar} \right)^{\frac{1}{4}} H_n \left(\sqrt{\frac{m\omega}{\hbar}} x \right) e^{-\frac{m\omega}{2\hbar}x^2}$$

- Gaussian
- Normalization
- Hermite polynomials $H_n(z)$

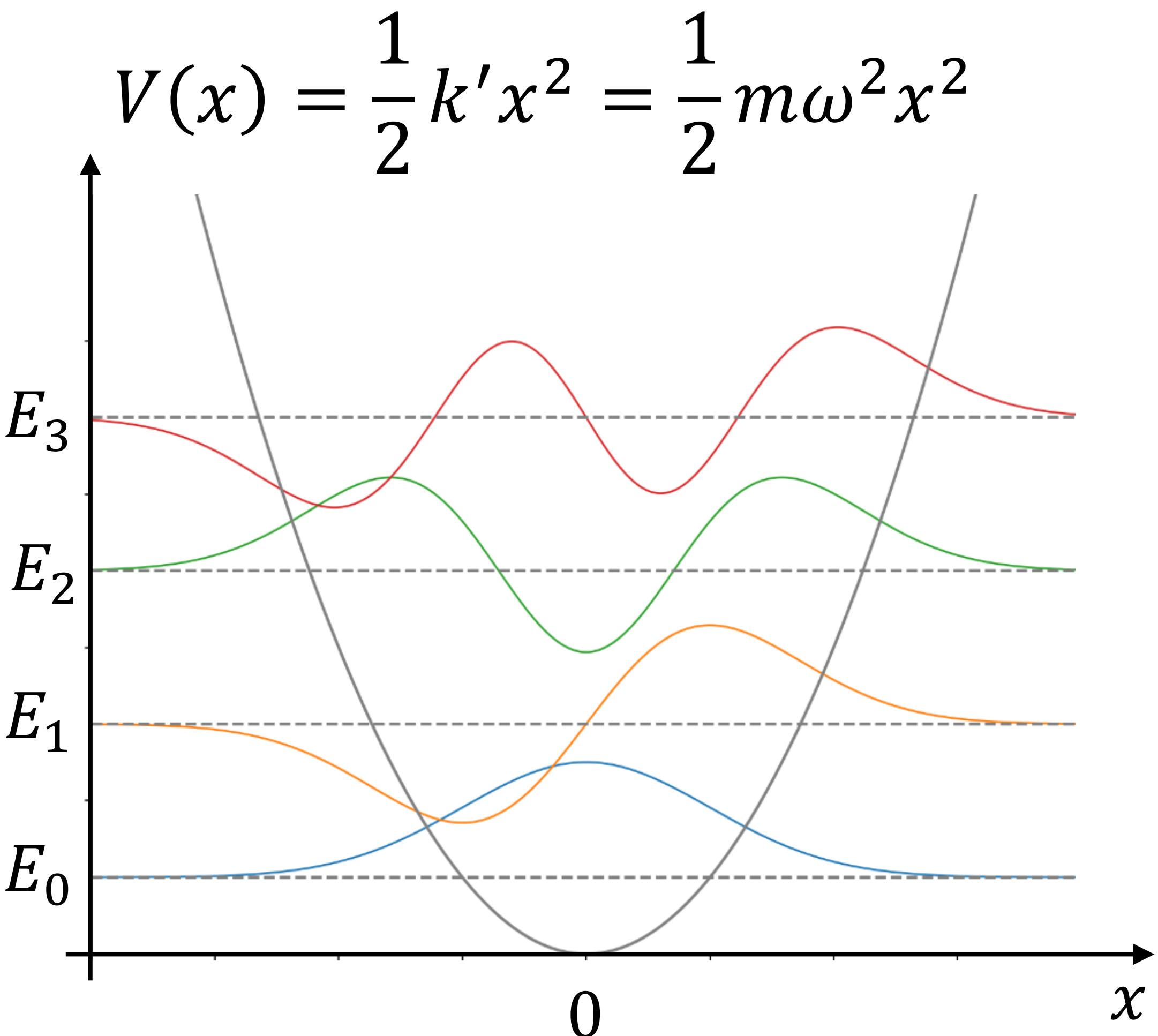
$$H_0(z) = 1$$

$$H_1(z) = 2z$$

$$H_2(z) = -2 + 4z^2$$

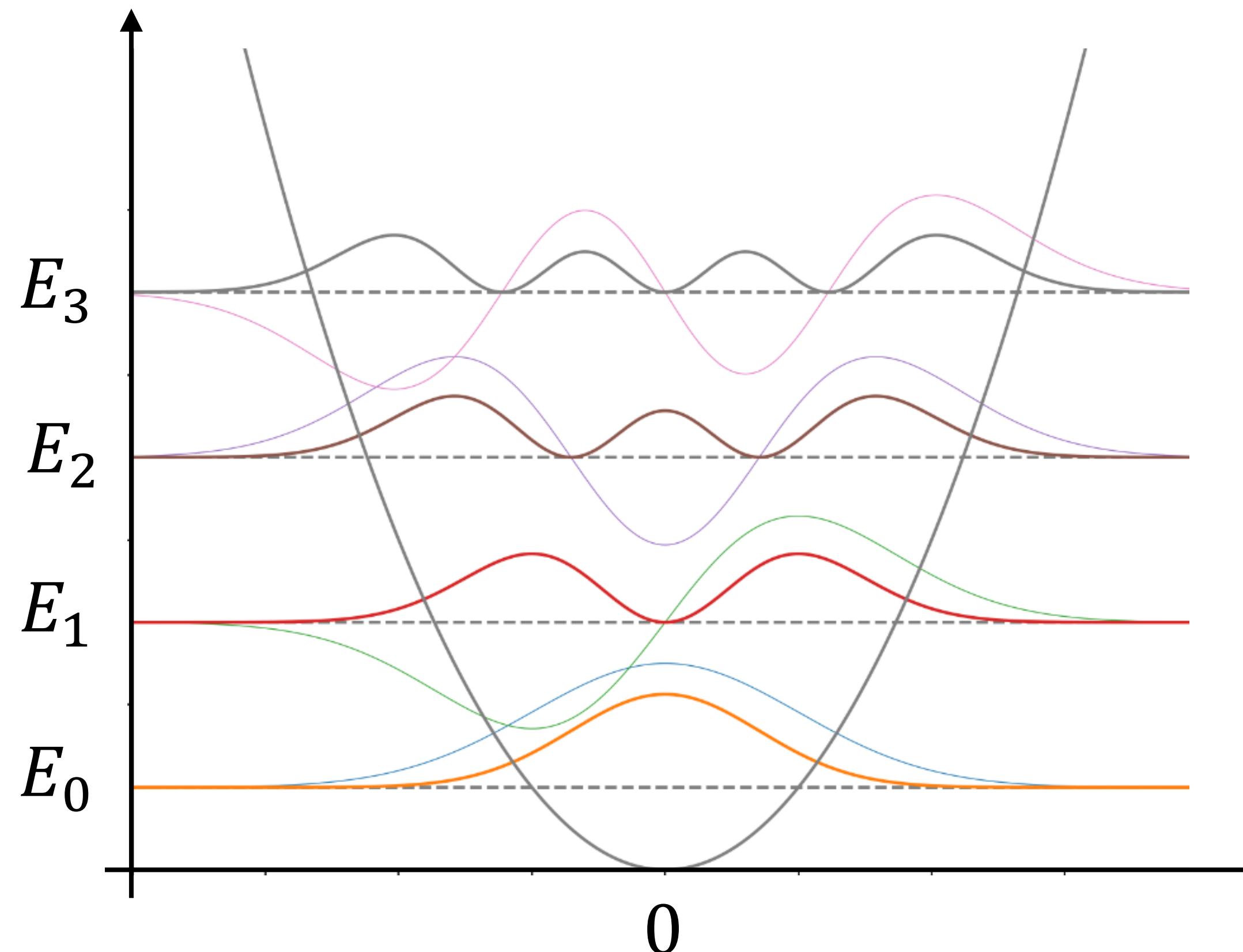
$$H_3(z) = -12z + 8z^3$$

...

