

PHOT 222: Quantum Photonics

LECTURE 07

Michaël Barbier, Spring semester (2024-2025)

OVERVIEW OF THE COURSE

week	topic	Serway 9th	Young
Week 1	Relativity	Ch. 39	Ch. 37
Week 2	Waves and Particles	Ch. 40	Ch. 38-39
Week 3	Wave packets and Uncertainty	Ch. 40	Ch. 38-39
Week 4	The Schrödinger equation and Probability	Ch. 41	Ch. 39
Week 5	Midterm exam 1		
Week 6	Quantum particles in a potential	Ch. 41	Ch. 39
Week 7	Harmonic oscillator		
Week 8	Tunneling through a potential barrier		
Week 9	The hydrogen atom, absorption/emission spectra		
Week 10	Midterm exam 2		
Week 11	Many-electron atoms		
Week 12	Pauli-exclusion principle		
Week 13	Atomic bonds and molecules		
Week 14	Crystalline materials and energy band structure		

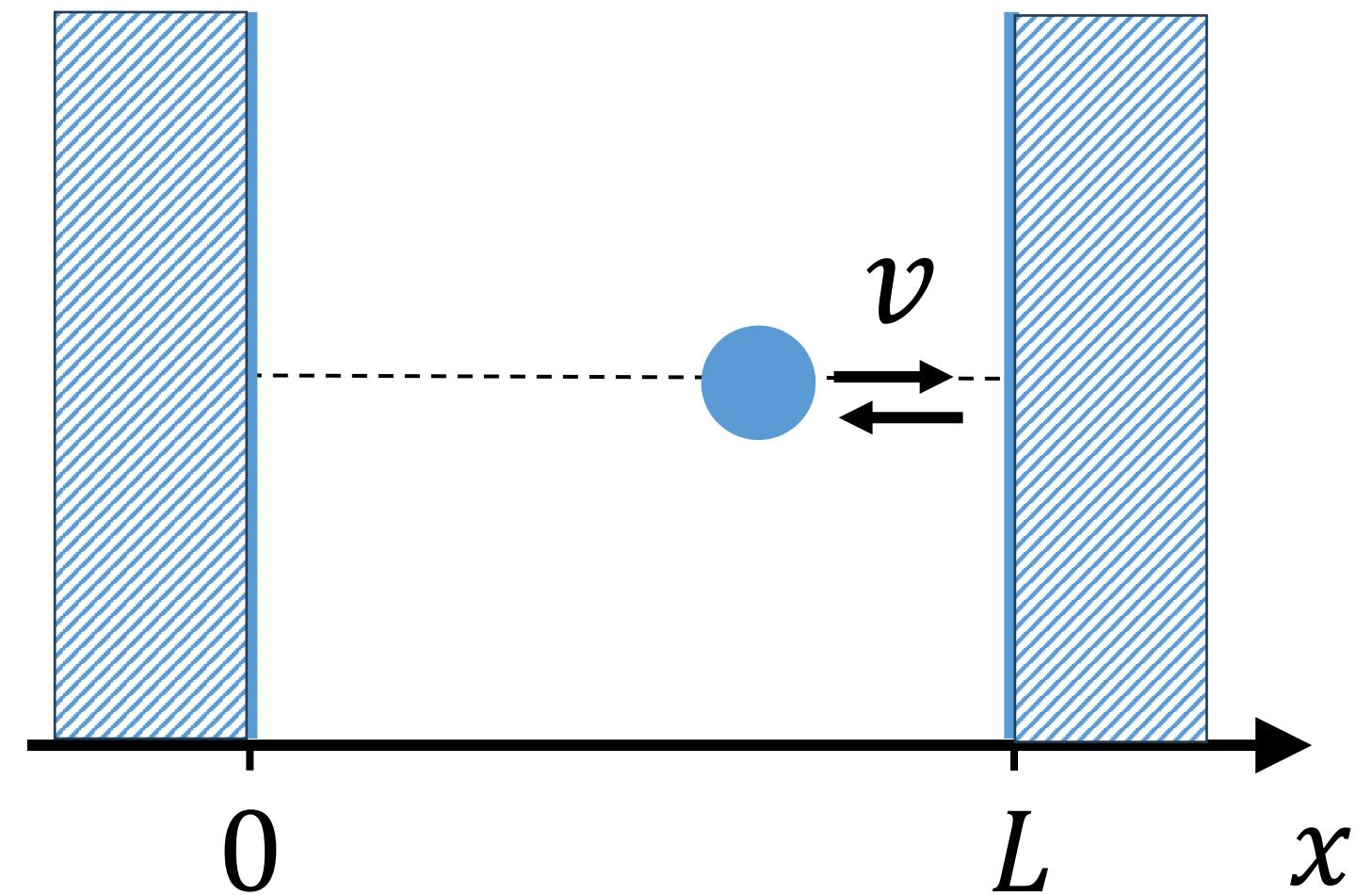
Particle in a box

CLASSICAL PARTICLE IN A BOX

- Consider a 1D box with a free particle
- Classical particle has constant velocity

$$v = \text{constant}$$

- Particle bounces back at the walls
 - Perfect elastic collision
 - Doesn't lose speed/energy
- Kinetic energy: $K = \frac{1}{2}mv^2$
- Particle can exist only within the box



PARTICLE IN A BOX

- Consider a 1D box:

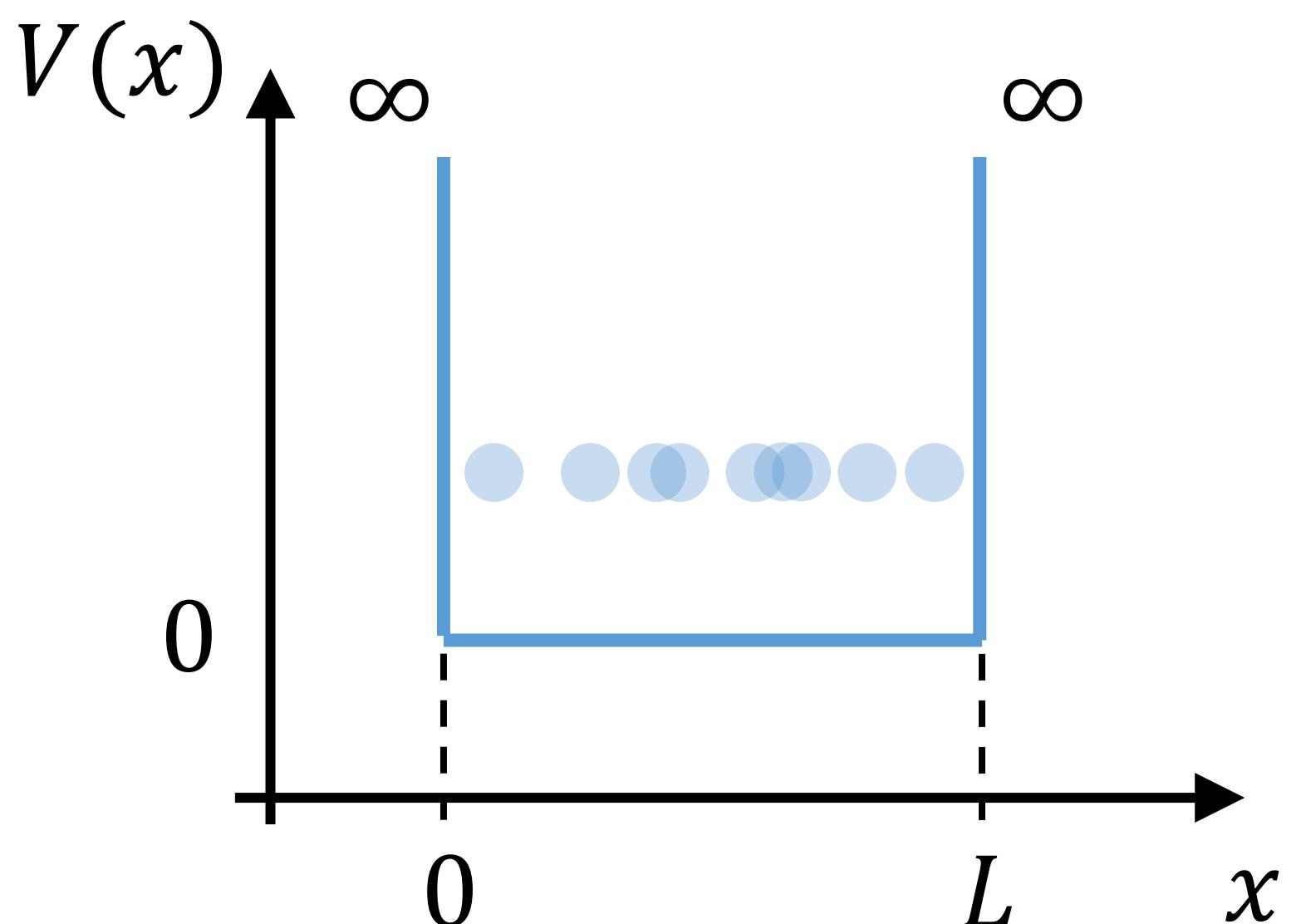
$$\Psi(x, y, z, t) \rightarrow \Psi(x, t)$$

- Particle can exist only within the box

$$x \notin [0, L] \Rightarrow \Psi(x, t) = 0$$

- Normalization:

$$\int_{-\infty}^{+\infty} |\Psi(x, t)|^2 = \int_0^L |\Psi(x, t)|^2 = 1$$



PARTICLE IN A BOX: WAVE FUNCTION

- Time-independent equation:

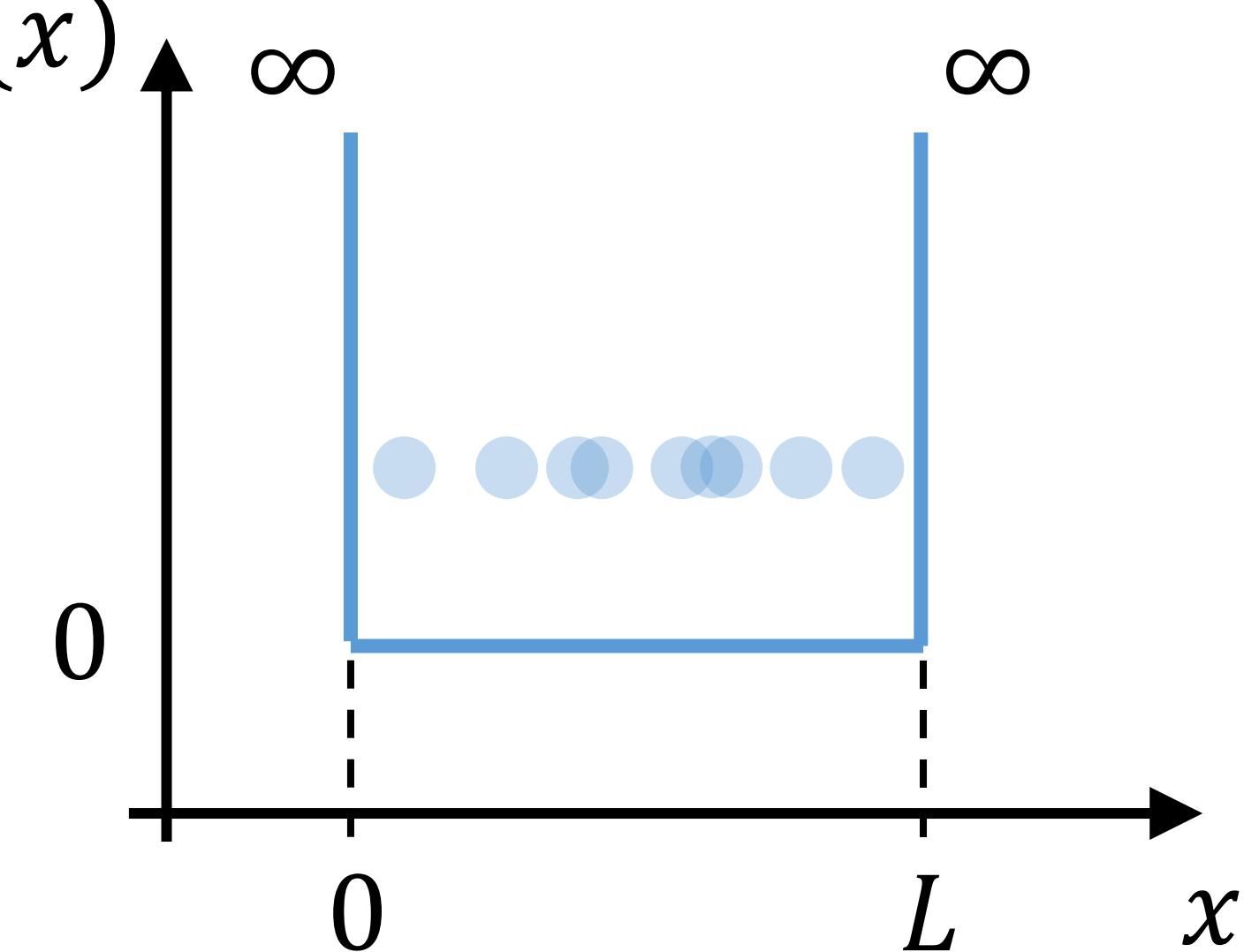
$$-\frac{\hbar^2}{2m} \frac{\partial^2 \psi(x)}{\partial x^2} + U(x) \psi(x) = E \psi(x)$$

- Particle exists only in box:

$$x \notin [0, L] \Rightarrow \psi(x) = 0$$

- Normalization:

$$\int_0^L |\psi(x)e^{-iEt/\hbar}|^2 = \int_0^L |\psi(x)|^2 = 1$$



PARTICLE IN A BOX: WAVE FUNCTION

- Time-independent equation:

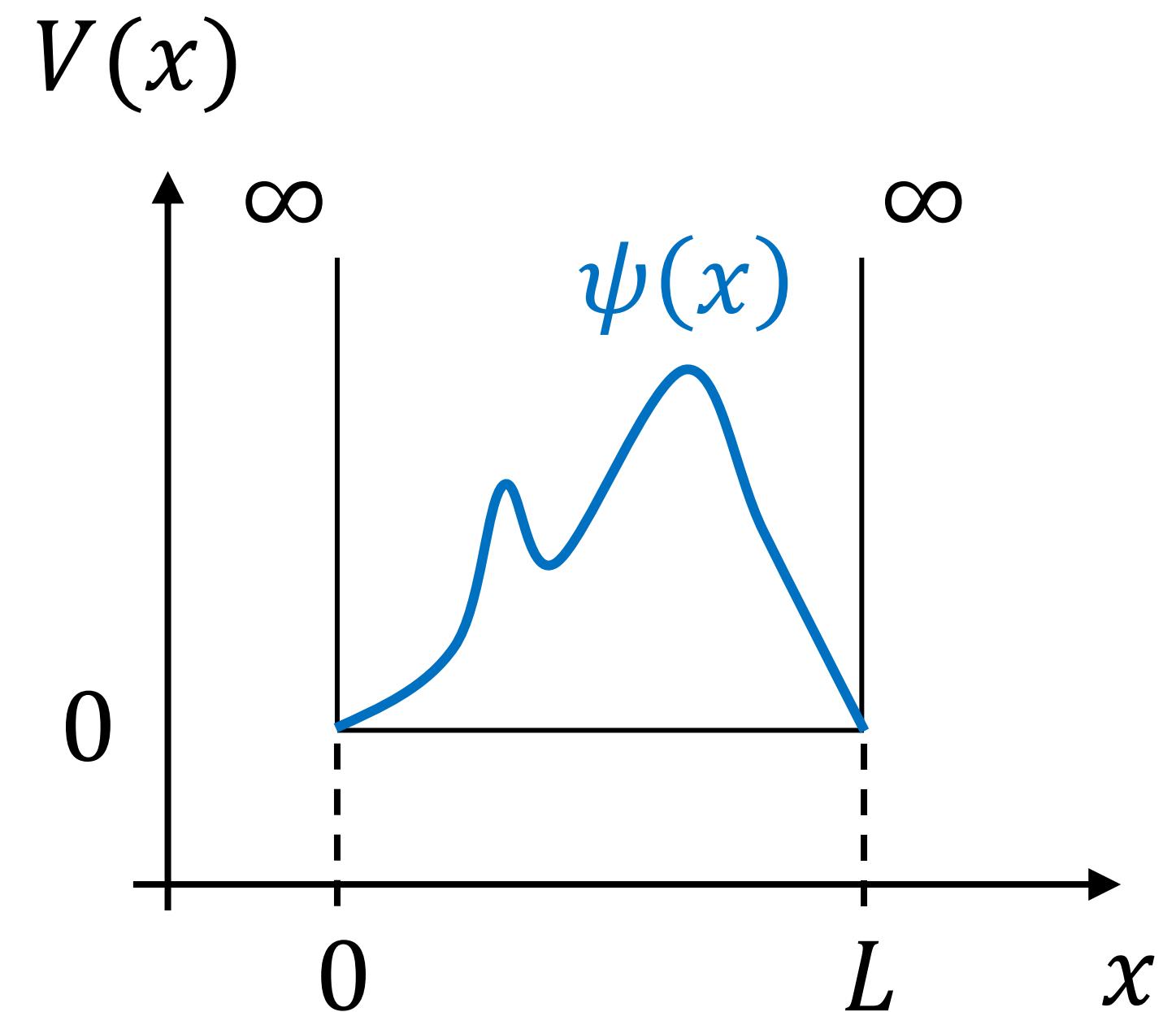
$$-\frac{\hbar^2}{2m} \frac{\partial^2 \psi(x)}{\partial x^2} + U(x) \psi(x) = E \psi(x)$$

- Particle exists only in box:

$$x \notin [0, L] \quad \Rightarrow \quad \psi(x) = 0$$

- Normalization:

$$\int_0^L |\psi(x)e^{-iEt/\hbar}|^2 = \int_0^L |\psi(x)|^2 = 1$$



PARTICLE IN A BOX: WAVE FUNCTION

- Time-independent equation:

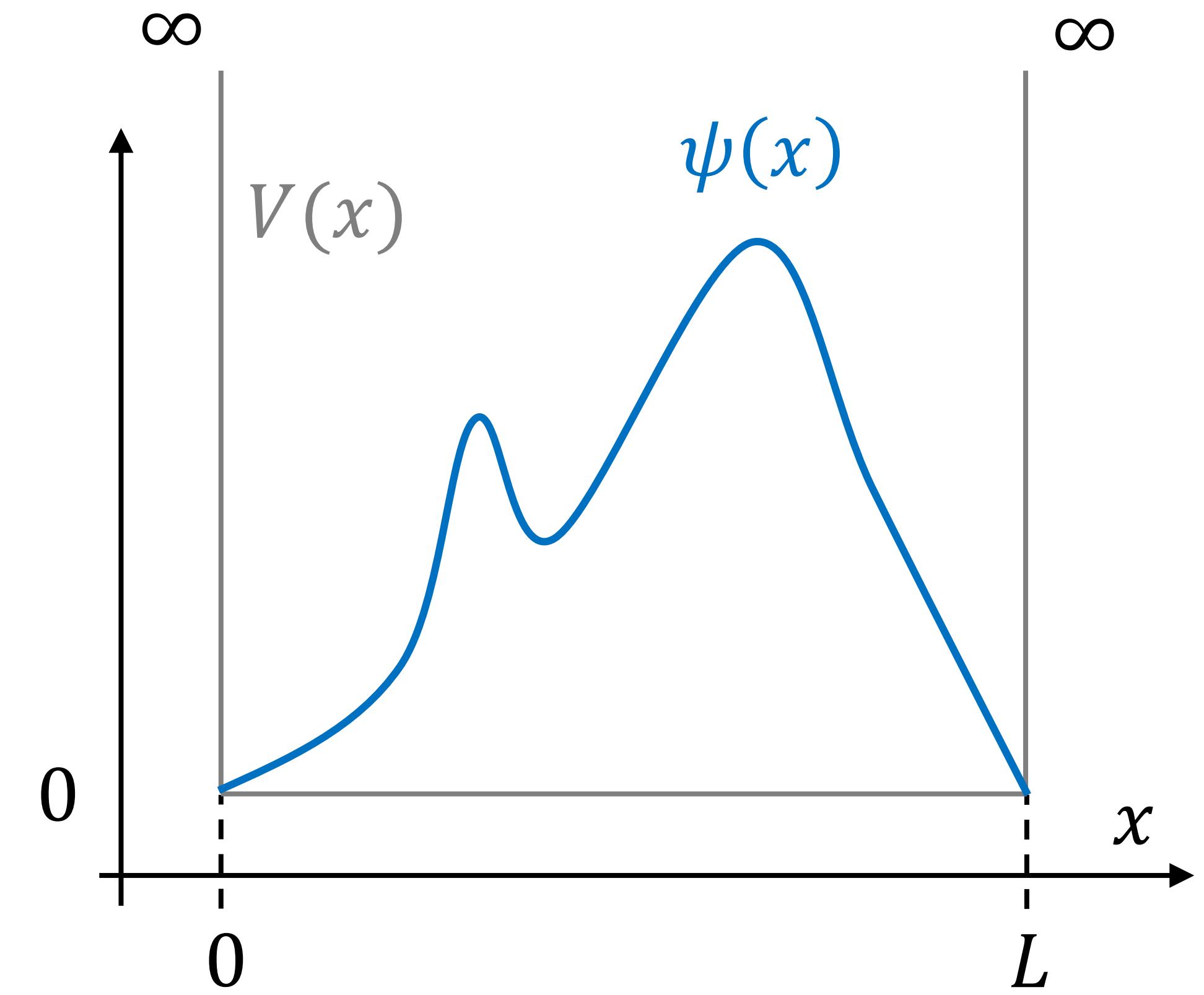
$$-\frac{\hbar^2}{2m} \frac{\partial^2 \psi(x)}{\partial x^2} + U(x) \psi(x) = E \psi(x)$$

Inside the box:

$$U(x) = 0 \rightarrow -\frac{\hbar^2}{2m} \frac{\partial^2 \psi(x)}{\partial x^2} = E \psi(x)$$

Outside box:

$$U(x) = \infty \rightarrow \psi(x) = 0$$



PARTICLE IN A BOX: WAVE FUNCTION

- Solution inside the box?

