

PHOT 222: Quantum Photonics

LECTURE 08

Michaël Barbier, Spring semester (2024-2025)

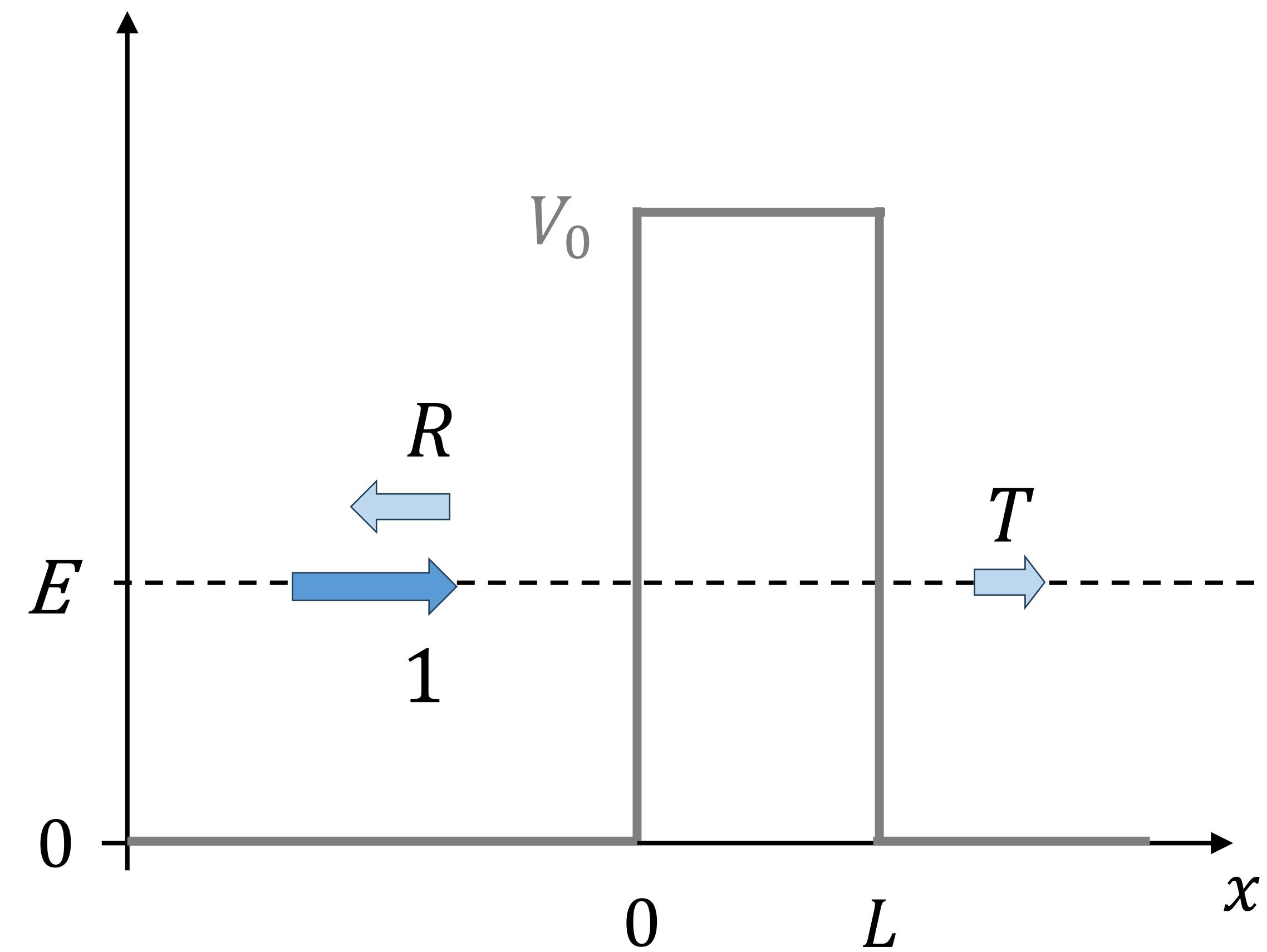
OVERVIEW OF THE COURSE

week	topic	Serway 9th	Young
Week 1	Relativity	Ch. 39	Ch. 37
Week 2	Waves and Particles	Ch. 40	Ch. 38-39
Week 3	Wave packets and Uncertainty	Ch. 40	Ch. 38-39
Week 4	The Schrödinger equation and Probability	Ch. 41	Ch. 39
Week 5	Midterm exam 1		
Week 6	Quantum particles in a potential	Ch. 41	Ch. 40
Week 7	Bayram		
Week 8	Tunneling through a potential barrier	Ch. 41	Ch. 40
Week 9	Harmonic oscillator	Ch. 41	Ch. 40