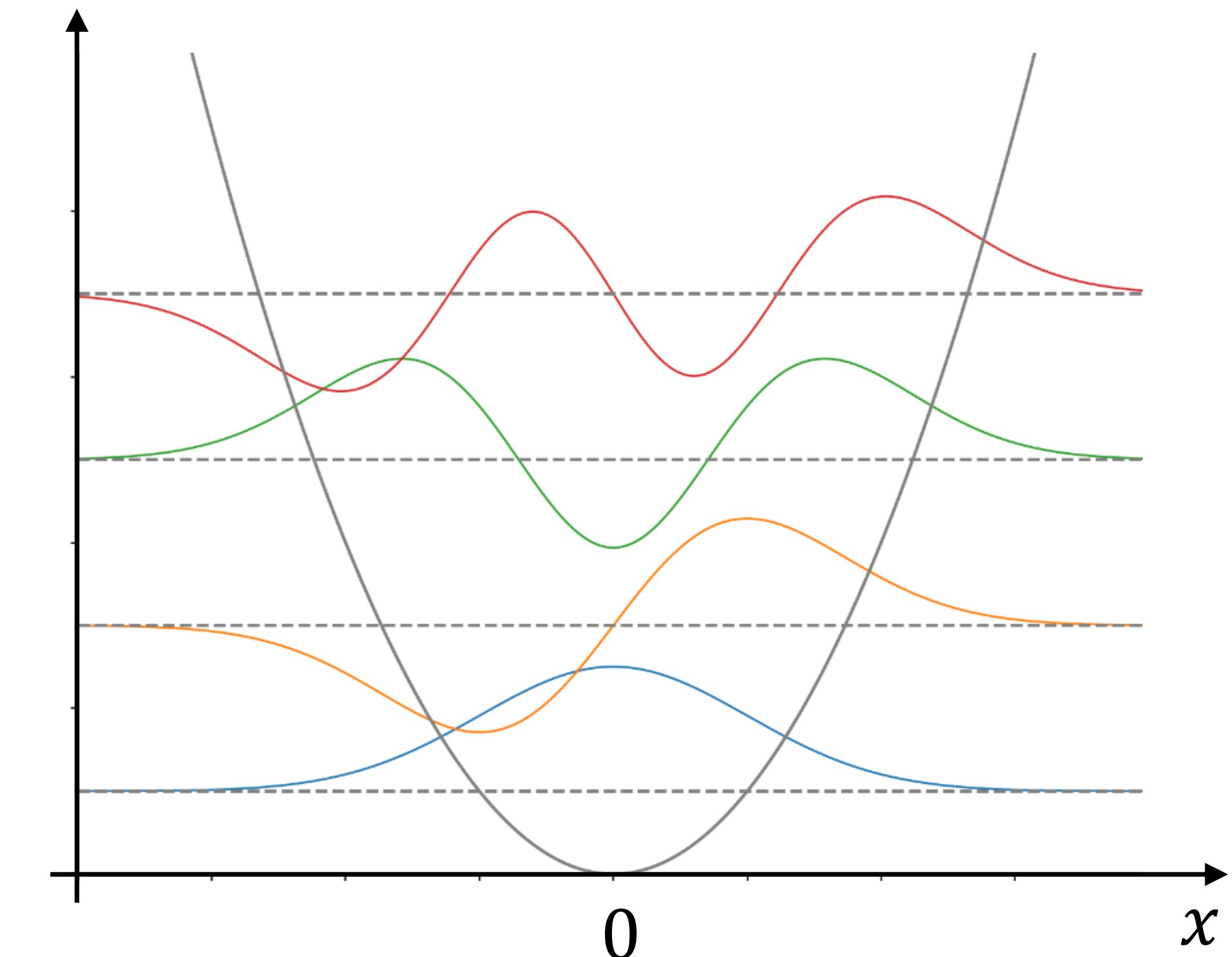


THE HARMONIC POTENTIAL WELL

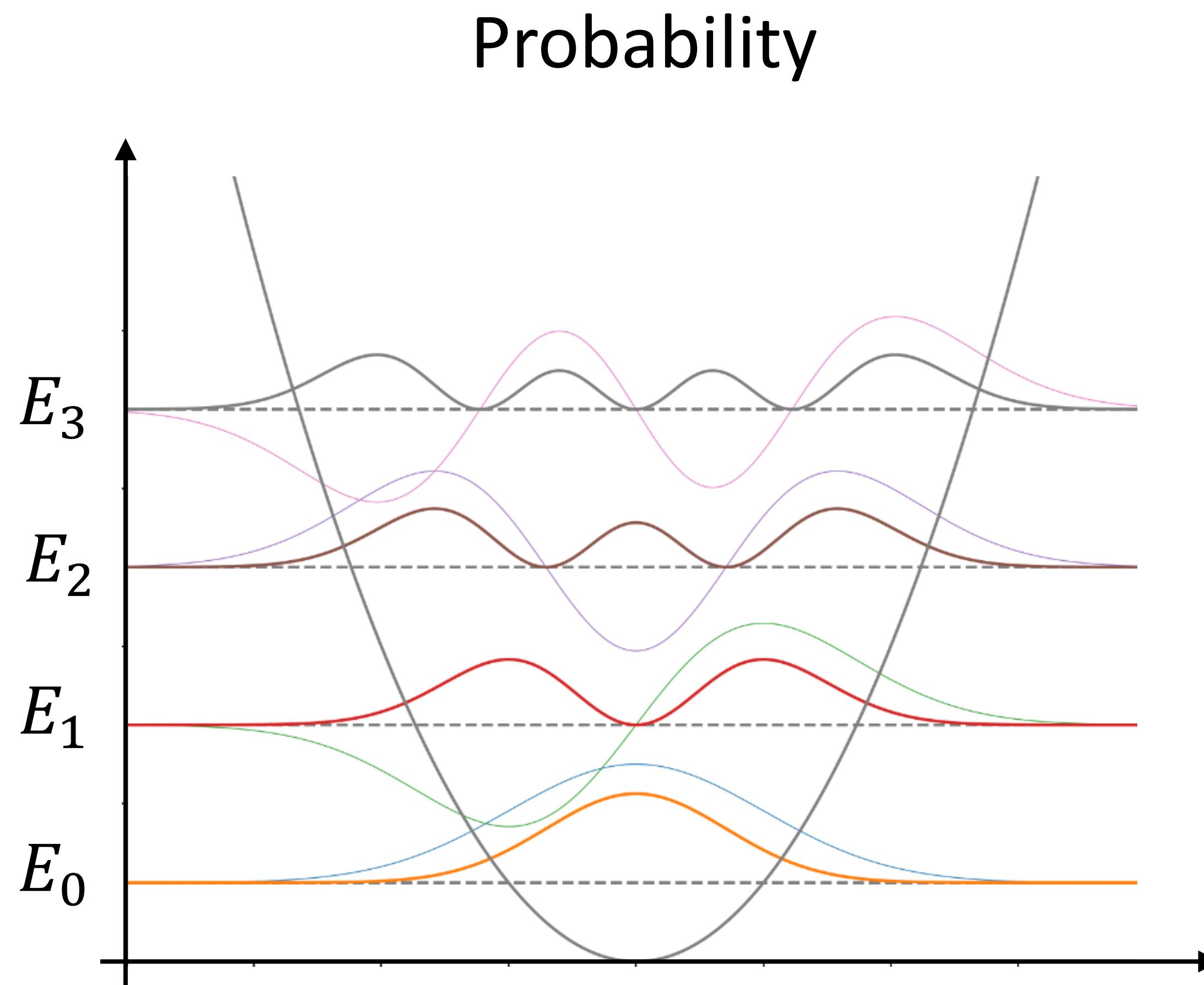
Probability



Wave function



THE HARMONIC POTENTIAL WELL



- Probability $|\psi_n(x)|^2$ gathers at boundaries for large n
- Similar as the classical harmonic oscillator which spends more time at the turning points
- Unlike classical case
minimum $E_0 = \frac{1}{2} \hbar\omega \neq 0$