$$-\frac{\hbar^2}{2m} \frac{\partial^2 \psi(x)}{\partial x^2} = E \psi(x)$$

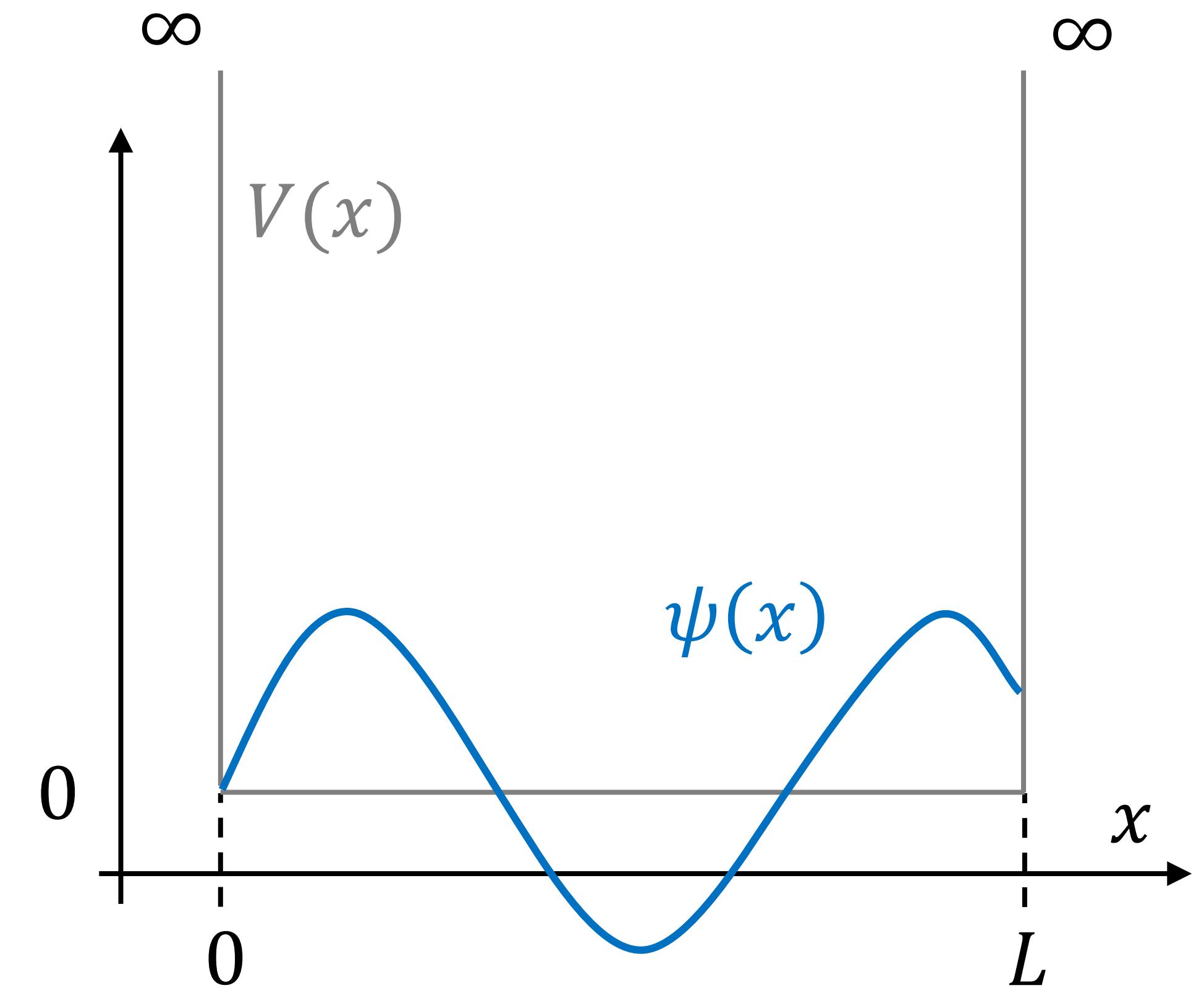
- Inside \rightarrow free particle solution:

$$\psi(x) = A e^{ikx},$$

$$E = \frac{\hbar^2 k^2}{2m}$$

Or:

$$\psi(x) = A \sin(kx) + B \cos(kx)$$



PARTICLE IN A BOX: WAVE FUNCTION

- Solution inside the box?

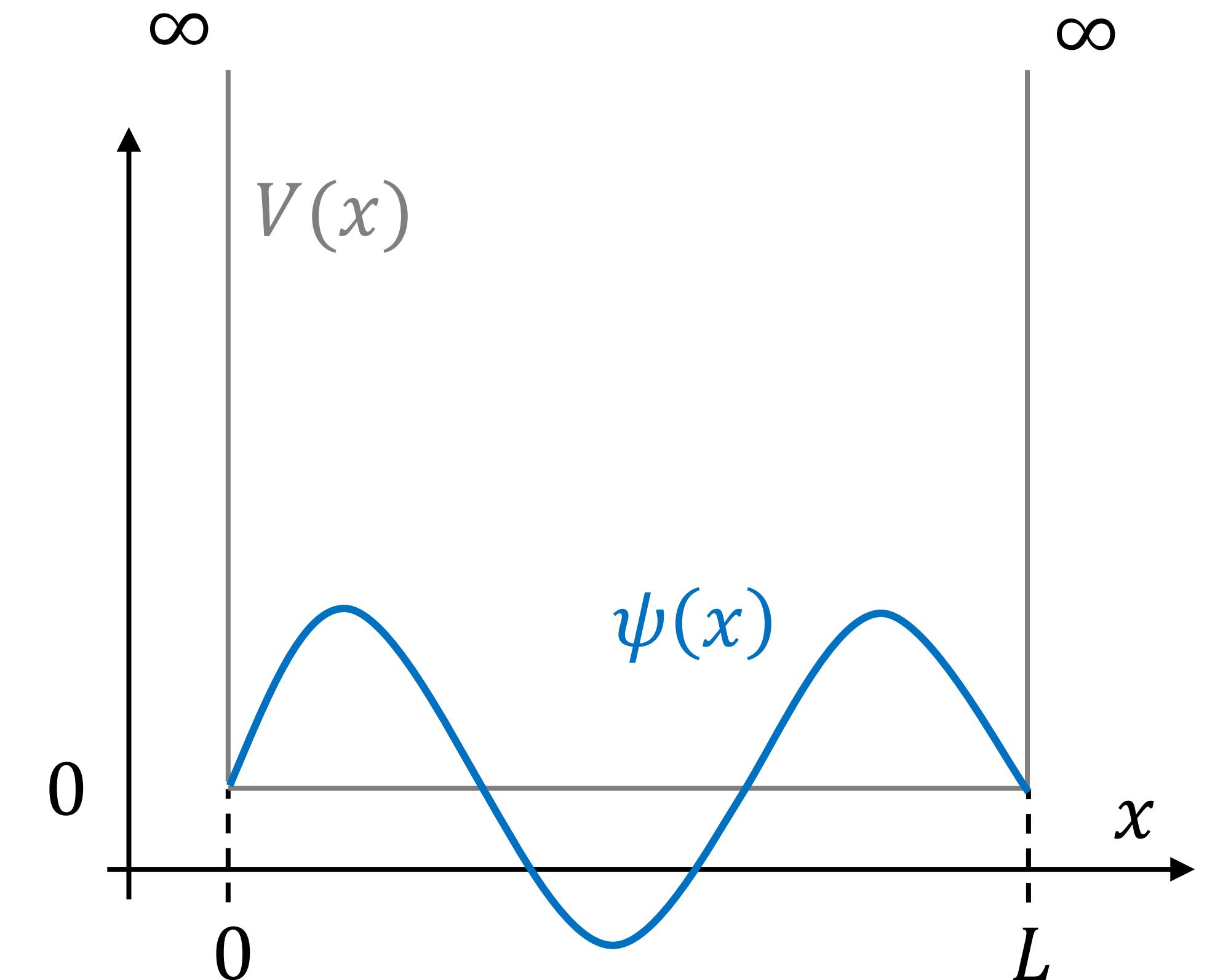
$$-\frac{\hbar^2}{2m} \frac{\partial^2 \psi(x)}{\partial x^2} = E \psi(x)$$

- Inside \rightarrow free particle solution:

$$\left\{ \begin{array}{l} \psi(x) = A \sin(kx) + B \cos(kx) \\ E = \frac{\hbar^2 k^2}{2m} \end{array} \right.$$

- Boundary conditions

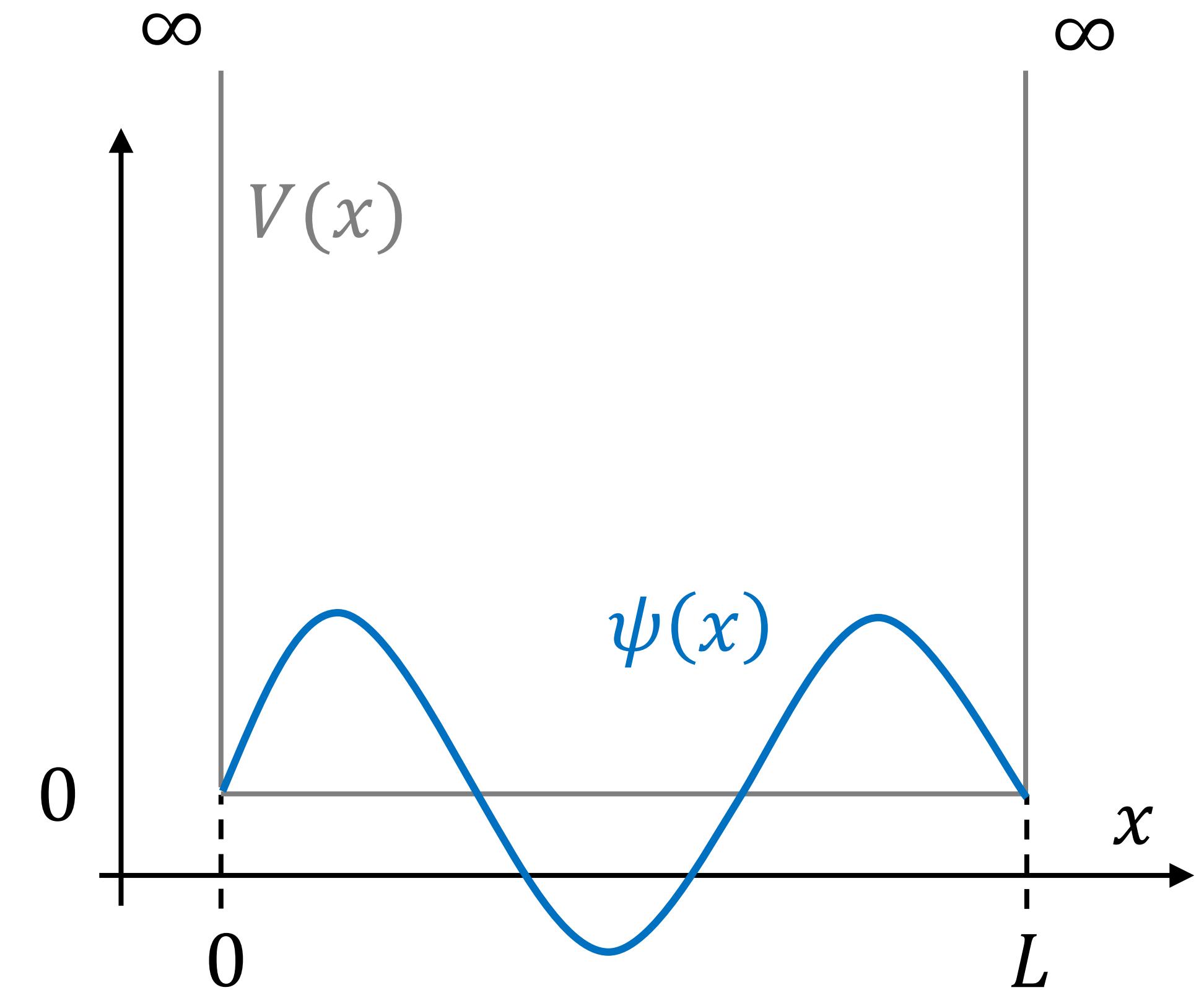
$$\psi(0) = 0 \text{ and } \psi(L) = 0$$



PARTICLE IN A BOX: WAVE FUNCTION

- Inside free particle solution:

$$\left\{ \begin{array}{l} \psi(x) = A \sin(kx) + B \cos(kx) \\ E = \frac{\hbar^2 k^2}{2m} \\ \psi(0) = 0 \text{ and } \psi(L) = 0 \end{array} \right.$$



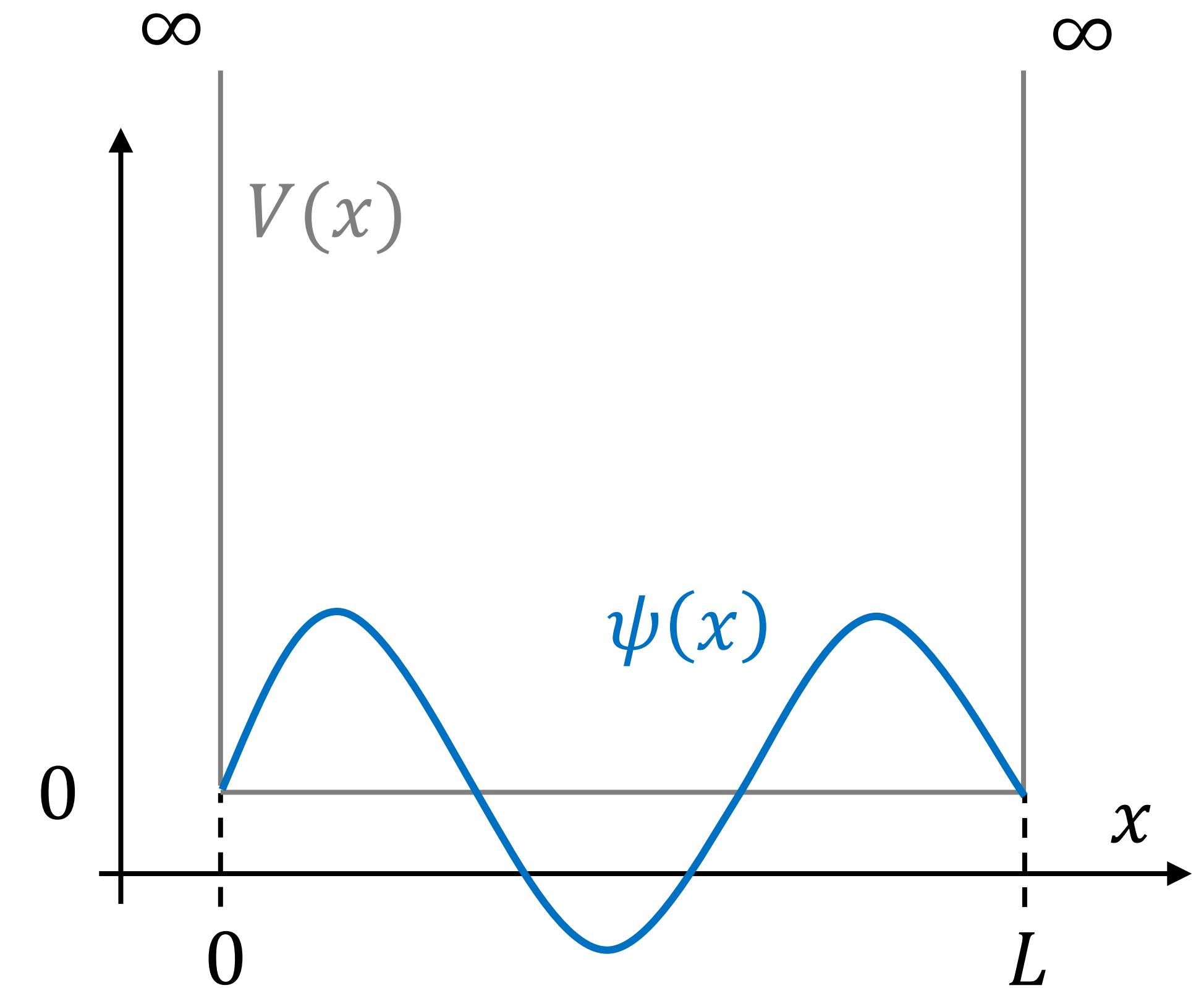
PARTICLE IN A BOX: WAVE FUNCTION

- Inside free particle solution:

$$\left\{ \begin{array}{l} \psi(x) = A \sin(kx) + B \cos(kx) \\ E = \frac{\hbar^2 k^2}{2m} \\ \psi(0) = 0 \text{ and } \psi(L) = 0 \end{array} \right.$$

$$\psi(0) = B \rightarrow B = 0$$

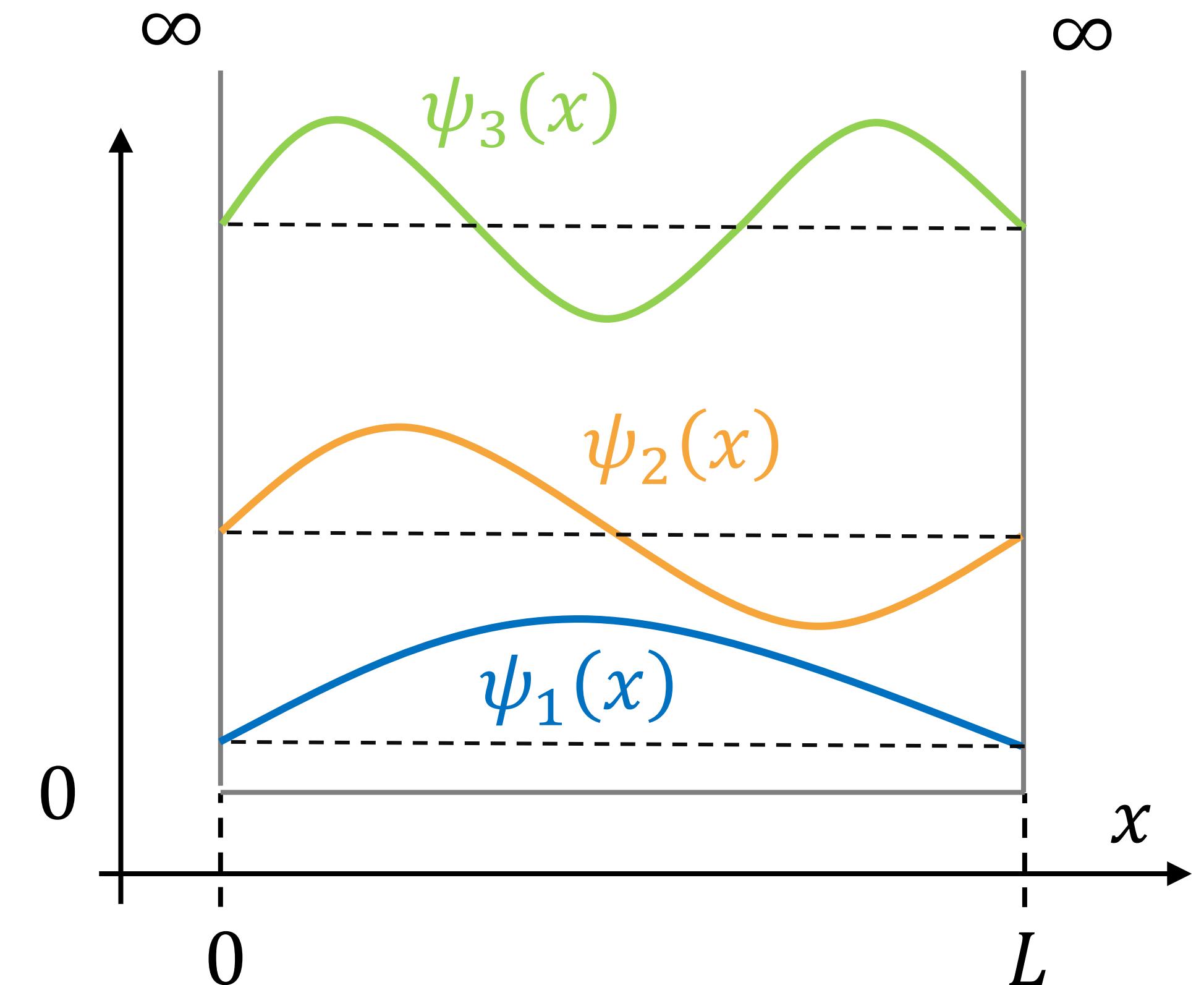
$$\rightarrow \psi(x) = A \sin(kx)$$



PARTICLE IN A BOX: WAVE FUNCTION

- Inside free particle solution:

$$\left. \begin{array}{l} \psi(x) = A \sin(kx) \\ E = \frac{\hbar^2 k^2}{2m} \\ \psi(0) = 0 \text{ and } \psi(L) = 0 \\ \psi_n(L) = A_n \sin(k_n L) = 0 \\ k_n = \frac{n\pi}{L}, \quad E_n = \frac{\hbar^2 k_n^2}{2m} \end{array} \right\}$$



PARTICLE IN A BOX: WAVE FUNCTION

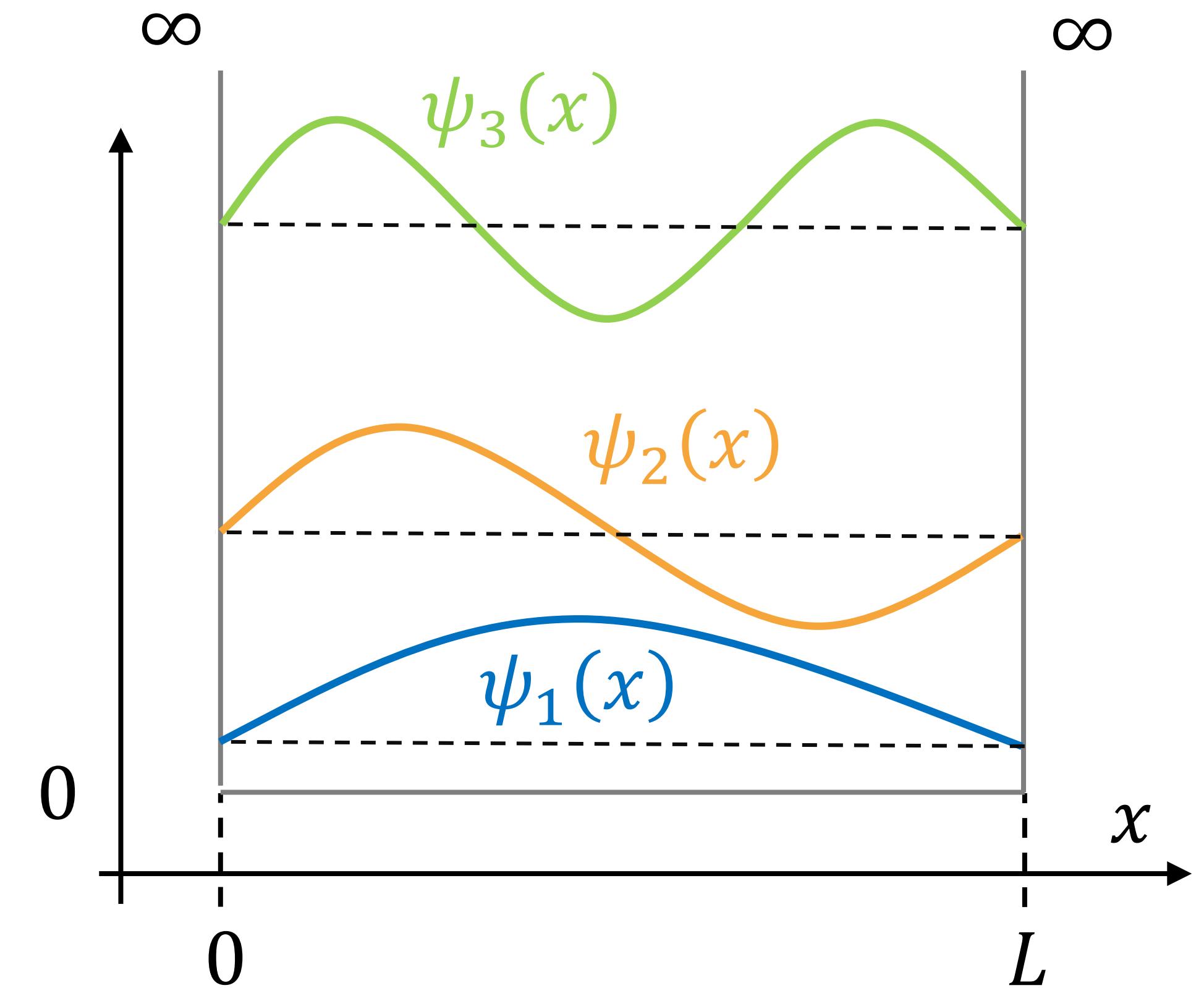
- Solutions:

$$\left\{ \begin{array}{l} \psi_n(x) = A_n \sin(k_n x) = 0 \\ k_n = \frac{n\pi}{L}, \quad E_n = \frac{\hbar^2 k_n^2}{2m} \end{array} \right.$$