Week 10	Midterm exam 2		
Week 11	The hydrogen atom, absorption/emission spectra		
Week 12	Many-electron atoms & Pauli-exclusion principle		
Week 13	Atomic bonds and molecules		
Week 14	Crystalline materials and energy band structure		

Tunneling through a barrier

TUNNELING THROUGH A POTENTIAL BARRIER

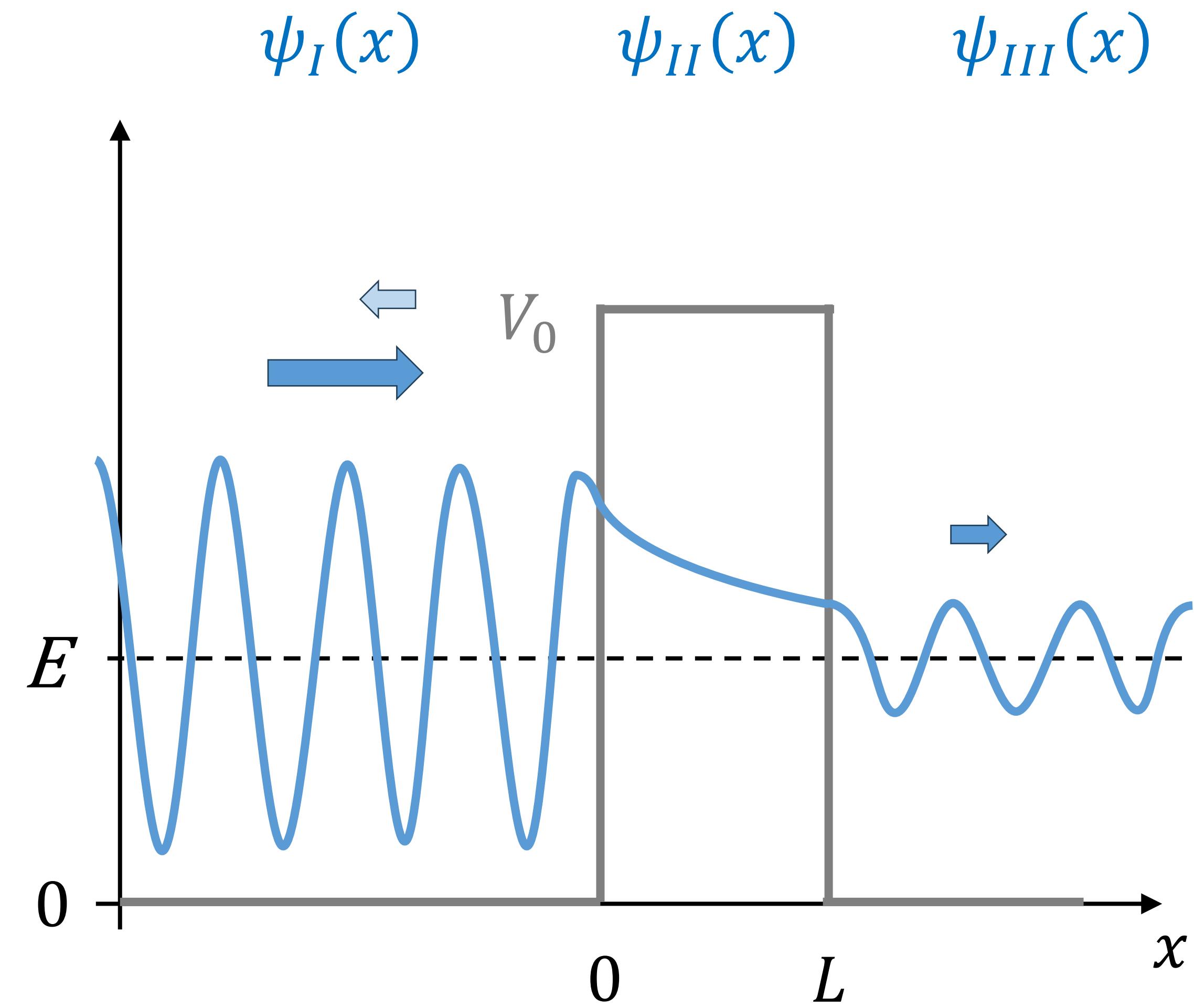
- Quantum particle can tunnel through a potential barrier
- Classically the particle cannot tunnel
- Tunneling probability: Transmission coefficient T
- Reflection $R \rightarrow T + R = 1$



TUNNELING THROUGH A POTENTIAL BARRIER

Energy lower than barrier

- Wave function ψ tunnels through barrier
- **Evanescent waves** in barrier: exponentially decaying
- Reduced amplitude after barrier
- How to find the wave function?



TUNNELING THROUGH A POTENTIAL BARRIER

- Regions: I, II, III
- Wave function in regions:

$$\psi_I(x) = A_I e^{ikx}$$

$$\psi_{II}(x) = A_{II} e^{-\kappa x}$$

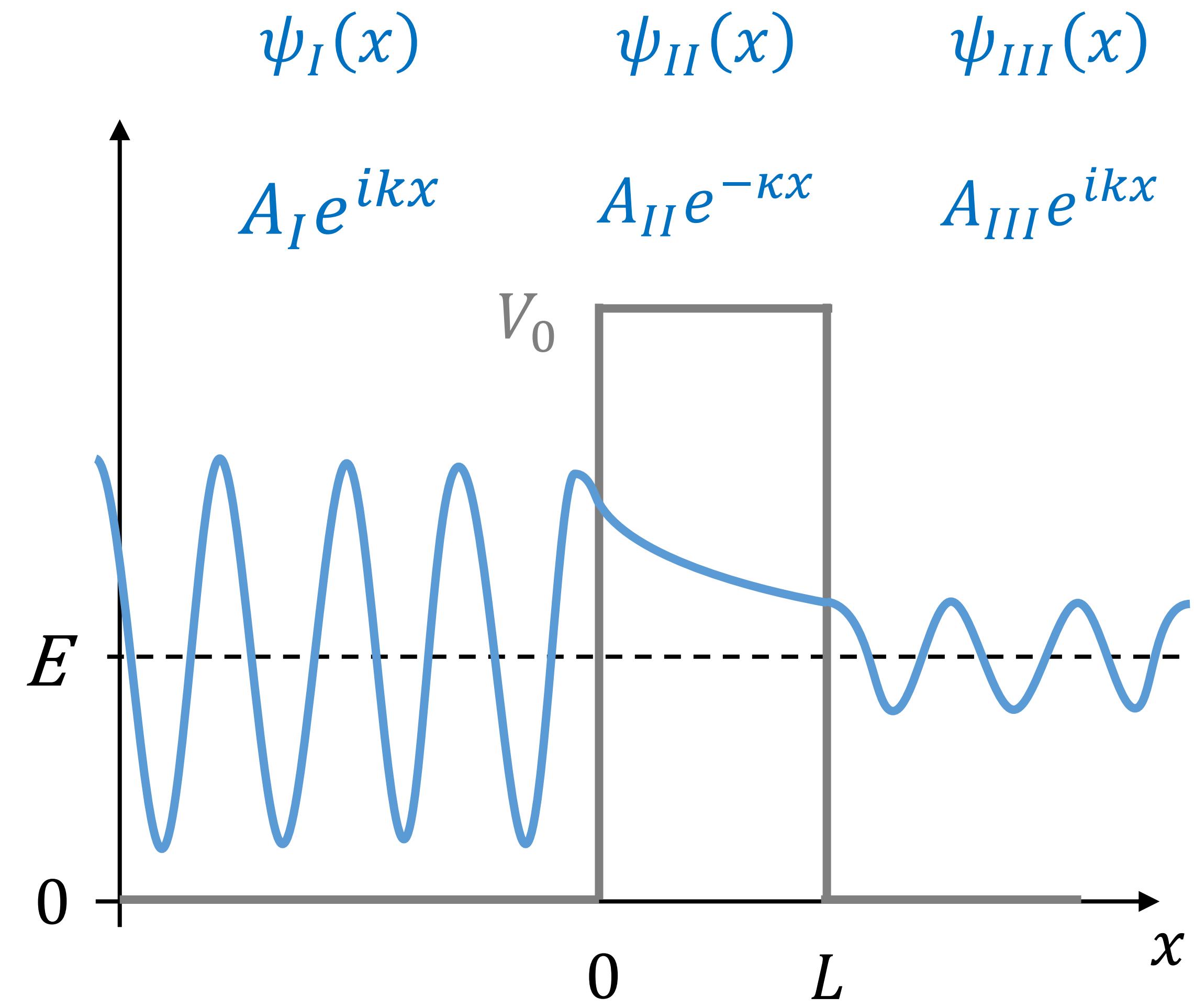
$$\psi_{III}(x) = A_{III} e^{ikx}$$

- With wave numbers:

$$\kappa = \sqrt{2m(V_0 - E)}/\hbar$$

and

$$k = \sqrt{2mE}/\hbar$$



TUNNELING THROUGH A POTENTIAL BARRIER

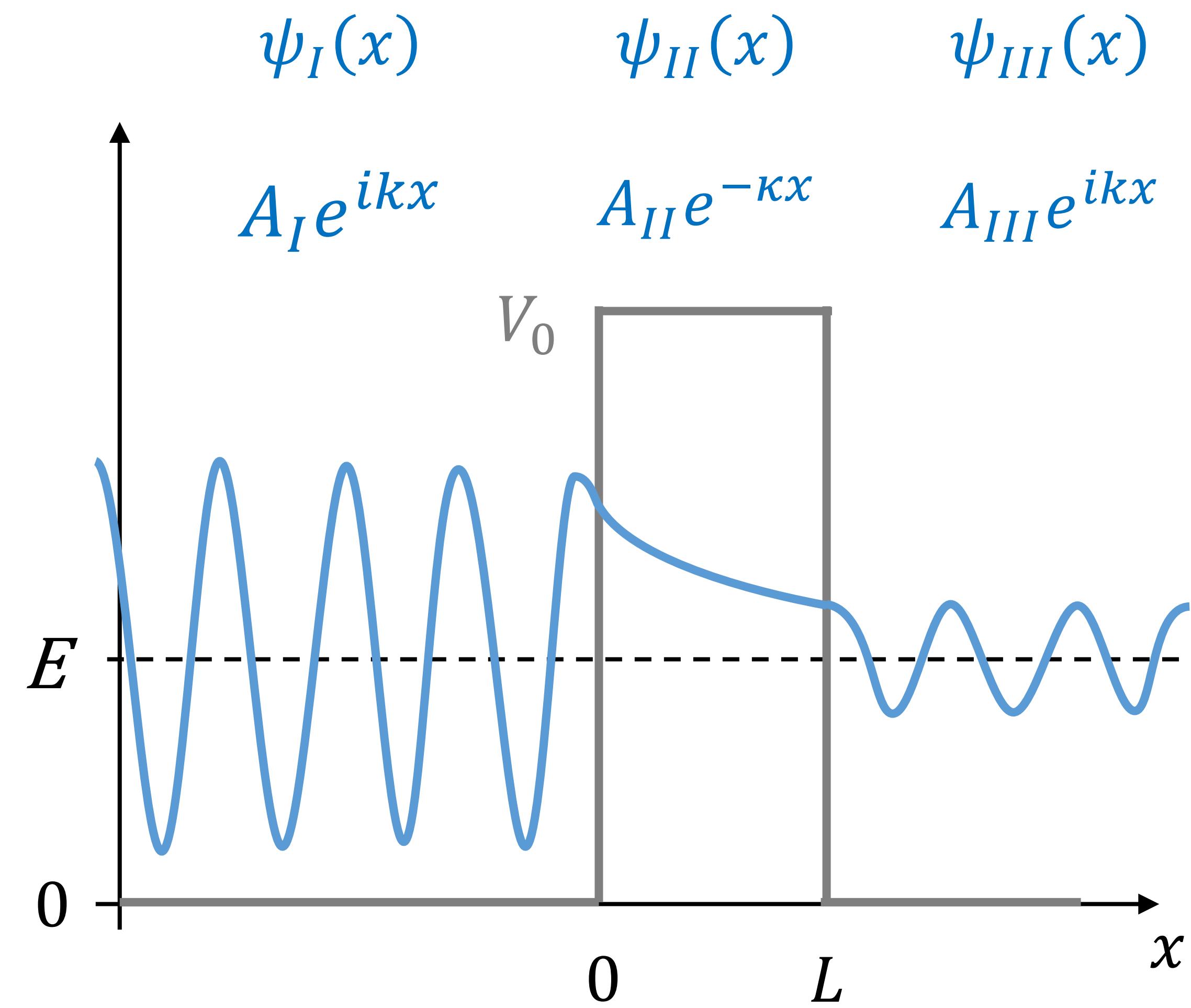
$$\psi_I(x) = A_I e^{ikx}$$

$$\psi_{II}(x) = A_{II} e^{-\kappa x}$$

$$\psi_{III}(x) = A_{III} e^{ikx}$$

- Probability for the wave on the left: $|A_I|^2$
- Similar on the right
- Tunneling probability:
$$T \propto \frac{|A_{III}|^2}{|A_I|^2}$$
- Obtain the amplitudes?

→ **Apply boundary conditions**



TUNNELING THROUGH A POTENTIAL BARRIER

$$\psi_I(x) = A_I e^{ikx}$$

$$\psi_{II}(x) = A_{II} e^{-\kappa x}$$

$$\psi_{III}(x) = A_{III} e^{ikx}$$

- Boundary conditions:

Continuity of ψ

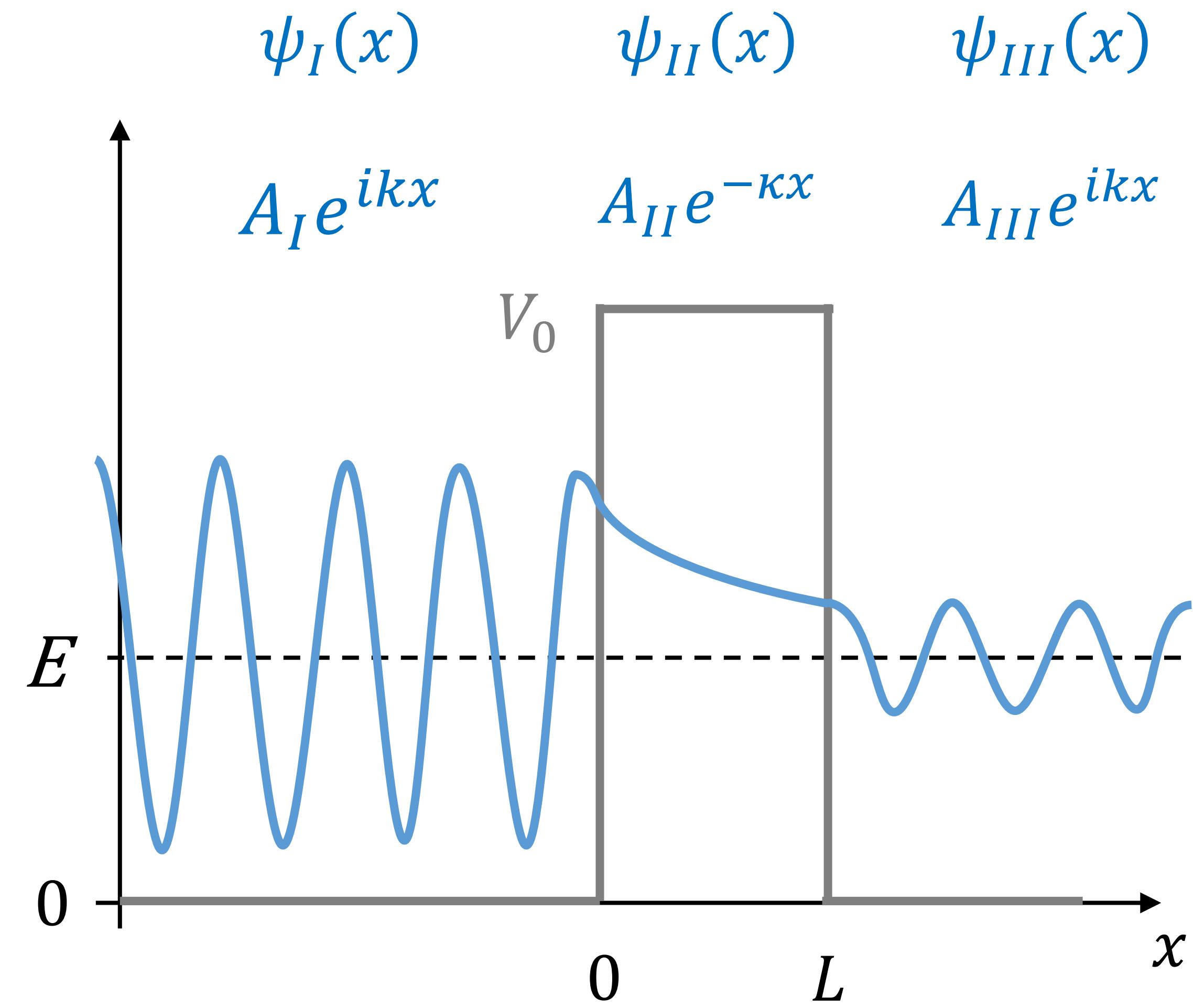
$$\psi_I(0) = \psi_{II}(0)$$

$$\psi_{II}(L) = \psi_{III}(L)$$

Continuity derivative ψ' :