- Normalization constant $A_n = ?$

$$1 = |A_n|^2 \int_0^L \sin^2\left(\frac{n\pi x}{L}\right) dx$$

$$A_n = \sqrt{\frac{2}{L}}$$



PARTICLE IN A BOX: SOLUTIONS

Wave function solutions

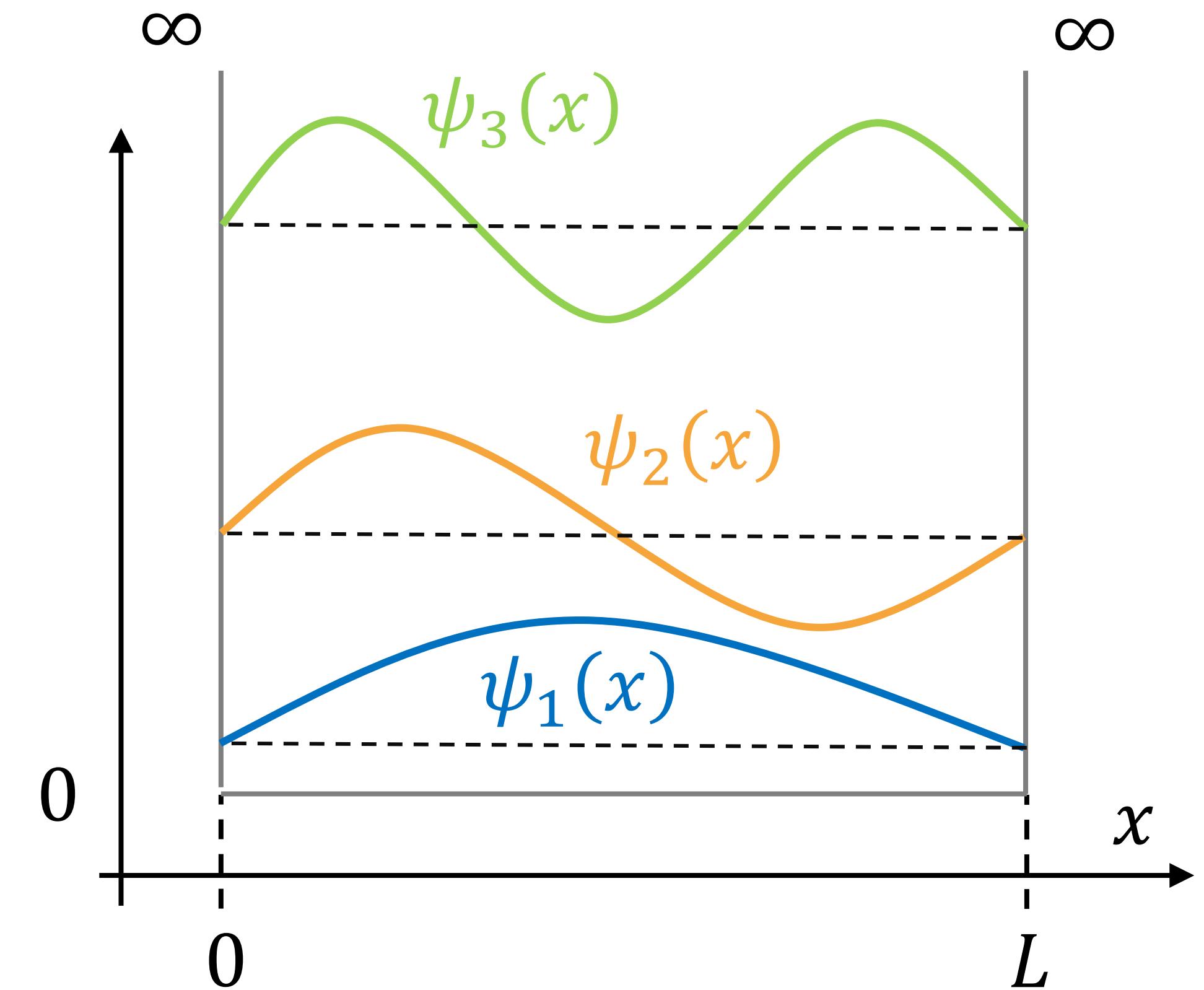
$$\psi_n(x) = \sqrt{\frac{2}{L}} \sin(k_n x)$$

Wave number

$$k_n = \frac{n\pi}{L}$$

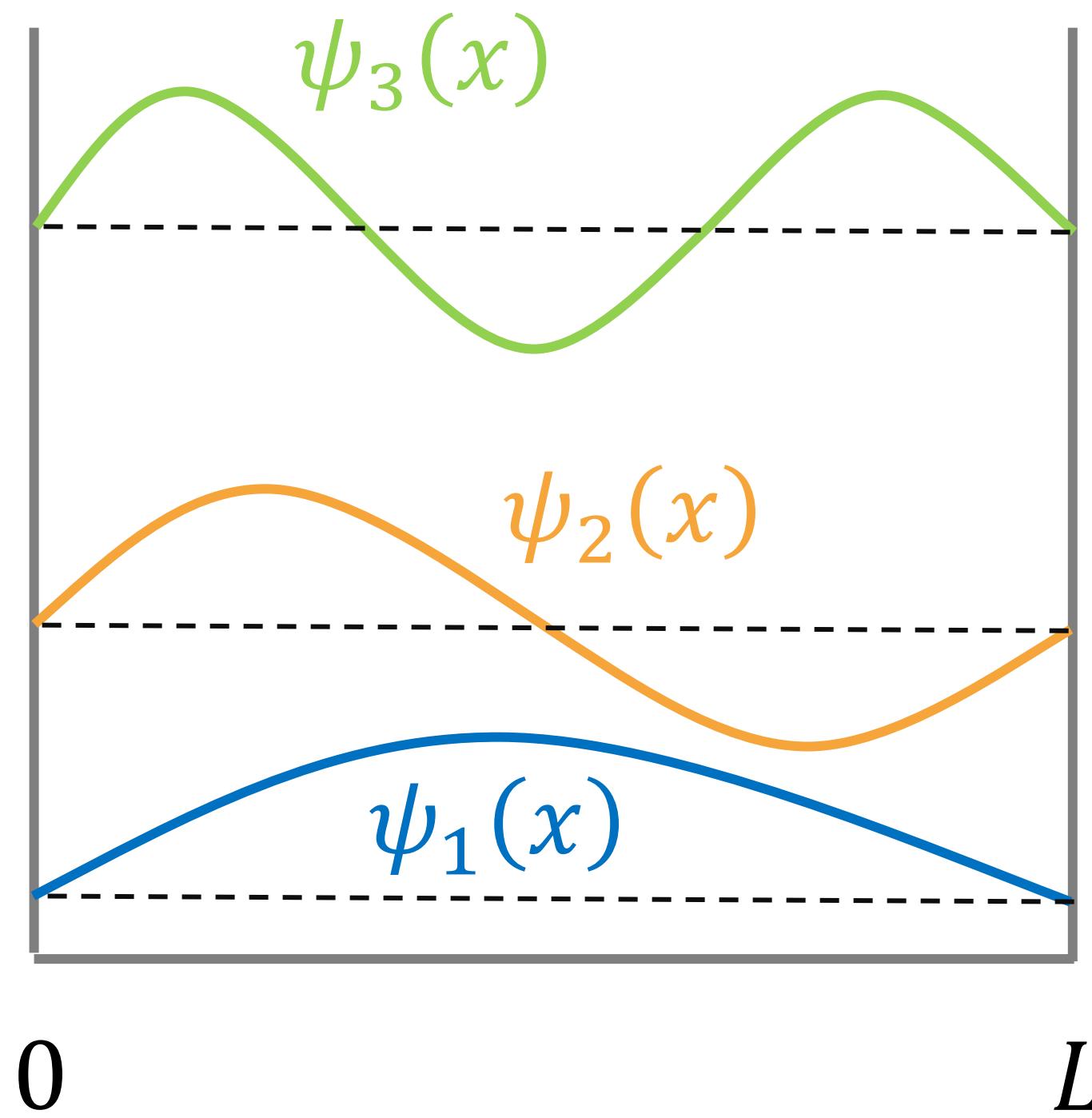
Energy

$$E_n = \frac{\hbar^2 k_n^2}{2m} = \frac{\hbar^2 n^2 \pi^2}{2m L^2}$$

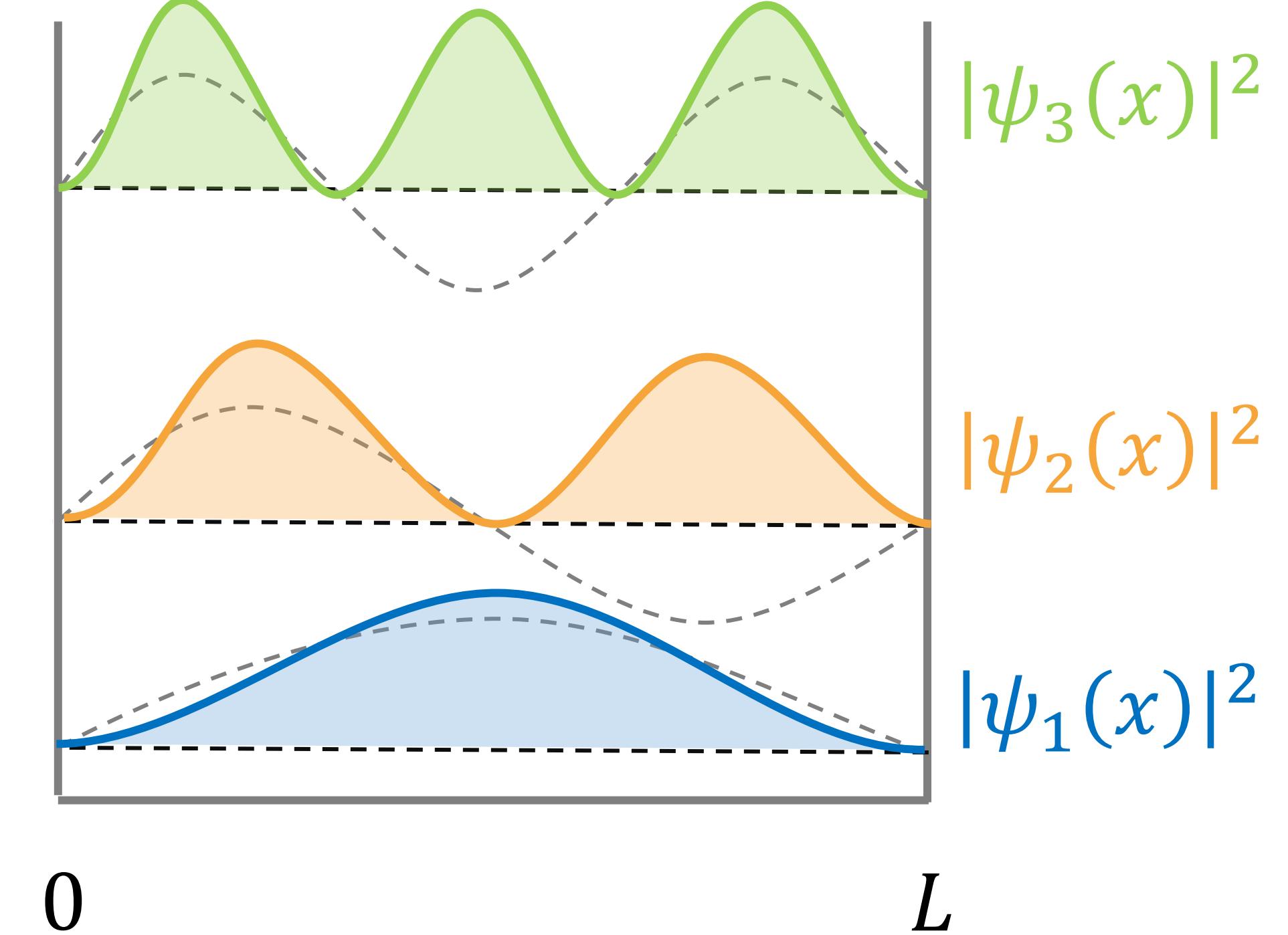


PARTICLE IN A BOX: SOLUTIONS

$$\psi_n(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi x}{L}\right)$$



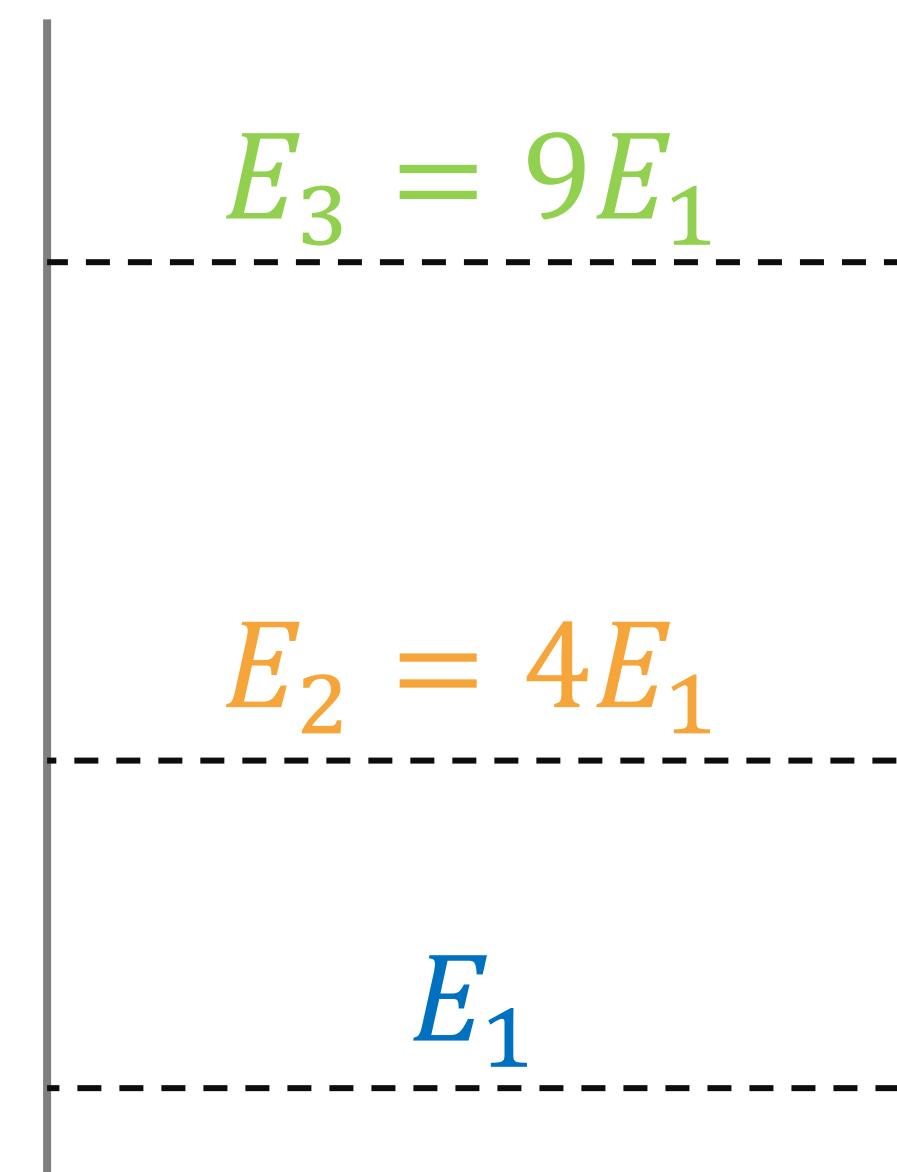
$$|\psi_n(x)|^2 = \frac{2}{L} \sin^2\left(\frac{n\pi x}{L}\right)$$



PARTICLE IN A BOX: ENERGIES

Energy-levels proportional with n^2

$$E_n = \frac{\hbar^2 k_n^2}{2m} = \frac{\hbar^2 n^2 \pi^2}{2mL^2}, \quad E_1 = \frac{\hbar^2 \pi^2}{2mL^2}, \quad E_n = n^2 E_1$$



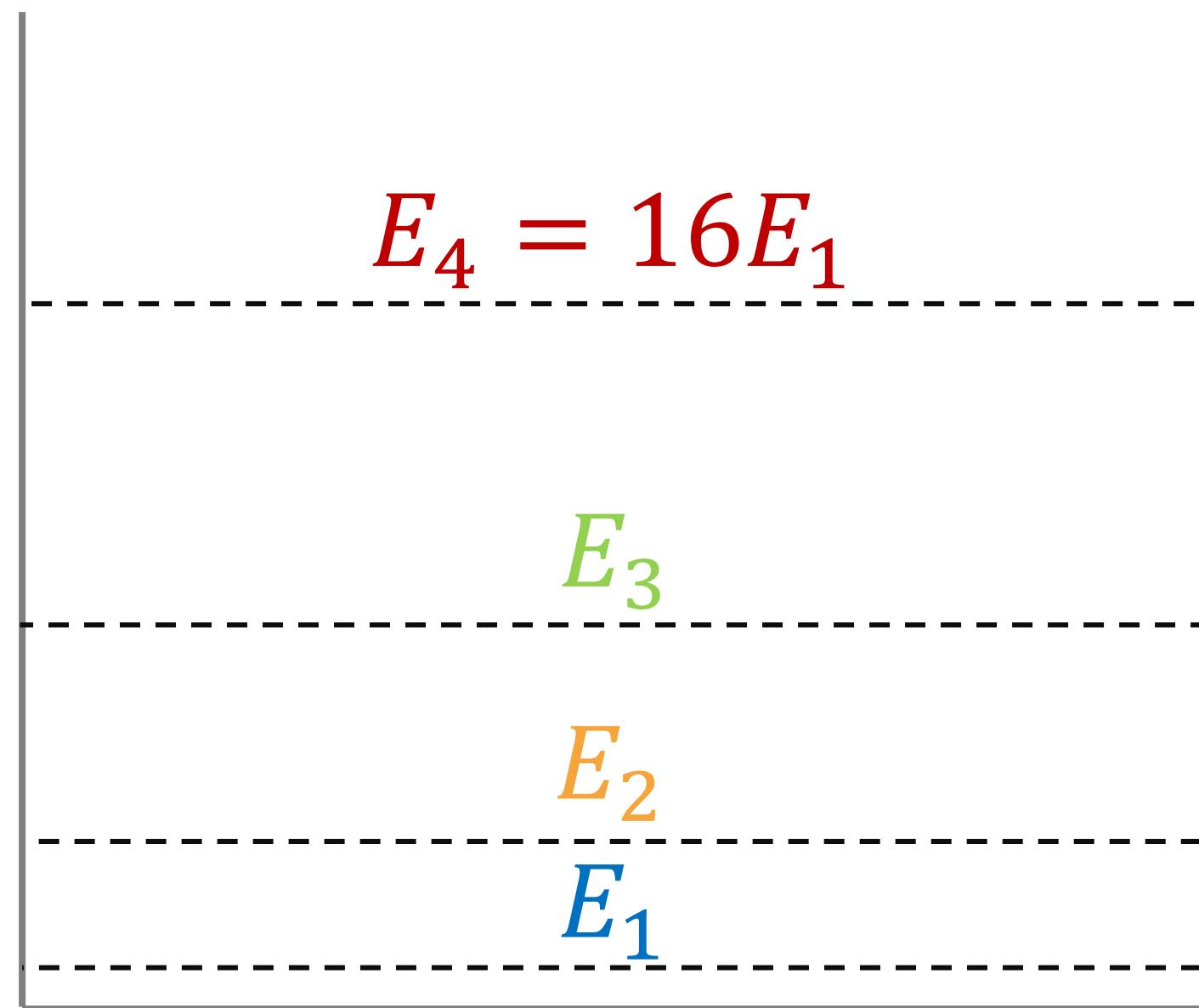
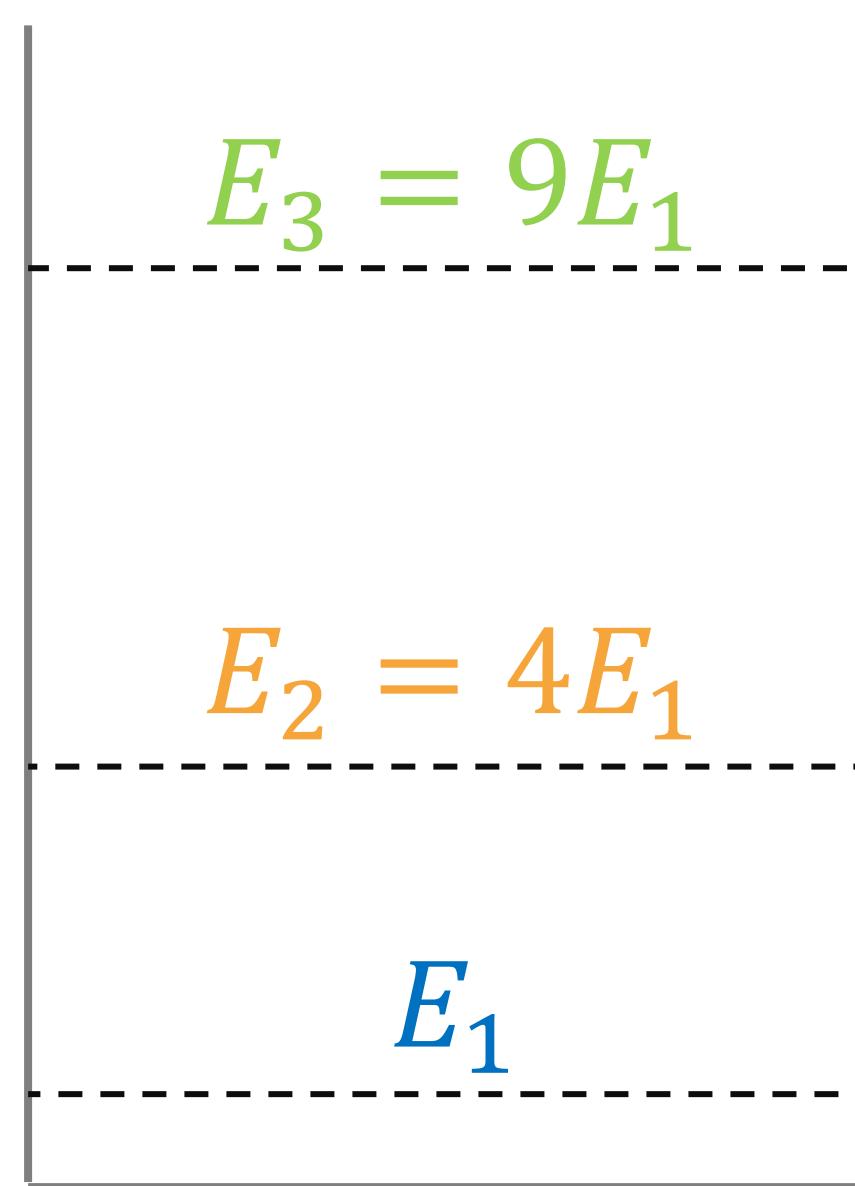
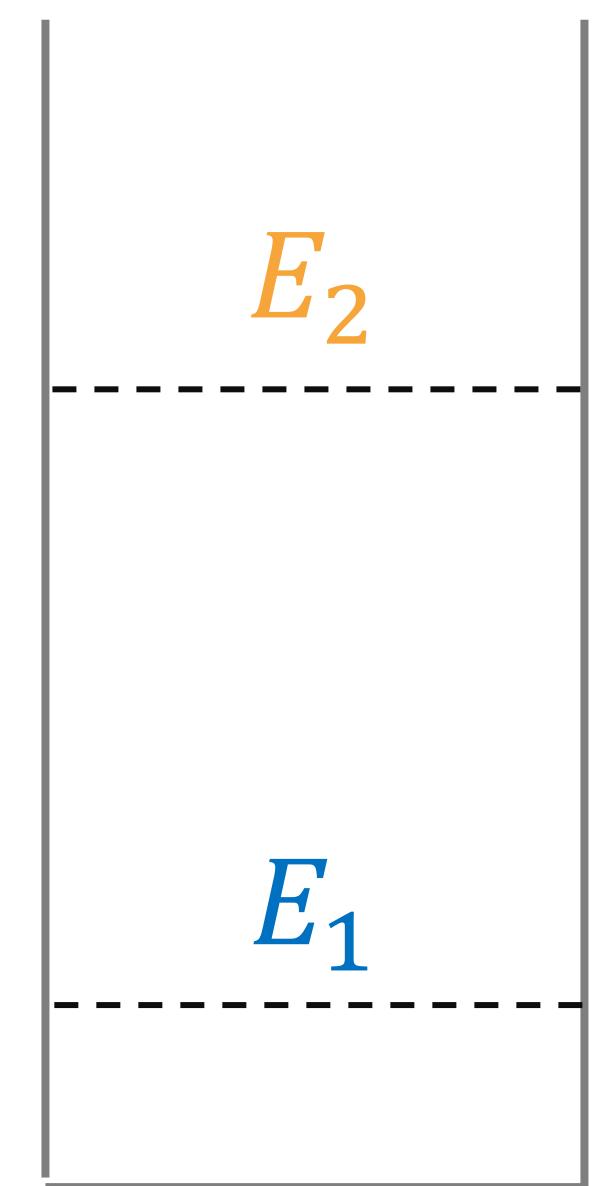
PARTICLE IN A BOX: ENERGIES