$$\psi'_I(0) = \psi'_{II}(0)$$

$$\psi'_{II}(L) = \psi'_{III}(L)$$



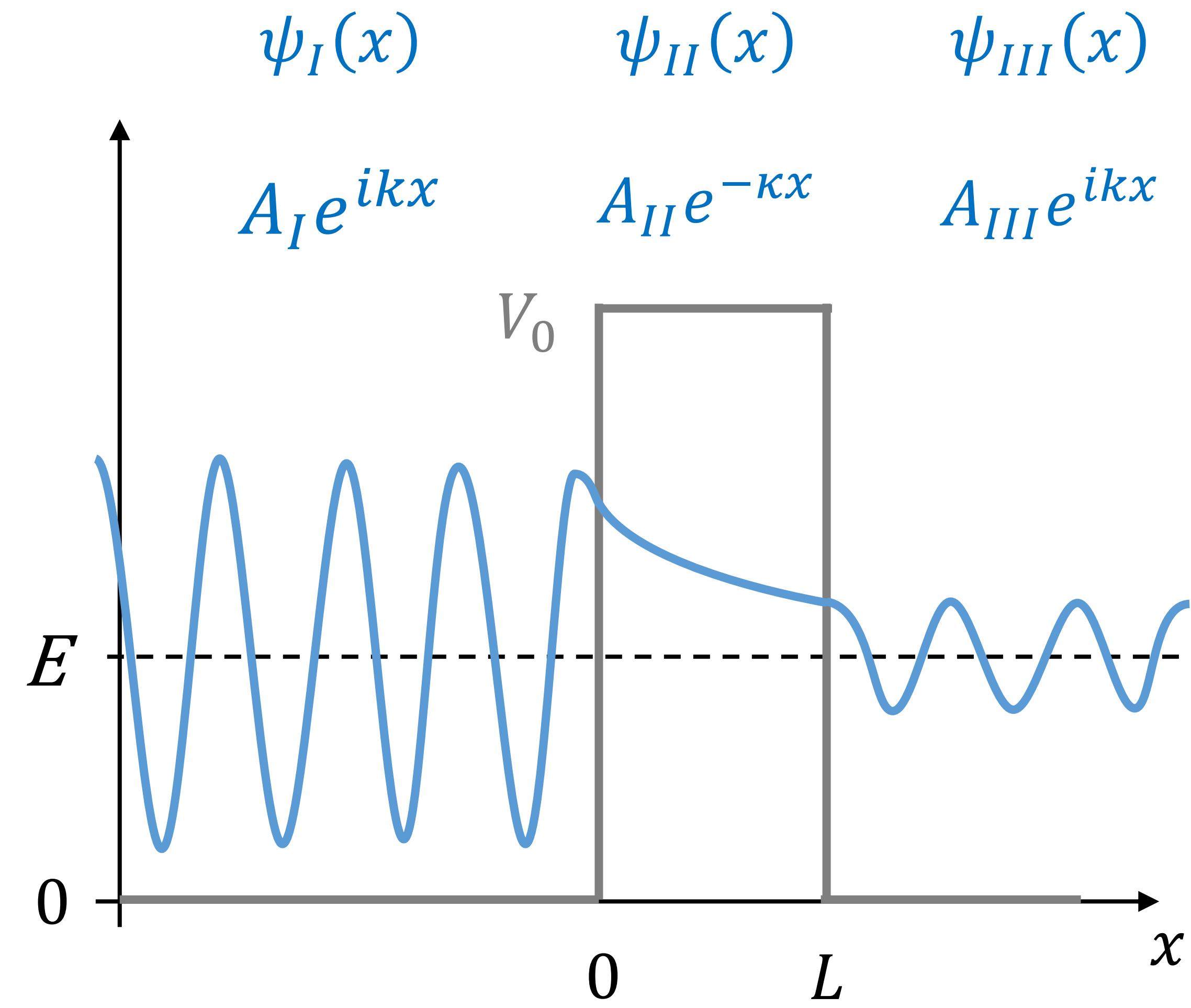
APPROXIMATE TUNNELING PROBABILITY

- For small tunneling probability $T \ll 1$:

$$T \propto \frac{|A_{III}|^2}{|A_I|^2} \approx Ge^{-2\kappa L}$$

With

$$\left\{ \begin{array}{l} G = 16 \frac{E}{V_0} \left(1 - \frac{E}{V_0} \right) \\ \kappa = \sqrt{2m(V_0 - E)}/\hbar \end{array} \right.$$



EXAMPLE CALCULATION OF TUNNELING PROBABILITY

Question: Assume an electron energy $E = 2 \text{ eV}$ incident at a barrier with height $V_0 = 5 \text{ eV}$.

Calculate the Tunneling probability T for barrier widths 1 nm and 0.5 nm

Answer:

$$T \approx Ge^{-2\kappa L} = 16 \frac{E}{V_0} \left(1 - \frac{E}{V_0}\right) e^{-2\kappa L}$$

$$\kappa = \sqrt{2m(V_0 - E)}/\hbar$$

EXAMPLE CALCULATION OF TUNNELING PROBABILITY