Energy-levels proportional with $\frac{1}{L^2}$

$$E_n = \frac{\hbar^2 k_n^2}{2m} = \frac{\hbar^2 n^2 \pi^2}{2mL^2},$$

$$E_1 = \frac{\hbar^2 \pi^2}{2mL^2},$$

$$E_n = n^2 E_1$$

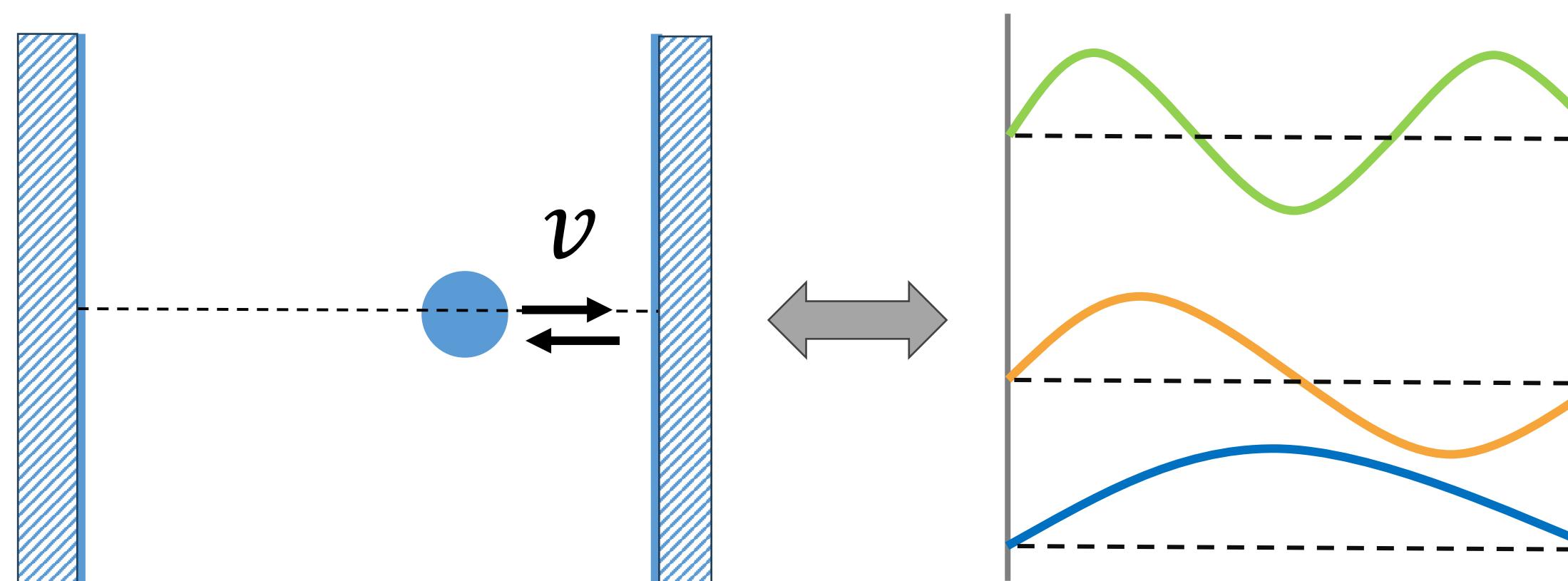


PARTICLE IN A BOX: DE BROGLIE -- WAVE AND PARTICLE

- 1924: De Broglie: particle-wave duality

De Broglie momentum: $p = \frac{h}{\lambda}$

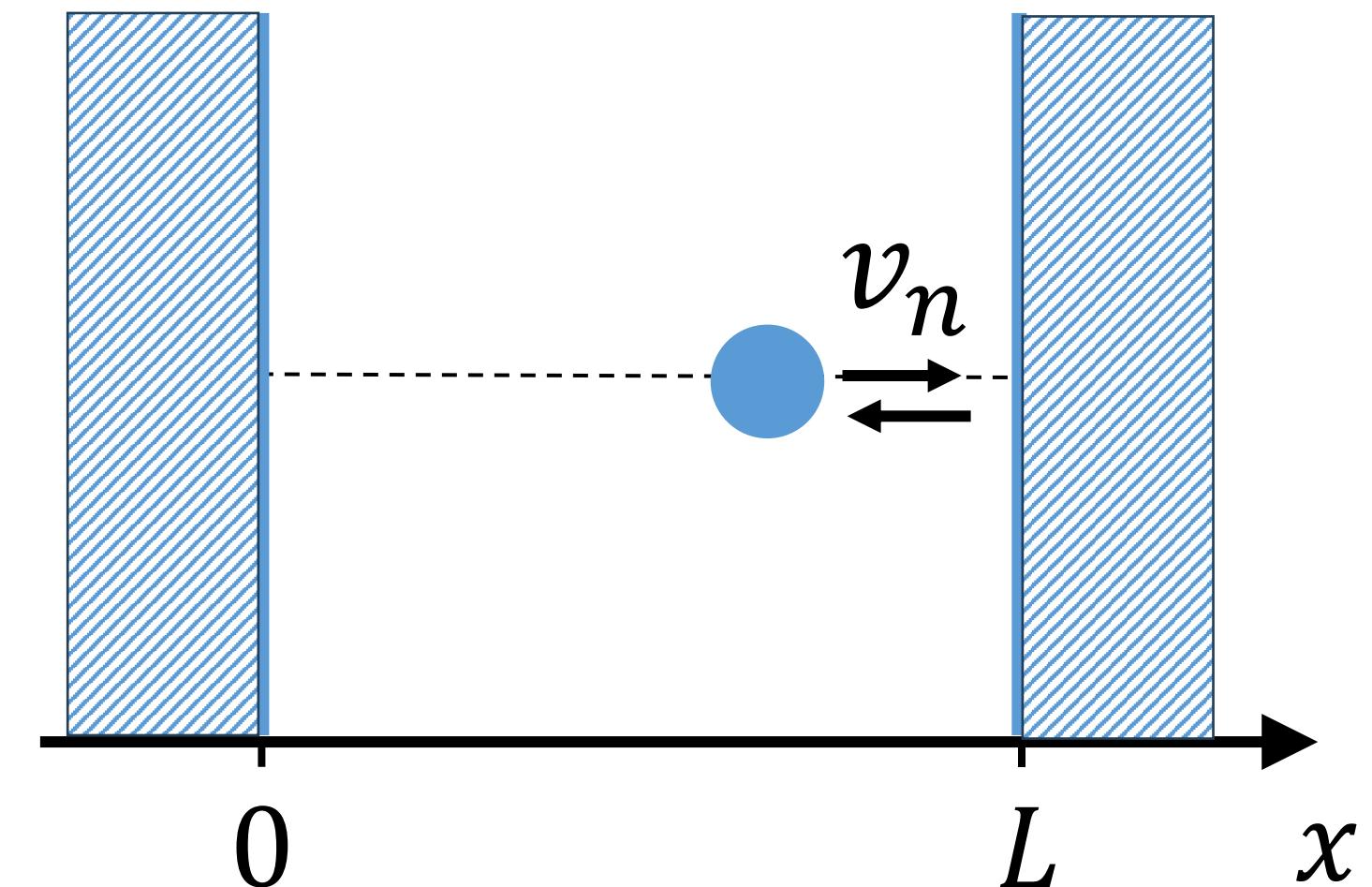
De Broglie energy: $E = \hbar\omega$



(Duke) Louis de Broglie
Picture from Wikipedia

PARTICLE IN A BOX: DE BROGLIE -- WAVE AND PARTICLE

Energy	wave number	wavelength
$E_n = \frac{\hbar^2 k_n^2}{2m}$,	$k_n = \frac{n\pi}{L}$,	$\lambda_n = \frac{2\pi}{k_n} = \frac{2L}{n}$



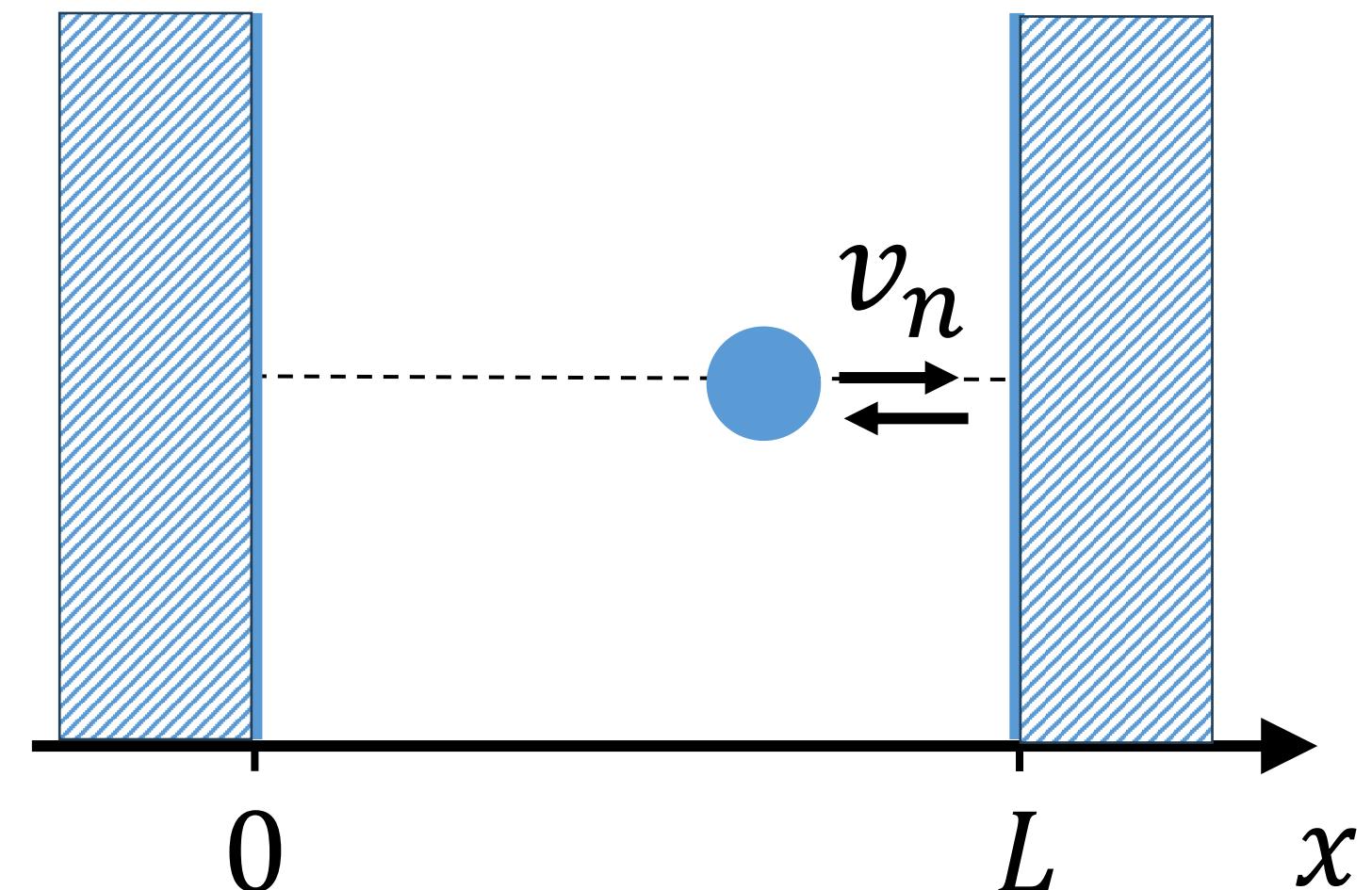
$$\left. \begin{array}{l} p_n = \frac{h}{\lambda_n} \rightarrow p_n = \hbar k_n \\ E_n = \hbar \omega \rightarrow E_n = \frac{p_n^2}{2m} = \frac{1}{2} m v_n^2 \end{array} \right\}$$

de Broglie momentum

de Broglie energy

PARTICLE IN A BOX: DE BROGLIE -- WAVE AND PARTICLE

$$\left. \begin{array}{l} p_n = \frac{h}{\lambda_n} \\ \\ E_n = \hbar\omega \end{array} \right\} \rightarrow \begin{array}{l} p_n = \hbar k_n = \frac{\hbar n\pi}{L} \\ \\ E_n = \frac{p_n^2}{2m} = \frac{1}{2}mv_n^2 \end{array}$$



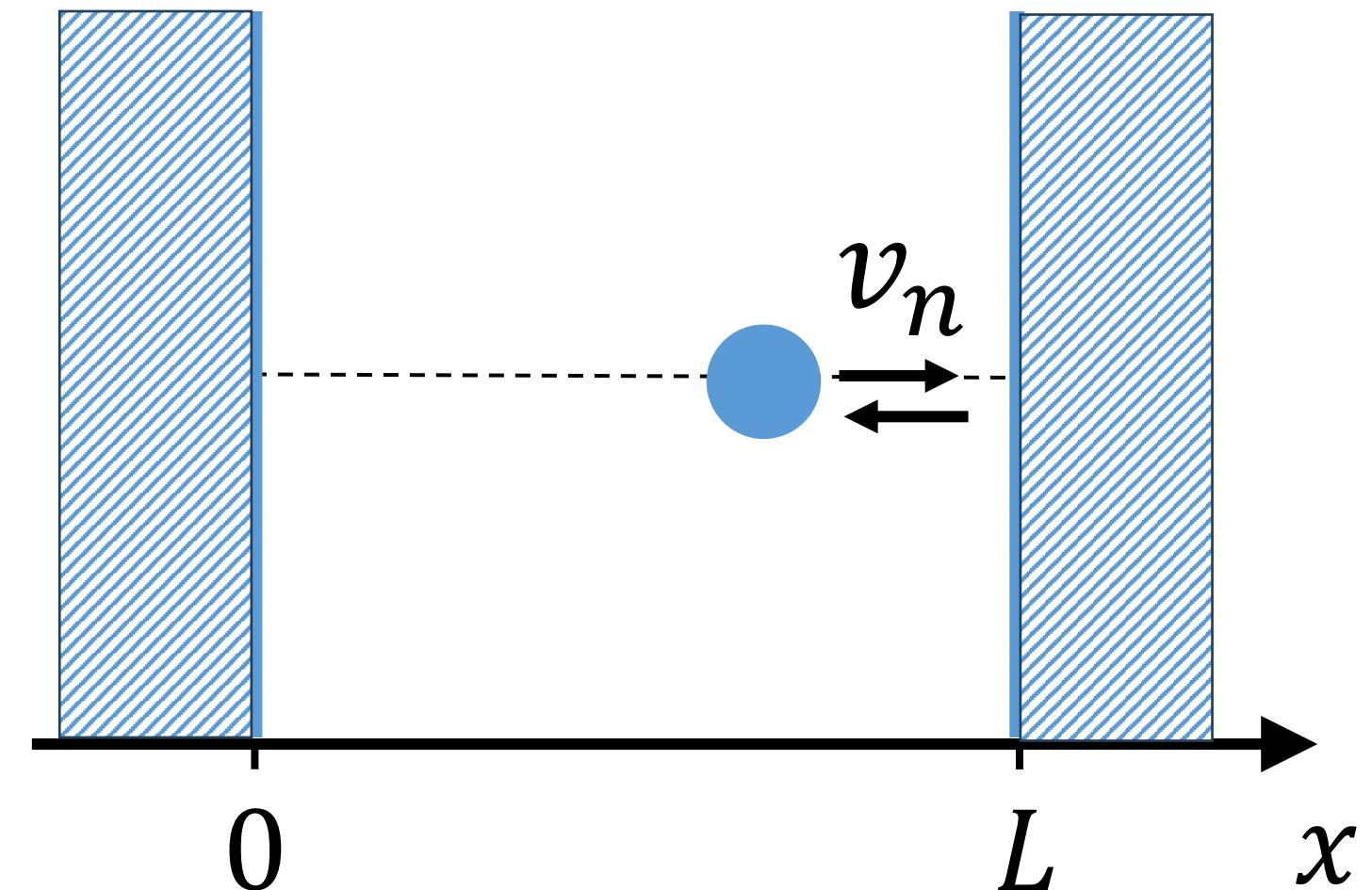
- Minimum momentum/speed:
- Discontinuous energy spectrum, velocity jumps?

$$v_1 = \frac{p_1}{m} = \frac{\hbar\pi}{mL}$$

$$E_n = \frac{\hbar^2\pi^2n^2}{2mL^2} = \frac{p_n^2}{2m} = \frac{1}{2}mv_n^2$$

PARTICLE IN A BOX: DE BROGLIE -- WAVE AND PARTICLE

$$\left. \begin{aligned} p_n &= \frac{h}{\lambda_n} \\ E_n &= \hbar\omega \end{aligned} \right\} \rightarrow \begin{aligned} p_n &= \hbar k_n = \frac{\hbar n\pi}{L} \\ E_n &= \frac{p_n^2}{2m} = \frac{1}{2} m v_n^2 \end{aligned}$$



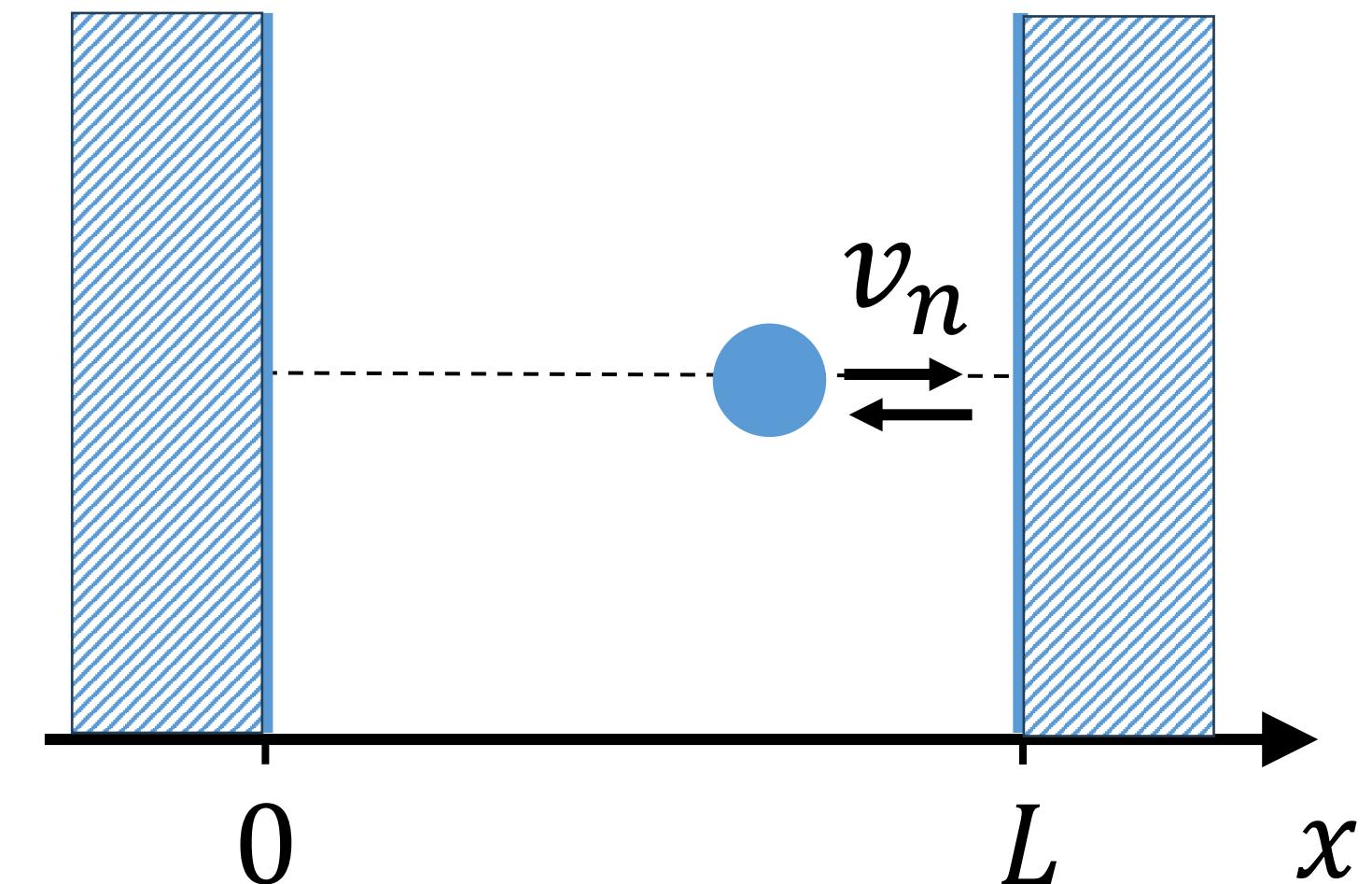
Minimum momentum/speed:

Electron in box size 0.2 nm:

$$\begin{aligned} v_1 &= \frac{p_1}{m} = \frac{\hbar\pi}{mL} = \frac{6.63 \times 10^{-34} \text{ J} \cdot \text{s}}{2 \cdot 9.11 \times 10^{-31} \text{ kg} \cdot 0.2 \times 10^{-9} \text{ m}} \\ &\approx \frac{33}{18} \times 10^6 \text{ m/s} \approx 2 \times 10^6 \text{ m/s} \end{aligned}$$

PARTICLE IN A BOX: DE BROGLIE -- WAVE AND PARTICLE

$$\left. \begin{aligned} p_n &= \frac{h}{\lambda_n} \\ E_n &= \hbar\omega \end{aligned} \right\} \rightarrow \begin{aligned} p_n &= \hbar k_n = \frac{\hbar n\pi}{L} \\ E_n &= \frac{p_n^2}{2m} = \frac{1}{2}mv_n^2 \end{aligned}$$



Minimum momentum/speed:

Electron in box size 0.2 nm:

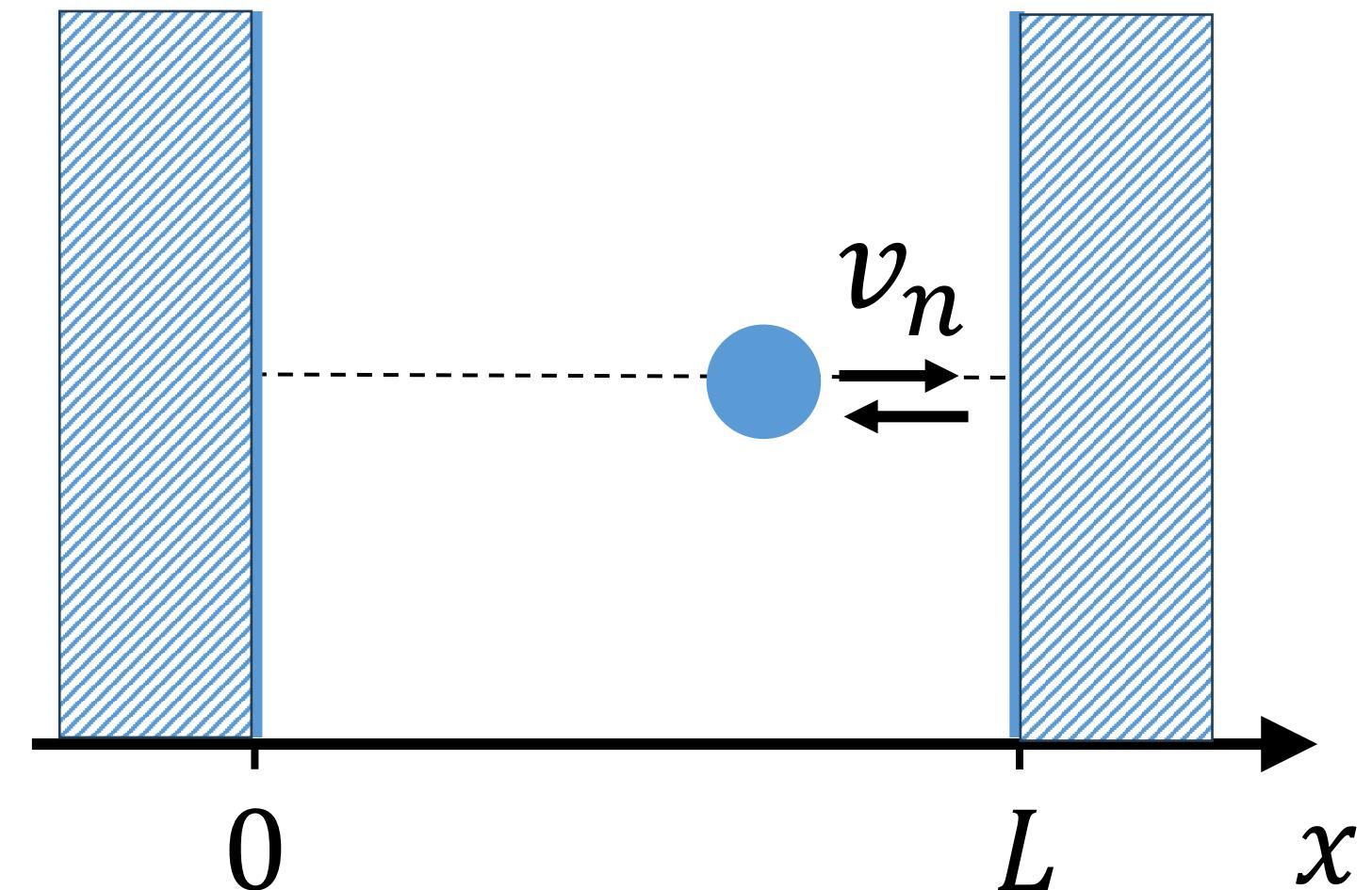
$$\begin{aligned} v_1 &= \frac{p_1}{m} = \frac{\hbar\pi}{mL} = \frac{6.63 \times 10^{-34} \text{ J} \cdot \text{s}}{2 \cdot 9.11 \times 10^{-31} \text{ kg} \cdot 0.2 \times 10^{-9} \text{ m}} \\ &\approx \frac{33}{18} \times 10^6 \frac{\text{m}}{\text{s}} \approx 2 \times 10^6 \frac{\text{m}}{\text{s}} \end{aligned}$$

Tennisball in box size 20 m:
(0.05 kg)

$$v_1 = \frac{p_1}{m} = \frac{\hbar\pi}{mL} = \frac{6.63 \times 10^{-34} \text{ J} \cdot \text{s}}{2 \cdot 0.05 \text{ kg} \cdot 20 \text{ m}} \approx 3.3 \times 10^{-34} \frac{\text{m}}{\text{s}}$$

PARTICLE IN A BOX: DE BROGLIE -- WAVE AND PARTICLE

$$\left. \begin{array}{l} p_n = \frac{h}{\lambda_n} \\ E_n = \hbar\omega \end{array} \right\} \rightarrow \begin{array}{l} p_n = \hbar k_n = \frac{\hbar n\pi}{L} \\ E_n = \frac{p_n^2}{2m} = \frac{1}{2}mv_n^2 \end{array}$$



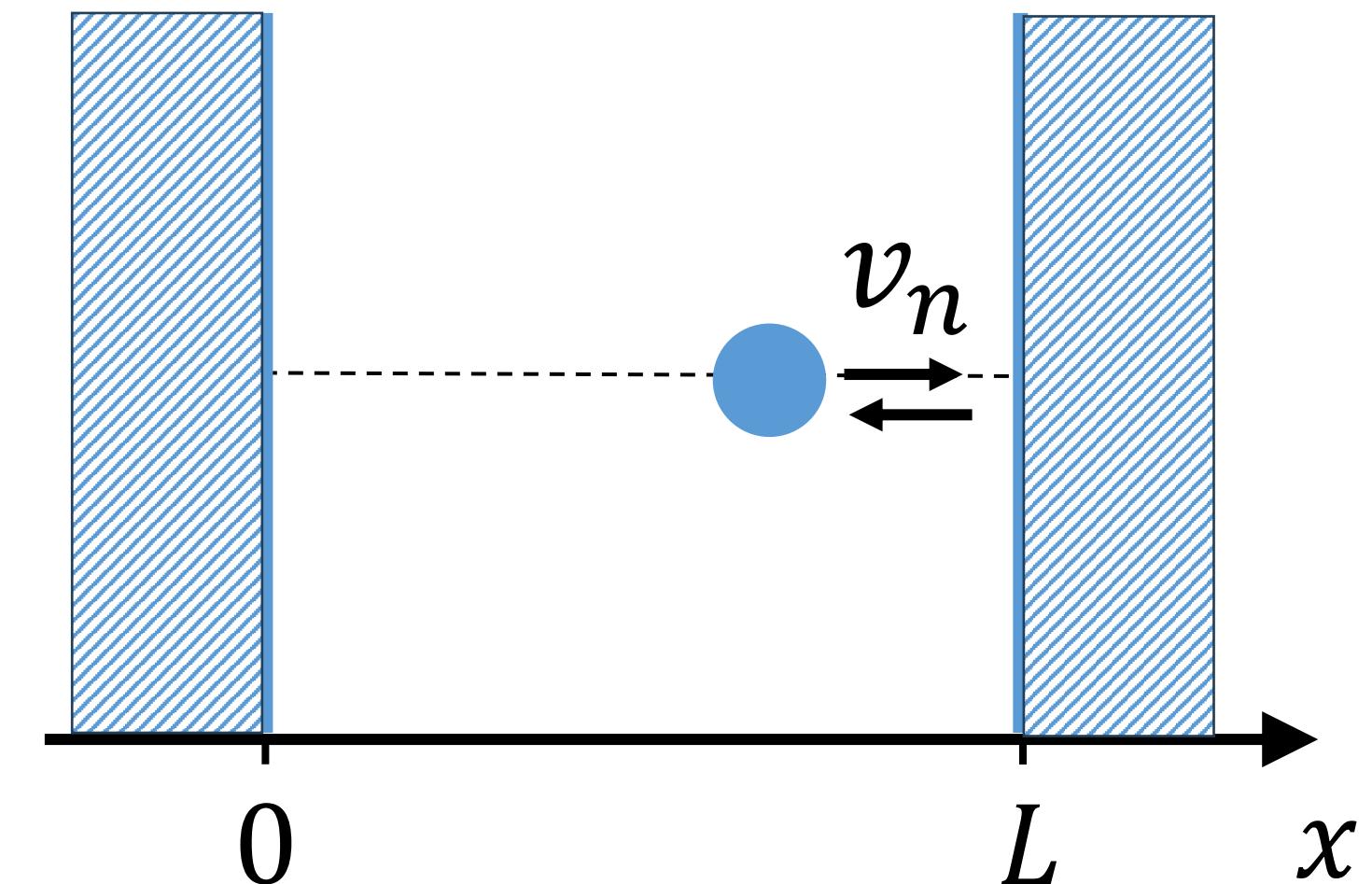
Energy jumps:

Electron in box size 0.2 nm:

$$\begin{aligned}
 E_n &= \frac{\hbar^2\pi^2n^2}{2mL^2} = \frac{(6.63 \times 10^{-34} \text{ J} \cdot \text{s})^2}{8 \cdot 9.11 \times 10^{-31} \text{ kg} \cdot (2 \times 10^{-10} \text{ m})^2} \\
 &\approx \frac{10}{73} \times 10^{-17} \text{ J} \approx \frac{1.5 \times 10^{-18}}{1.6 \times 10^{-19}} \text{ eV} \approx 9.4 \text{ eV}
 \end{aligned}$$

PARTICLE IN A BOX: DE BROGLIE -- WAVE AND PARTICLE

$$\left. \begin{array}{l} p_n = \frac{h}{\lambda_n} \\ E_n = \hbar\omega \end{array} \right\} \rightarrow \begin{array}{l} p_n = \hbar k_n = \frac{\hbar n\pi}{L} \\ E_n = \frac{p_n^2}{2m} = \frac{1}{2}mv_n^2 \end{array}$$



Energy jumps:

$$\begin{aligned}
 E_1 &= \frac{\hbar^2\pi^2n^2}{2mL^2} = \frac{(6.63 \times 10^{-34} \text{ J} \cdot \text{s})^2}{8 \cdot 9.11 \times 10^{-31} \text{ kg} \cdot (2 \times 10^{-10} \text{ m})^2} \\
 &\approx \frac{10}{73} \times 10^{-17} \text{ J} \approx \frac{1.5 \times 10^{-18}}{1.6 \times 10^{-19}} \text{ eV} \approx 9.4 \text{ eV}
 \end{aligned}$$

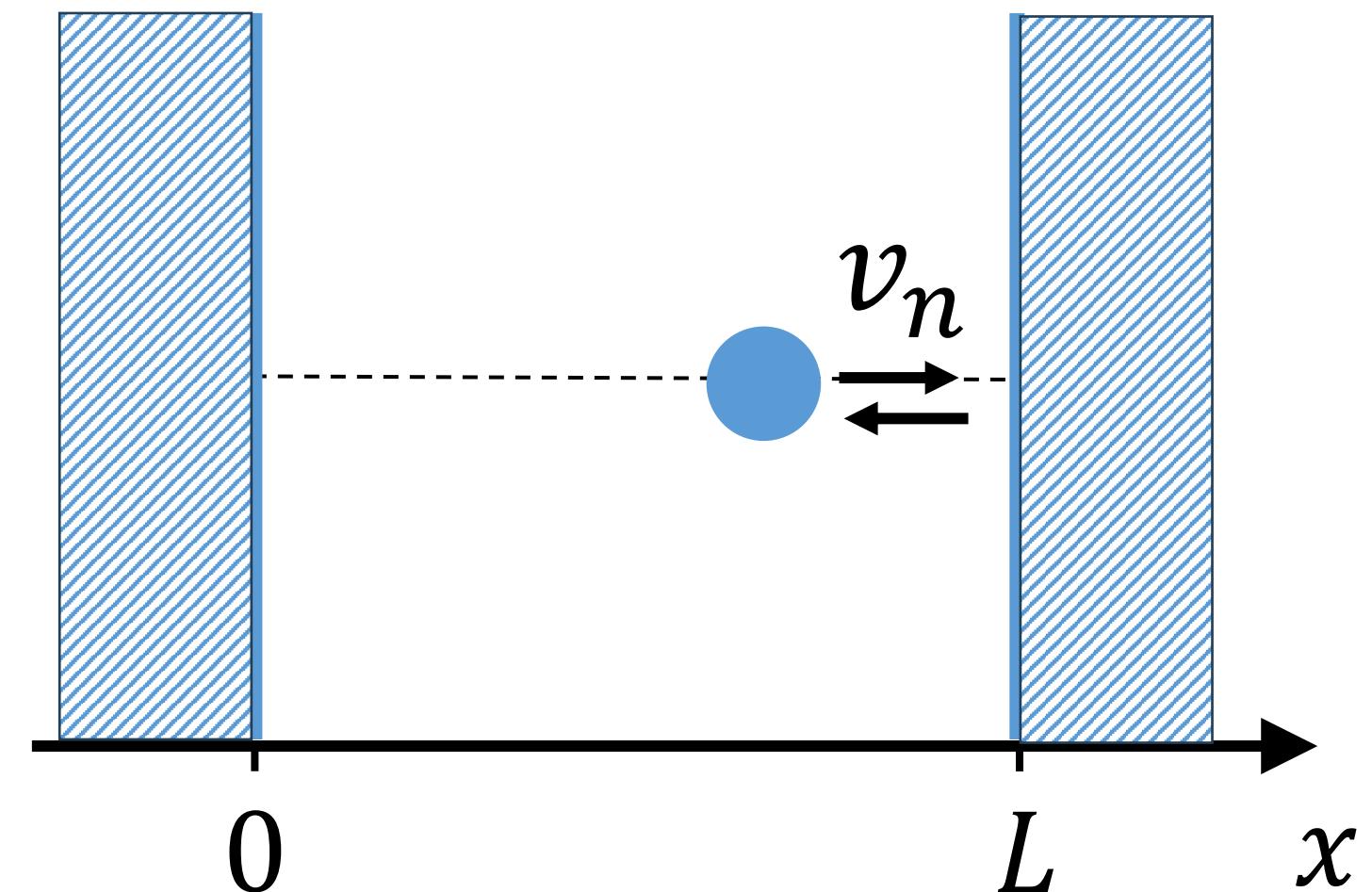
Electron in box size 0.2 nm:

Tennisball in box size 20 m:
(0.05 kg)

$$\begin{aligned}
 E_1 &= \frac{\hbar^2\pi^2n^2}{2mL^2} = \frac{(6.63 \times 10^{-34} \text{ J} \cdot \text{s})^2}{8 \cdot 0.05 \text{ kg} \cdot 400 \text{ m}} \approx \frac{2.7 \times 10^{-35}}{1.6 \times 10^{-19}} \text{ eV} \\
 &\approx 1.7 \times 10^{-15} \text{ eV}
 \end{aligned}$$

PARTICLE IN A BOX: DE BROGLIE -- WAVE AND PARTICLE

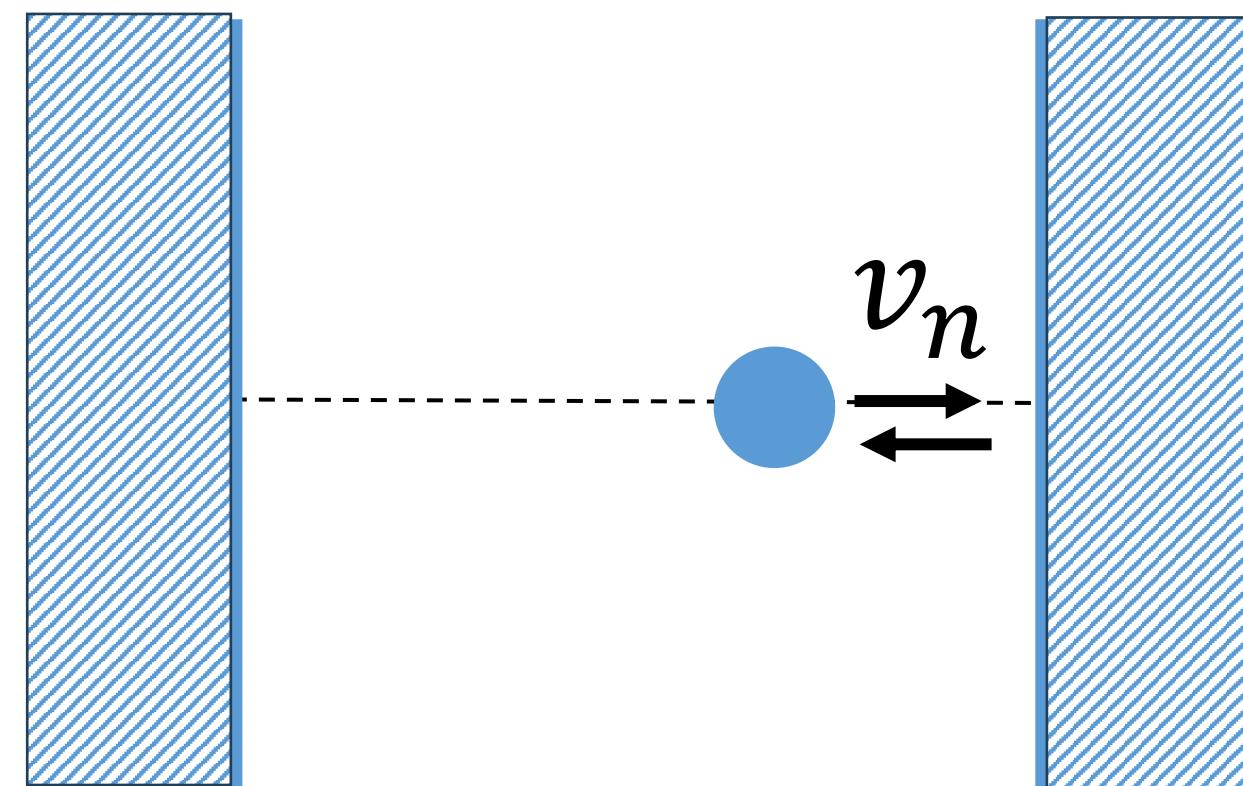
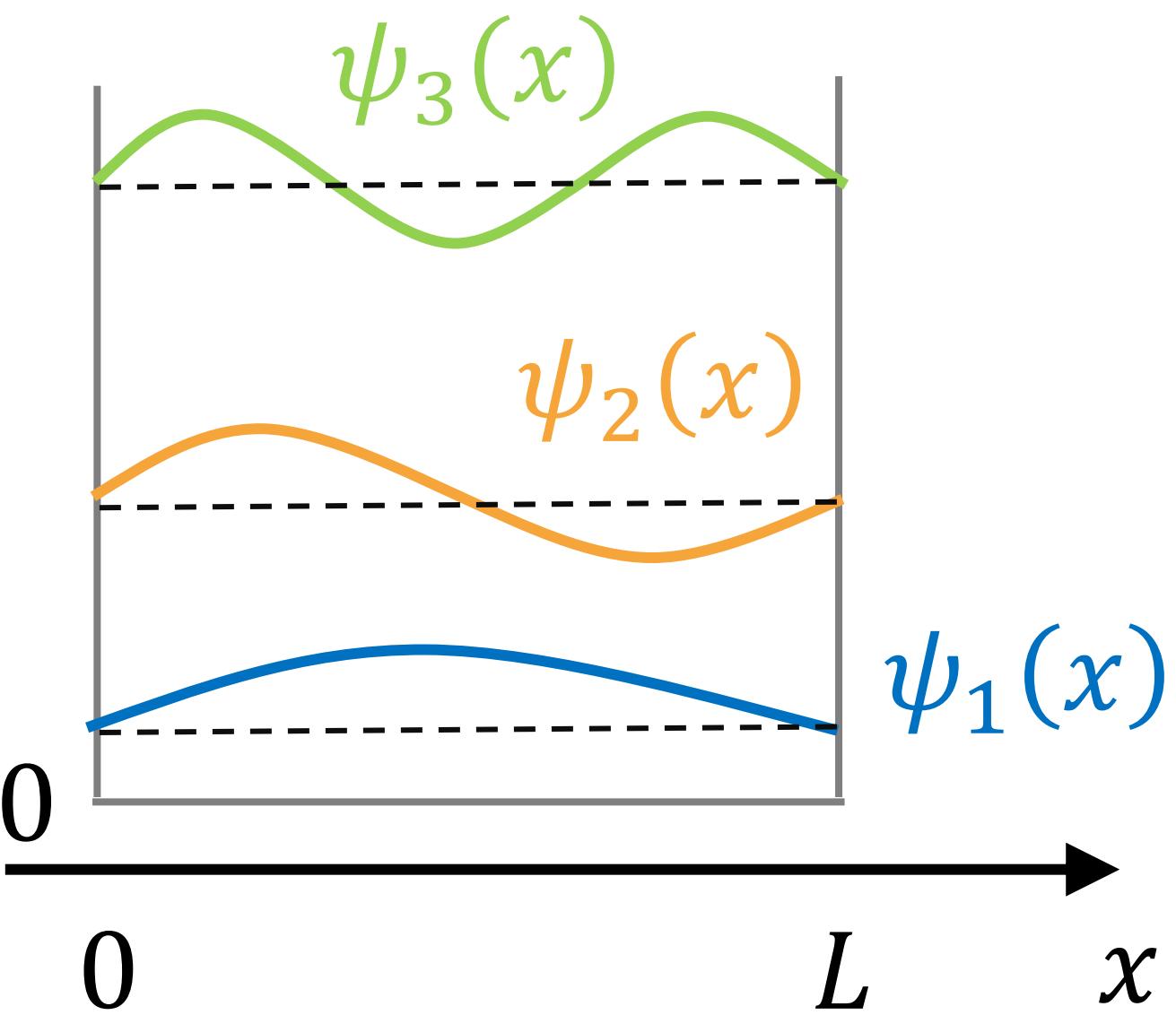
$$\left. \begin{array}{l} p_n = \frac{h}{\lambda_n} \\ E_n = \hbar\omega \end{array} \right\} \rightarrow \begin{array}{l} p_n = \hbar k_n = \frac{\hbar n\pi}{L} \\ E_n = \frac{p_n^2}{2m} = \frac{1}{2}mv_n^2 \end{array}$$