Question: Assume an electron energy $E = 2 \text{ eV}$ incident at a barrier with height $V_0 = 5 \text{ eV}$. Calculate the Tunneling probability T for barrier widths 1 nm and 0.5 nm

Answer:

$$G = 16 \frac{E}{V_0} \left(1 - \frac{E}{V_0}\right) = 16 \frac{2}{5} \left(1 - \frac{2}{5}\right) = 3.84$$

$$\kappa = \frac{\sqrt{2m(V_0 - E)}}{\hbar} = \frac{\sqrt{2 (9.11 \times 10^{-31} \text{ kg}) (3 \cdot 1.6 \times 10^{-19} \text{ J})}}{1.055 \times 10^{-34} \text{ J} \cdot \text{s}} \approx \frac{\sqrt{90} \times 10^{-25} \text{ kg} \frac{\text{m}}{\text{s}}}{10^{-34} \text{ kg} \frac{\text{m}^2}{\text{s}}} \approx 9 \times 10^9 \text{ m}^{-1}$$

For $L = 1 \text{ nm}$:

$$T \approx Ge^{-2\kappa L} = 16 \frac{E}{V_0} \left(1 - \frac{E}{V_0}\right) e^{-2\kappa L} = 3.84 e^{-18} \approx 6 \times 10^{-8}$$