- **Quantum size effects** due to **confinement** to small box
- **Classical mechanics valid for Macroscopic objects**
 - large mass and larger box
 - Minimum momentum/speed very small
 - Continuous energy spectrum

PARTICLE IN A BOX: DE BROGLIE -- WAVE AND PARTICLE

$$\left. \begin{array}{l} p_n = \frac{h}{\lambda_n} \\ E_n = \hbar\omega \end{array} \right\} \rightarrow \begin{array}{l} p_n = \hbar k_n = \frac{\hbar n\pi}{L} \\ E_n = \frac{p_n^2}{2m} = \frac{1}{2}mv_n^2 \end{array}$$

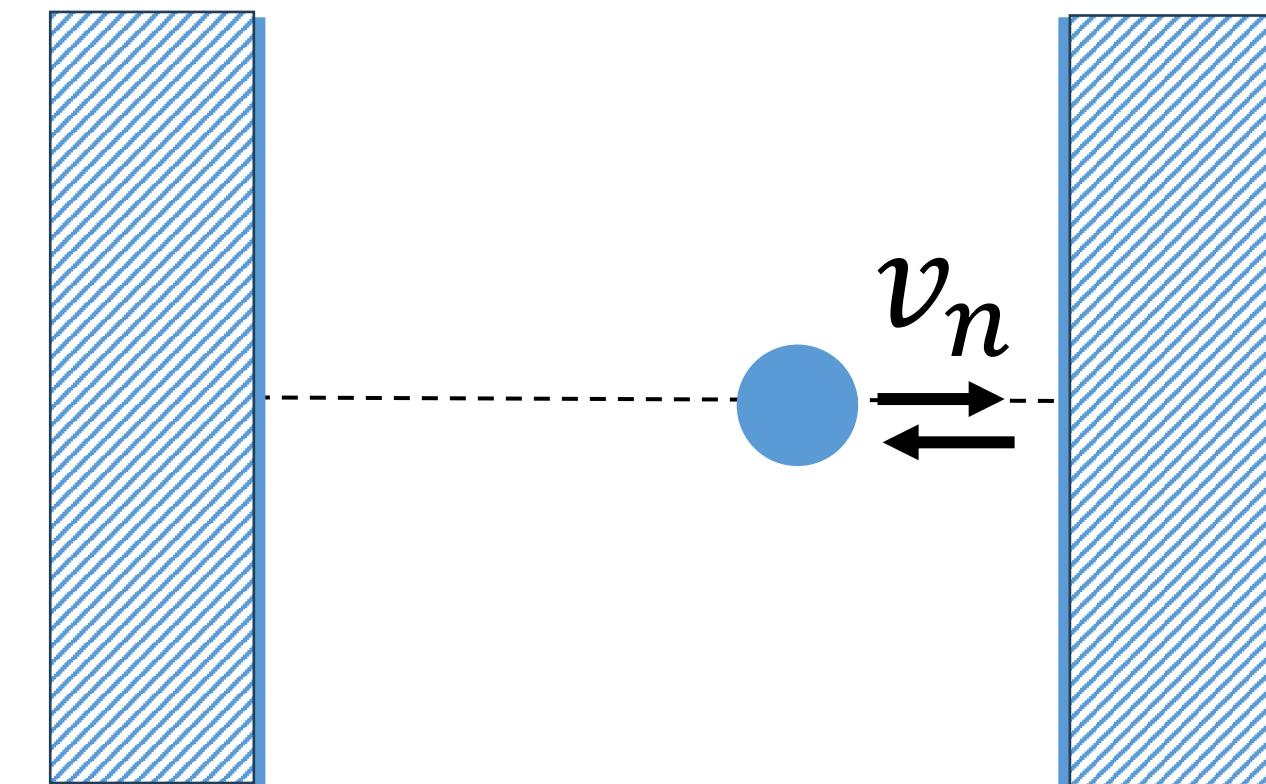


- Explain **all** quantum effects via de Broglie?
- What about position & velocity of particles?

PARTICLE IN A BOX: DE BROGLIE -- WAVE AND PARTICLE

$$\left. \begin{aligned} p_n &= \frac{h}{\lambda_n} \\ E_n &= \hbar\omega \end{aligned} \right\} \rightarrow$$

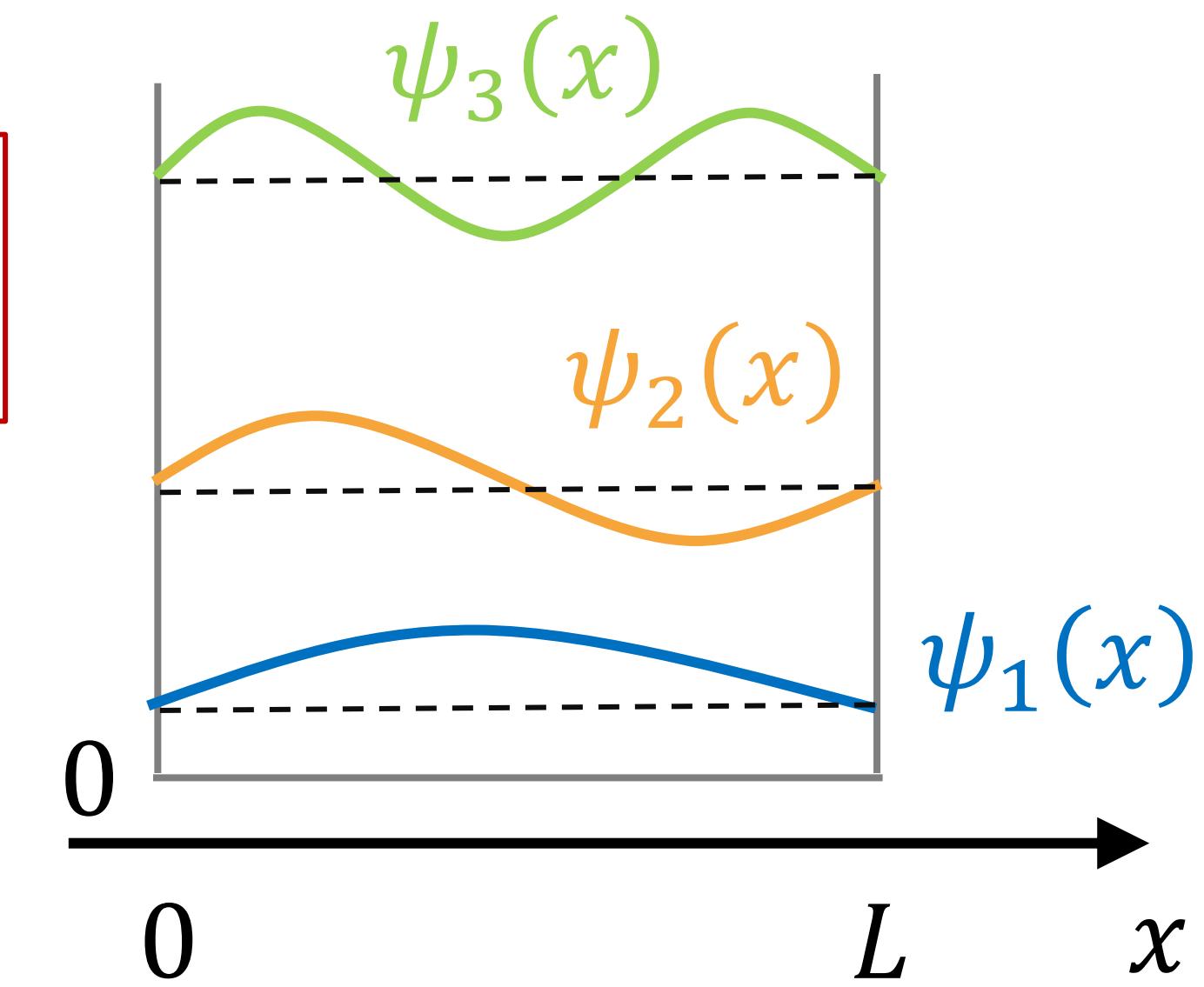
$$\begin{aligned} p_n &= \hbar k_n = \frac{\hbar n\pi}{L} \\ E_n &= \frac{p_n^2}{2m} = \frac{1}{2} m v_n^2 \end{aligned}$$



Energy: time dependency?
 $\Theta(t) = e^{-iE_n t/\hbar}$

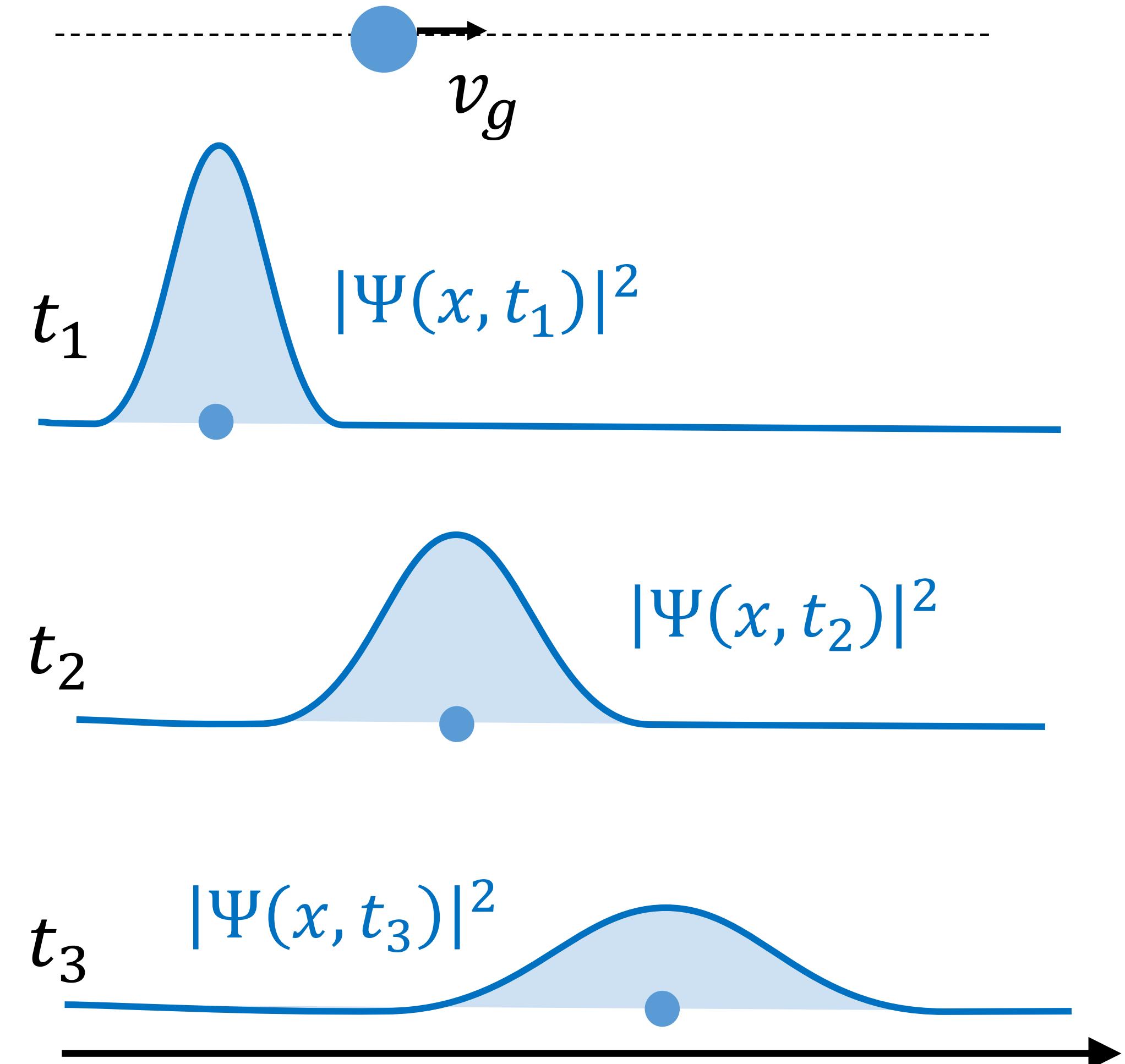
what is the velocity
of probability ?

- Explain **all** quantum effects via de Broglie?
- What about position & velocity of particles?



PARTICLE IN A BOX: SUPERPOSITION

- Probability density goes beyond particle view of de Broglie
- Free particles → Wave packets with group velocity
- Uncertainty spreads in time

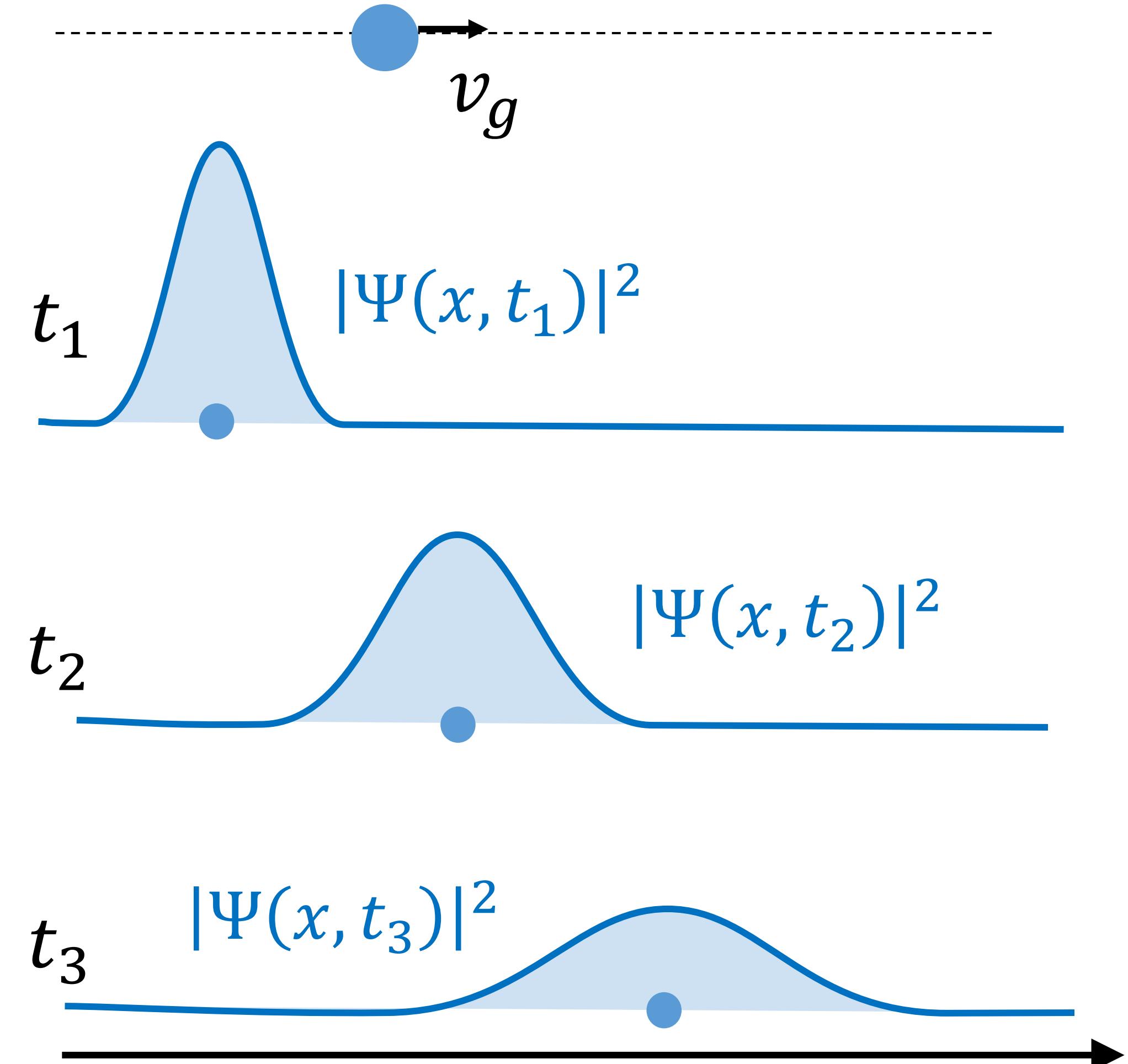


PARTICLE IN A BOX: SUPERPOSITION

- Probability density goes beyond particle view of de Broglie
- Free particles → Wave packets with group velocity
- Uncertainty spreads in time