EXAMPLE CALCULATION OF TUNNELING PROBABILITY

Question: Assume an electron energy $E = 2 \text{ eV}$ incident at a barrier with height $V_0 = 5 \text{ eV}$. Calculate the Tunneling probability T for barrier widths 1 nm and 0.5 nm

Answer:

$$G = 16 \frac{E}{V_0} \left(1 - \frac{E}{V_0}\right) = 16 \frac{2}{5} \left(1 - \frac{2}{5}\right) = 3.84$$

$$\kappa = \frac{\sqrt{2m(V_0 - E)}}{\hbar} = \frac{\sqrt{2 (9.11 \times 10^{-31} \text{ kg}) (3 \cdot 1.6 \times 10^{-19} \text{ J})}}{1.055 \times 10^{-34} \text{ J} \cdot \text{s}} \approx \frac{\sqrt{90} \times 10^{-25} \text{ kg} \frac{\text{m}}{\text{s}}}{10^{-34} \text{ kg} \frac{\text{m}^2}{\text{s}}} \approx 9 \times 10^9 \text{ m}^{-1}$$

For $L = 1 \text{ nm}$:

$$T \approx Ge^{-2\kappa L} = 16 \frac{E}{V_0} \left(1 - \frac{E}{V_0}\right) e^{-2\kappa L} = 3.84 e^{-18} \approx 7 \times 10^{-8}$$

For $L = 0.5 \text{ nm}$:

$$T \approx Ge^{-2\kappa L} = 16 \frac{E}{V_0} \left(1 - \frac{E}{V_0}\right) e^{-2\kappa L} = 3.84 e^{-9} \approx 5 \times 10^{-4}$$

EXAMPLE CALCULATION OF TUNNELING PROBABILITY

Question: Assume an electron energy $E = 2 \text{ eV}$ incident at a barrier with height $V_0 = 5 \text{ eV}$.

Calculate the Tunneling probability T for barrier widths 1 nm and 0.5 nm

Answer:

$$G = 16 \frac{E}{V_0} \left(1 - \frac{E}{V_0}\right) = 16 \frac{2}{5} \left(1 - \frac{2}{5}\right) = 3.84$$

$$\kappa = \frac{\sqrt{2m(V_0 - E)}}{\hbar} = \frac{\sqrt{2 (9.11 \times 10^{-31} \text{ kg}) (3 \cdot 1.6 \times 10^{-19} \text{ J})}}{1.055 \times 10^{-34} \text{ J} \cdot \text{s}} \approx \frac{\sqrt{90} \times 10^{-25} \text{ kg} \frac{\text{m}}{\text{s}}}{10^{-34} \text{ kg} \frac{\text{m}^2}{\text{s}}} \approx 9 \times 10^9 \text{ m}^{-1}$$

For $L = 1 \text{ nm}$:

$$T \approx Ge^{-2\kappa L} = 16 \frac{E}{V_0} \left(1 - \frac{E}{V_0}\right) e^{-2\kappa L} = 3.84 e^{-18} \approx 7 \times 10^{-8}$$

For $L = 0.5 \text{ nm}$:

$$T \approx Ge^{-2\kappa L} = 16 \frac{E}{V_0} \left(1 - \frac{E}{V_0}\right) e^{-2\kappa L} = 3.84 e^{-9} \approx 5 \times 10^{-4}$$

Very sensitive to the width of the barrier

For larger macroscopic mass tunneling becomes very small

APPLICATION OF TUNNELING PROBABILITY

- Resonant tunneling diode
- **Combines the Finite well bound states and tunneling through a barrier**

SUMMARY TUNNELING

- Quantum particles can tunnel through potential barriers
- Transmission + reflection = 1
- Tunneling probability for low T values can be approximated

$$T \approx Ge^{-2\kappa L} = 16 \frac{E}{V_0} \left(1 - \frac{E}{V_0}\right) e^{-2\kappa L}$$

- Tunneling probability is sensitive to barrier width
- Macroscopic objects have very small tunneling probability