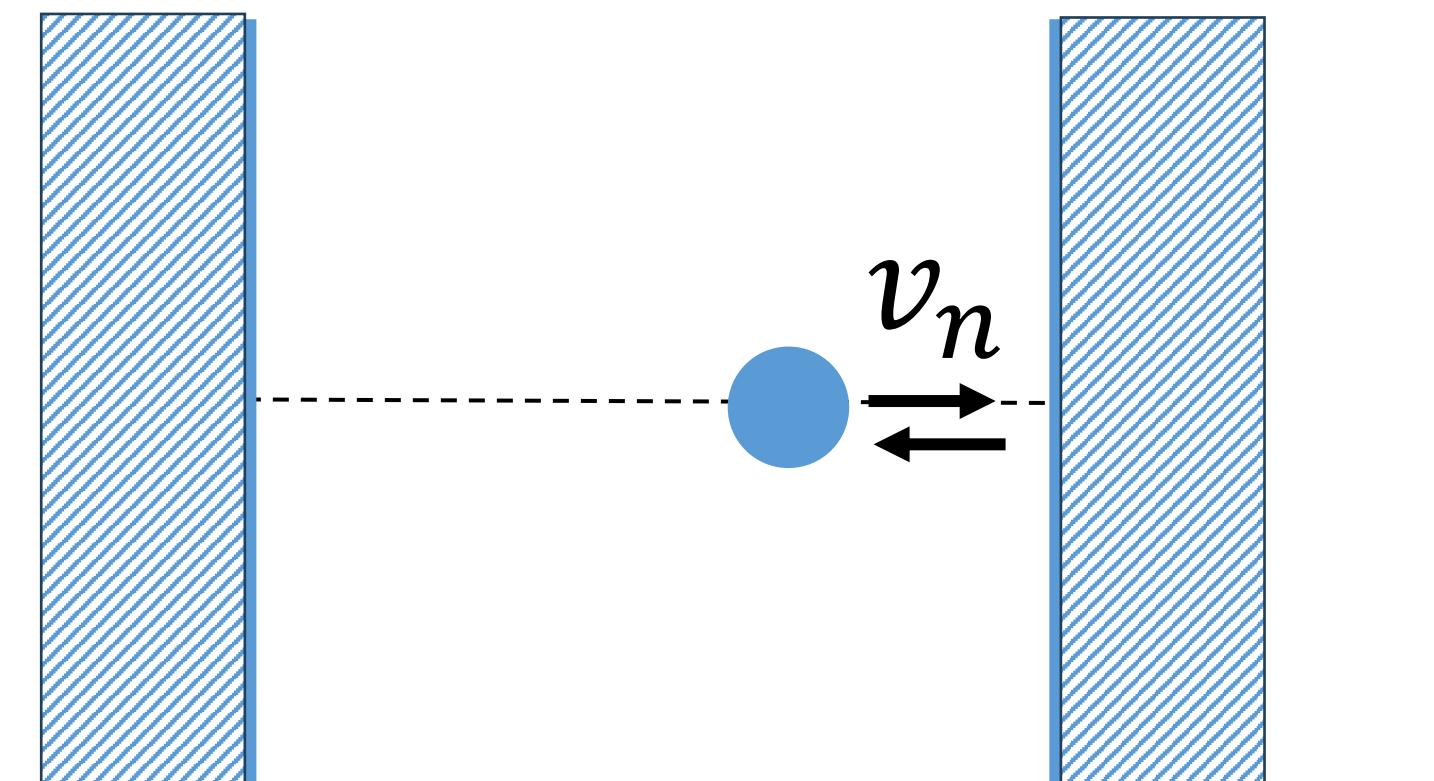
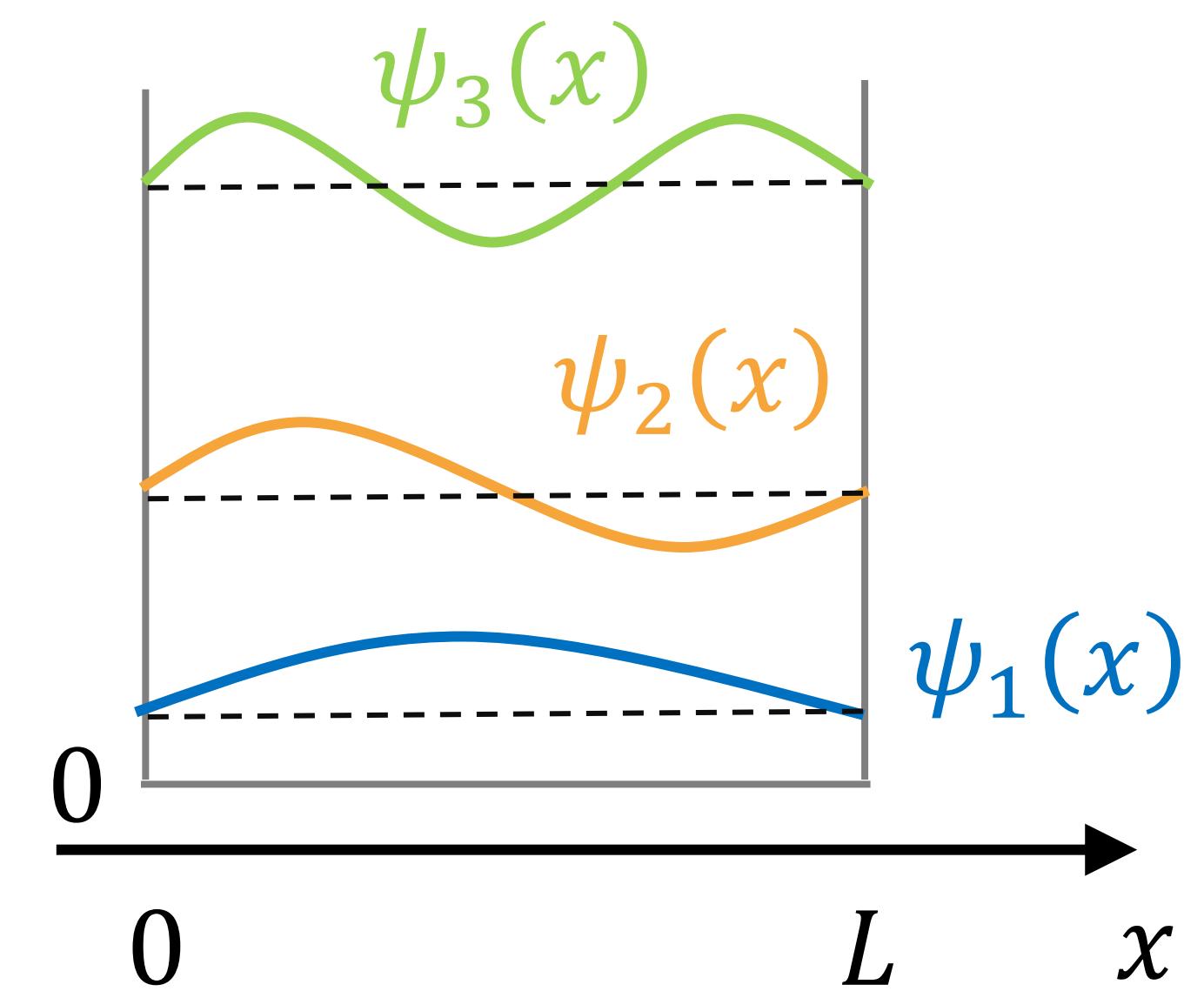
What about superposition of waves for confined particle?

Behavior of probability density?



PARTICLE IN A BOX: SUPERPOSITION

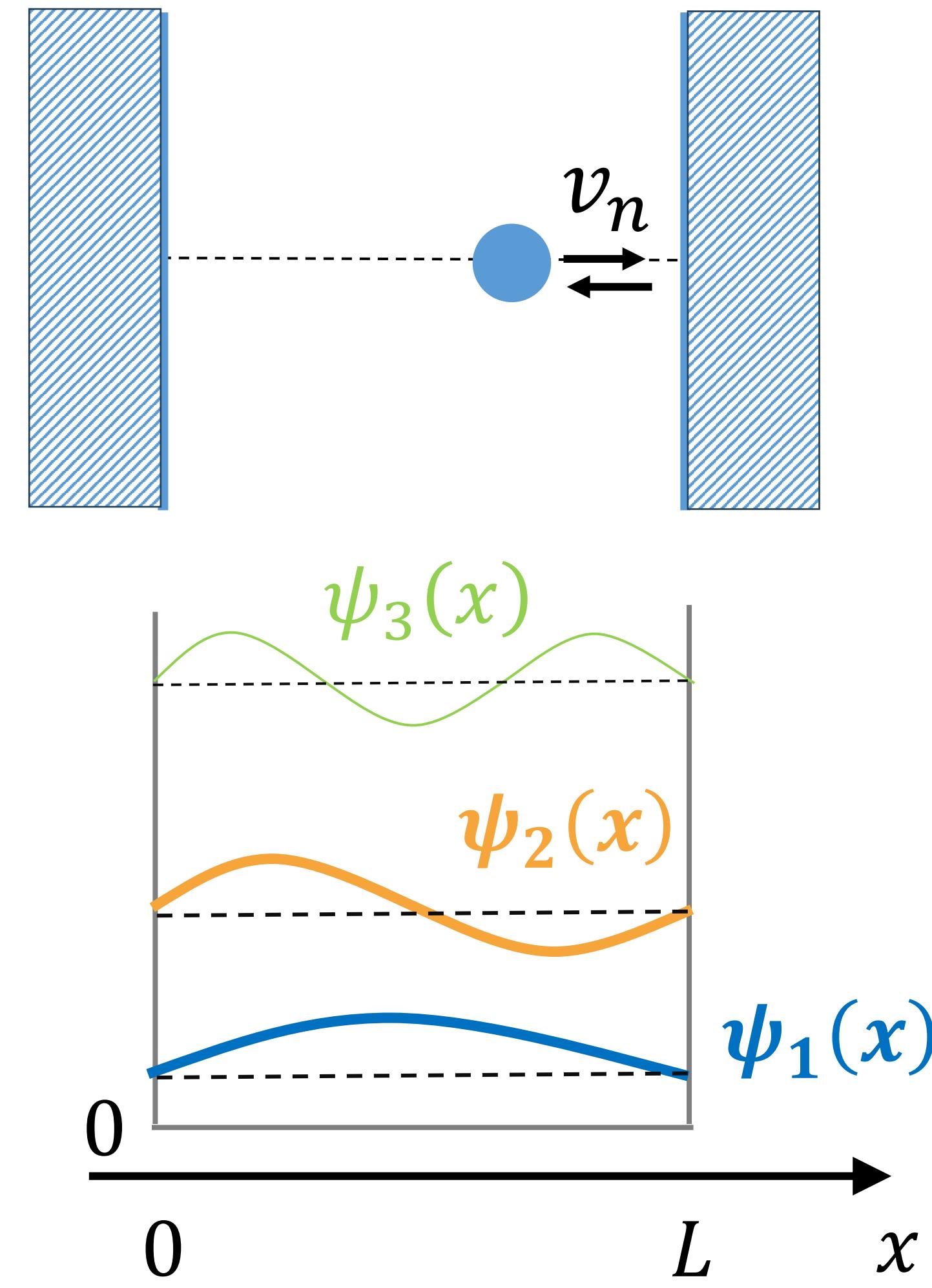
- Particle in a box:
 - Solutions standing waves: $\psi_n \rightarrow E_n, k_n$
 - Superposition of standing waves



PARTICLE IN A BOX: SUPERPOSITION

- Particle in a box:
 - Solutions standing waves: $\psi_n \rightarrow E_n, k_n$
 - Superposition of standing waves
- Example superposition:

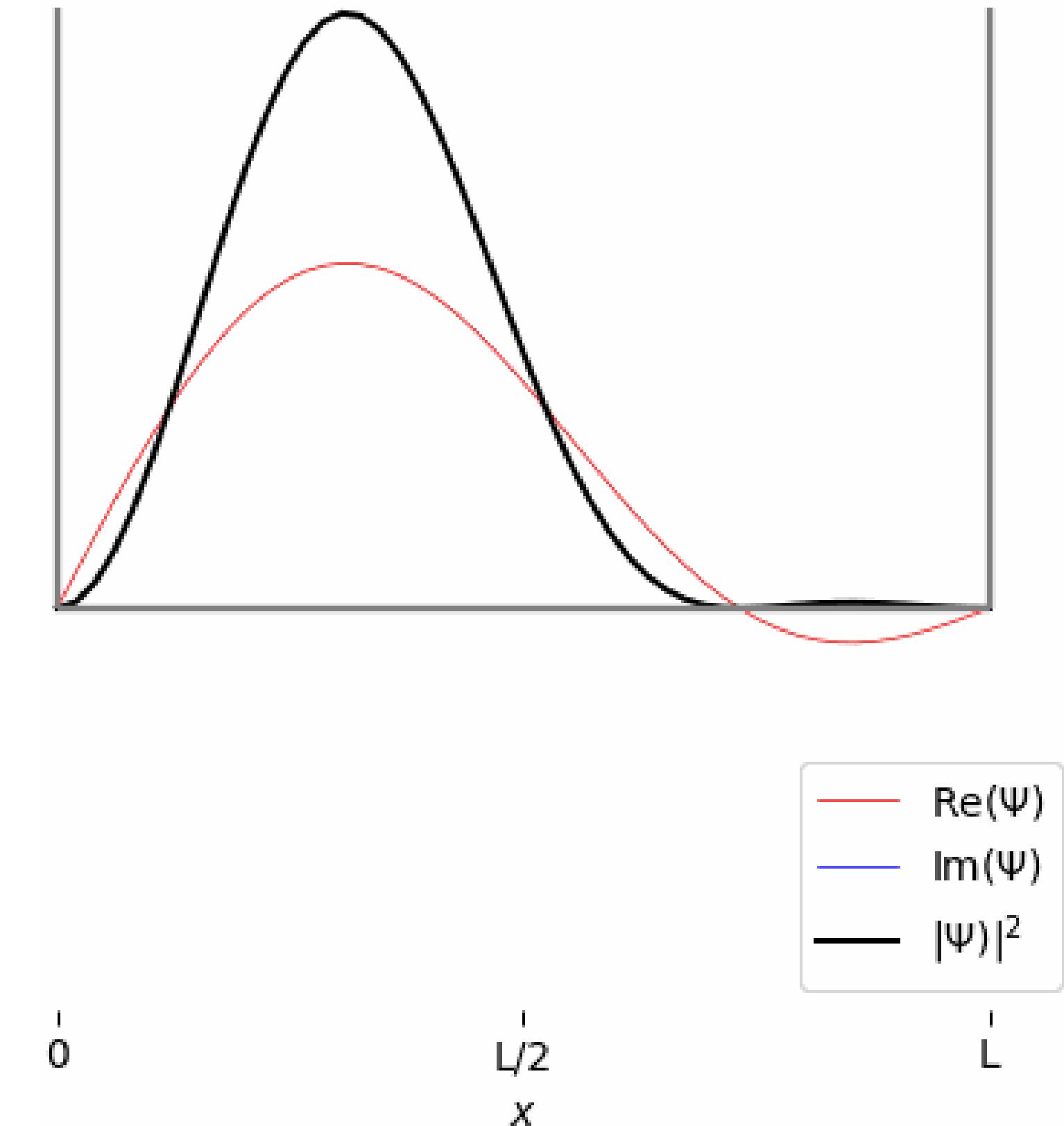
$$\Psi(x, t) = \psi_1(x) e^{\frac{iE_1 t}{\hbar}} + \psi_2(x) e^{\frac{i4E_1 t}{\hbar}}$$



PARTICLE IN A BOX: SUPERPOSITION

- Particle in a box:
 - Solutions standing waves: $\psi_n \rightarrow E_n, k_n$
 - Superposition of standing waves
- Example superposition:

$$\Psi(x, t) = \psi_1(x) e^{\frac{iE_1 t}{\hbar}} + \psi_2(x) e^{\frac{i4E_1 t}{\hbar}}$$



PARTICLE IN A BOX: UNCERTAINTY

- Particle view: uniform probability
- Probability density goes beyond particle view of de Broglie
- Uncertainty relation:

$$\Delta p_x \Delta x \geq \frac{\hbar}{2}$$

- Small box: Δx is small so uncertainty on momentum is large
- Classical mechanics for large objects



SUMMARY PARTICLE IN A BOX

- Classical mechanics for large objects in large boxes
- Macroscopic objects
 - large mass and larger box
 - Small minimum momentum/speed
 - Continuous energy spectrum
- Small box & quantum particles
 - Energy quantization
 - Higher “classical” kinetic energy due to spatial constraints

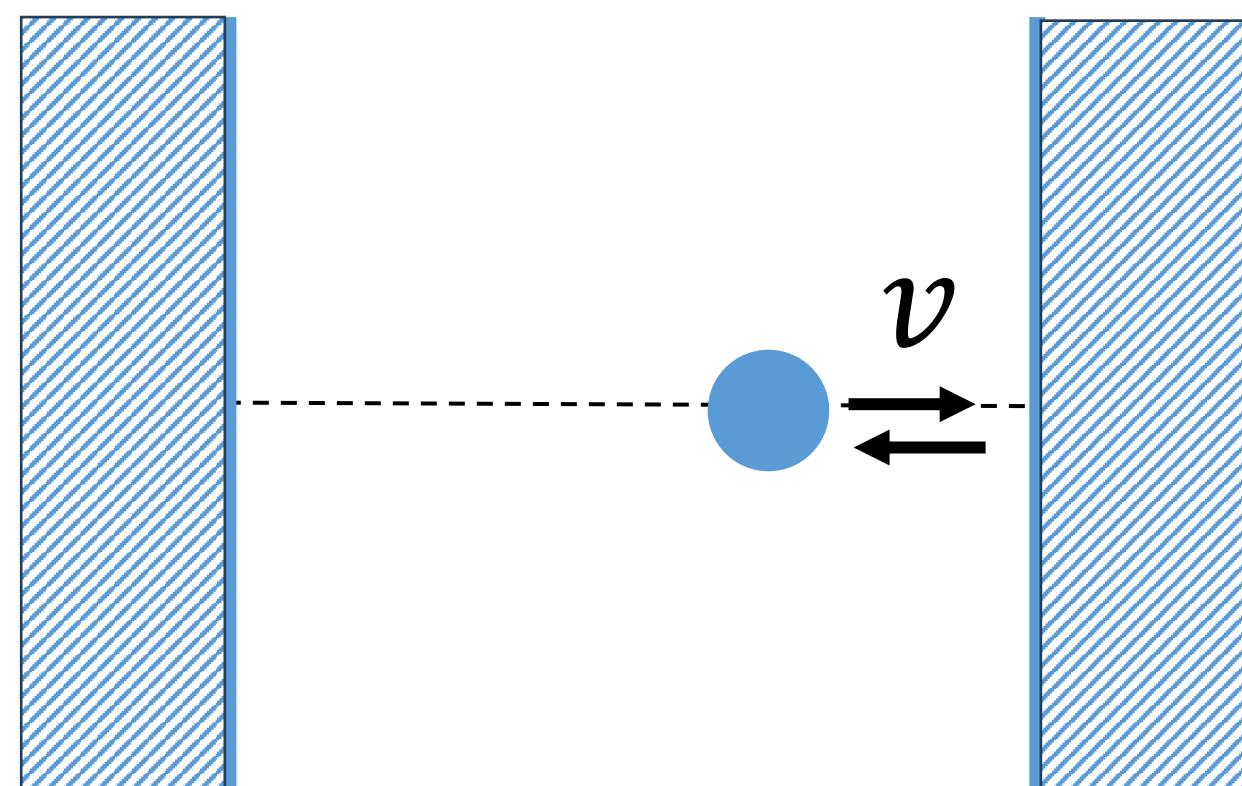
particle in a infinite well or a box

Particle in a finite well

INFINITE WELL = PARTICLE IN A BOX

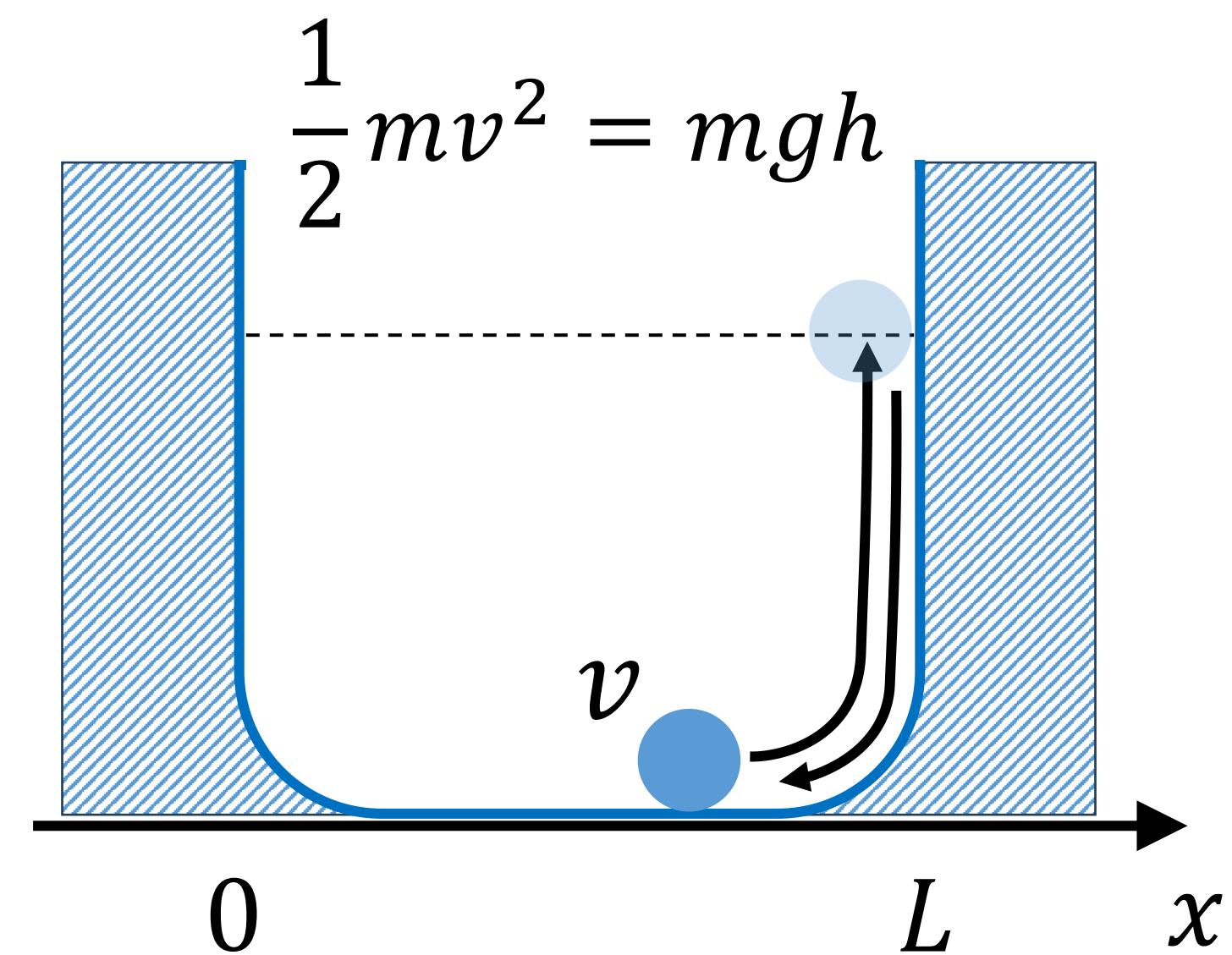
Particle in a box model:

- Particle bounces back at the walls
 - Perfect elastic collision
 - Doesn't lose speed/energy



Alternative model: well with infinite walls:

- Particle rolls up and down (without resistance)
- Kinetic energy converts in potential energy and back: $E = K + V$



THE CLASSICAL FINITE WELL

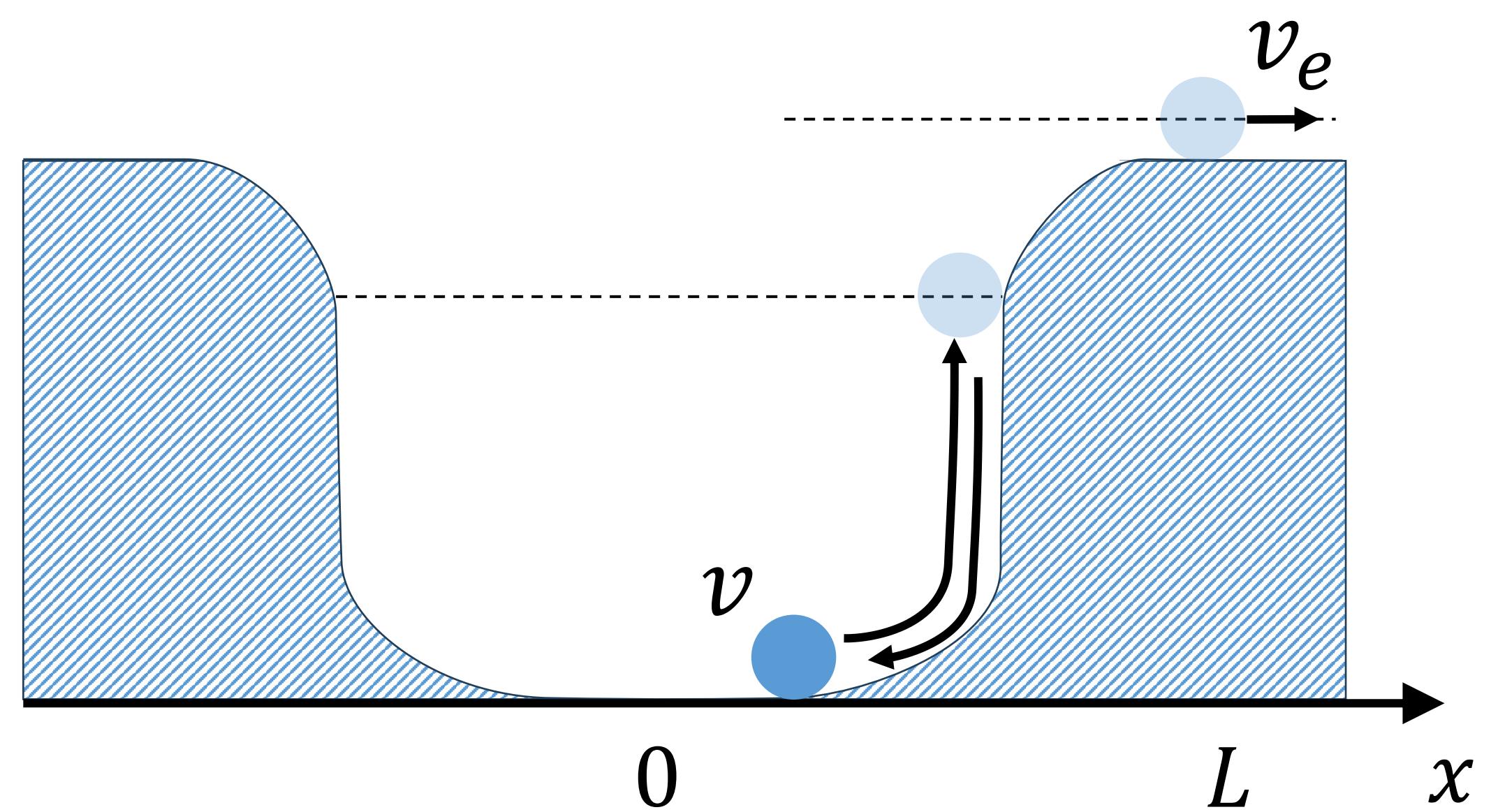
(1) If energy lower than the walls:

- Particle rolls up and down (without resistance)

(2) If energy larger than the wall:

- Particle escapes the well
- Velocity inside v higher than after rolling up wall v_e
- Part kinetic energy K converts in potential energy $V = mgh$

$$\frac{1}{2}mv^2 = mgh + \frac{1}{2}mv_e^2$$



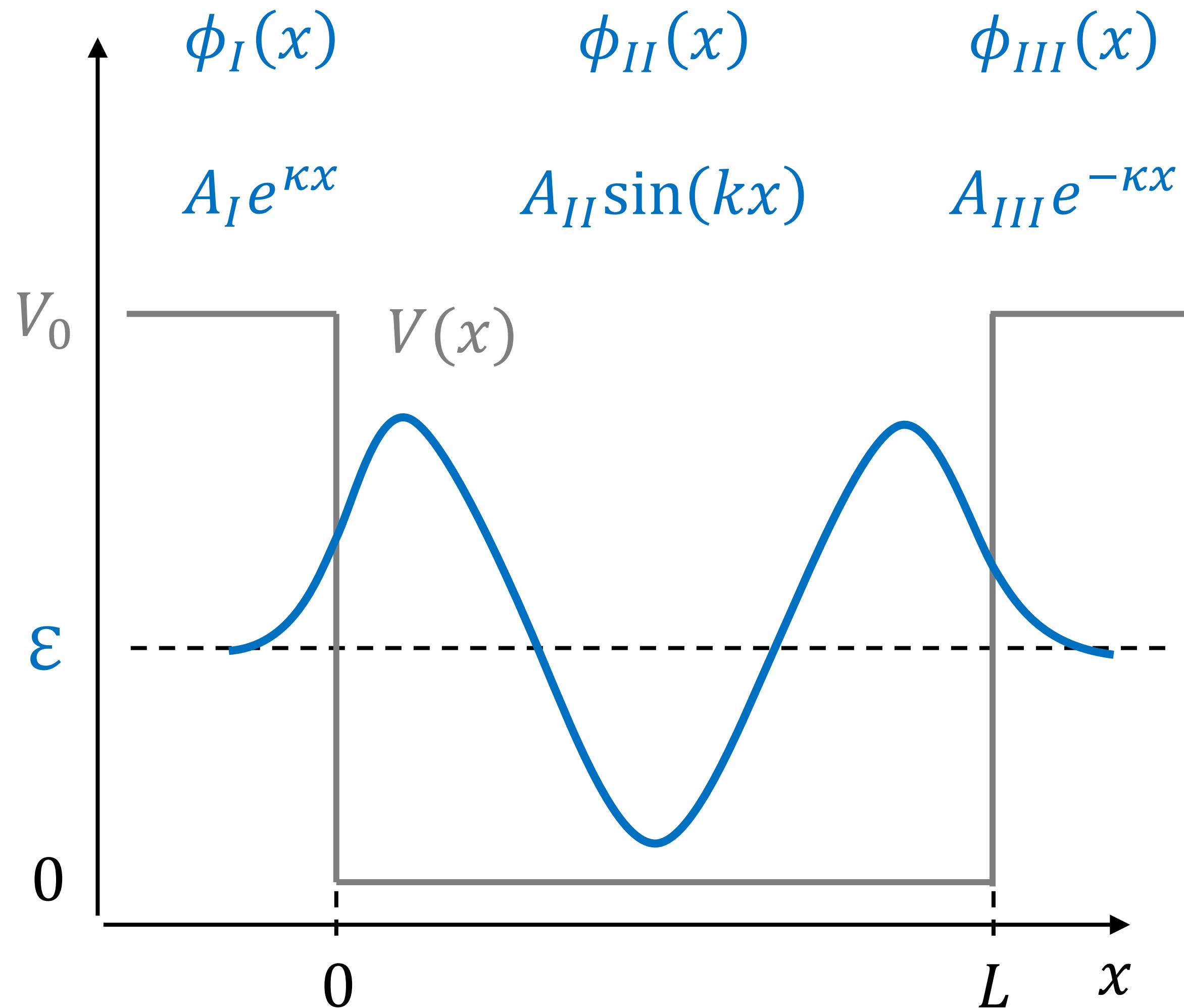
THE QUANTUM FINITE WELL

(1) If energy lower than walls:

- Wave function ϕ penetrates
- Evanescent waves in wall: exponentially decaying

$$\begin{cases} \phi_I(x) = A_I e^{\kappa x} \\ \phi_{II}(x) = A_{II} \sin(kx) \\ \phi_{III}(x) = A_{III} e^{-\kappa x} \end{cases}$$

With $\kappa = \sqrt{2m(V_0 - \varepsilon)}/\hbar$ and
 $k = \sqrt{2m\varepsilon}/\hbar$



THE QUANTUM FINITE WELL

(1) If energy lower than walls:

- Discrete energies \mathcal{E}_n and wave numbers
- Boundary conditions lead to the final wave functions ϕ_n :

Continuity wave function

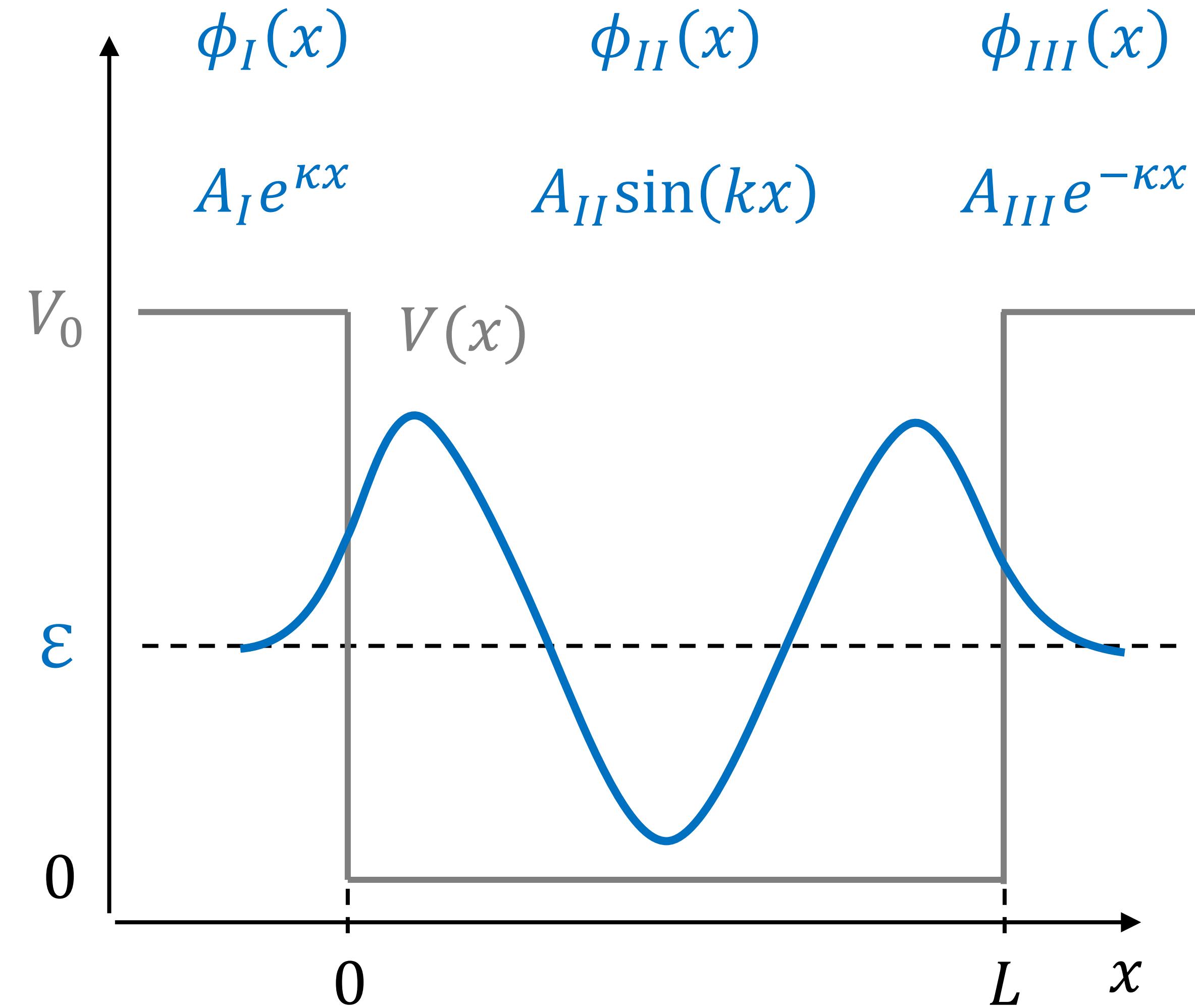
$$\phi_I(0) = \phi_{II}(0)$$

$$\phi_{II}(L) = \phi_{III}(L)$$

Continuity derivative:

$$\phi'_I(0) = \phi'_{II}(0)$$

$$\phi'_{II}(L) = \phi'_{III}(L)$$



THE QUANTUM FINITE WELL

(2) If energy larger than walls:

- Wave-like solutions in both well and barrier region

$$\phi_I(x) = A_I e^{ik_0 x} + B_I e^{-ik_0 x}$$

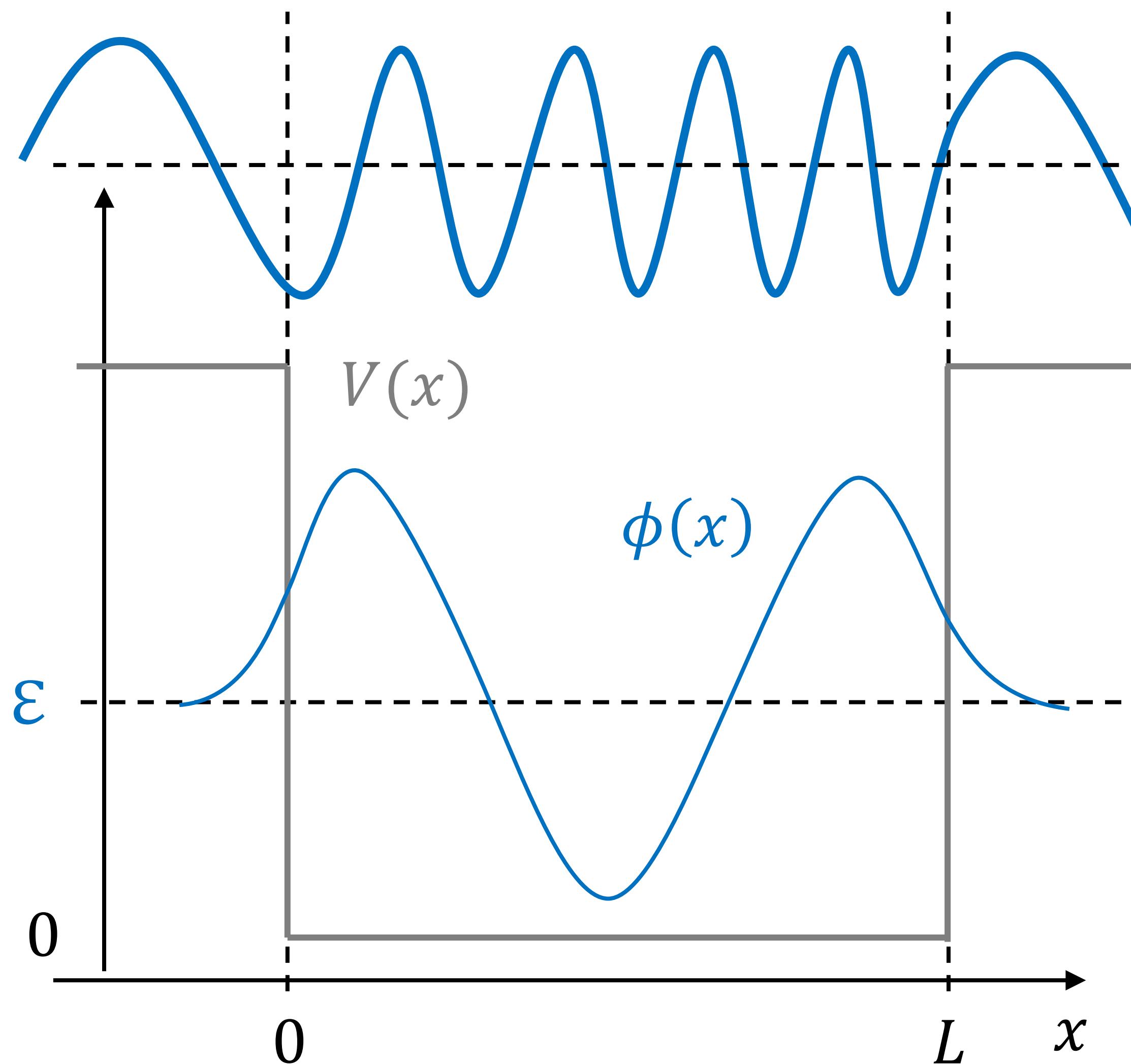
$$\phi_{II}(x) = A_{II} e^{ikx} + B_{II} e^{-ikx}$$

$$\phi_{III}(x) = A_{III} e^{ik_0 x} + B_{III} e^{-ik_0 x}$$

- Wave number k inside well larger than k_0 outside well:

$$k_0 = \sqrt{2m(\varepsilon - V_0)}/\hbar \text{ and}$$

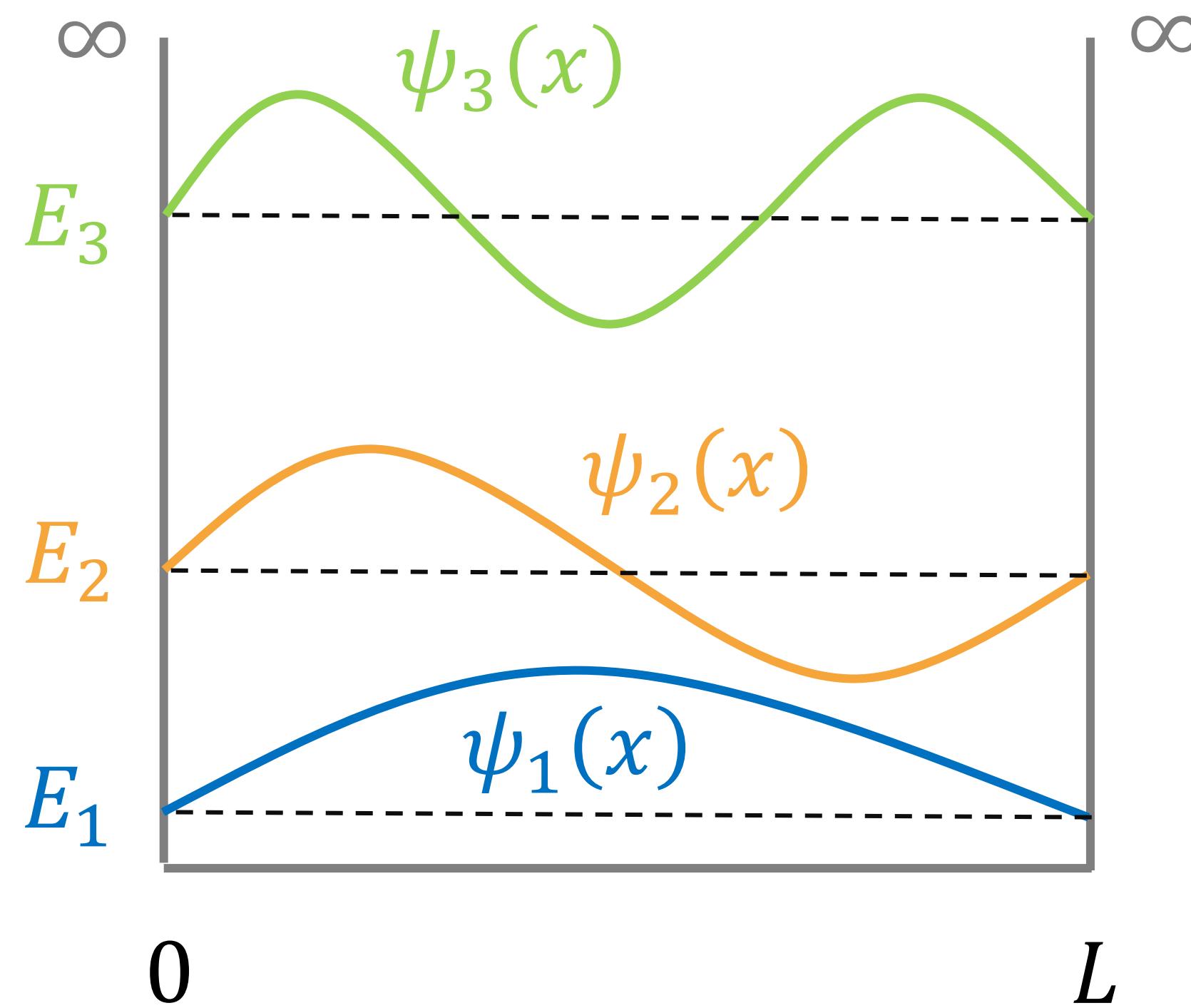
$$k = \sqrt{2m\varepsilon}/\hbar$$



INFINITE VERSUS FINITE WELL

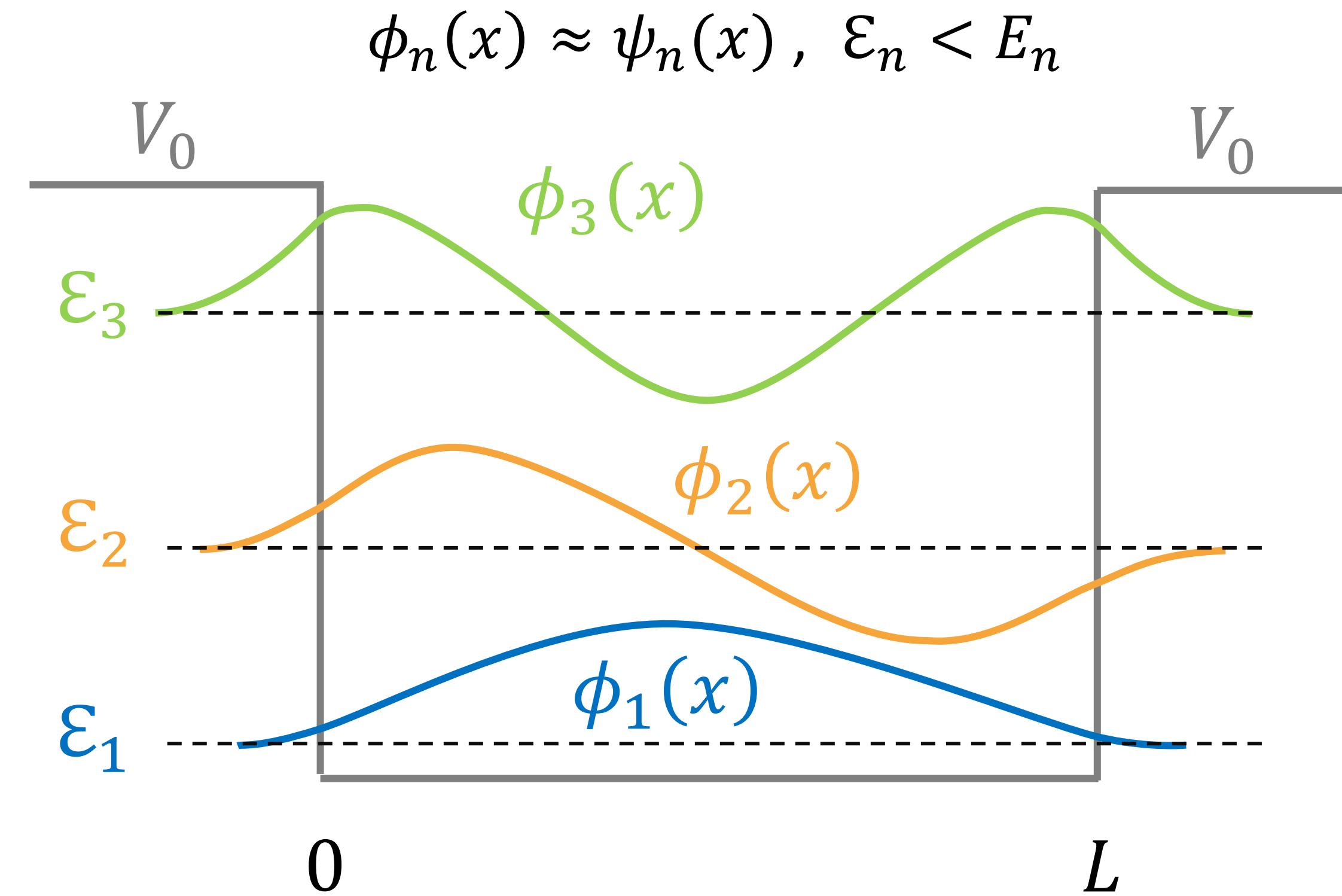
Infinite well (box)

$$\psi_n(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi x}{L}\right), \quad E_n = \frac{\hbar^2\pi^2n^2}{2mL^2}$$



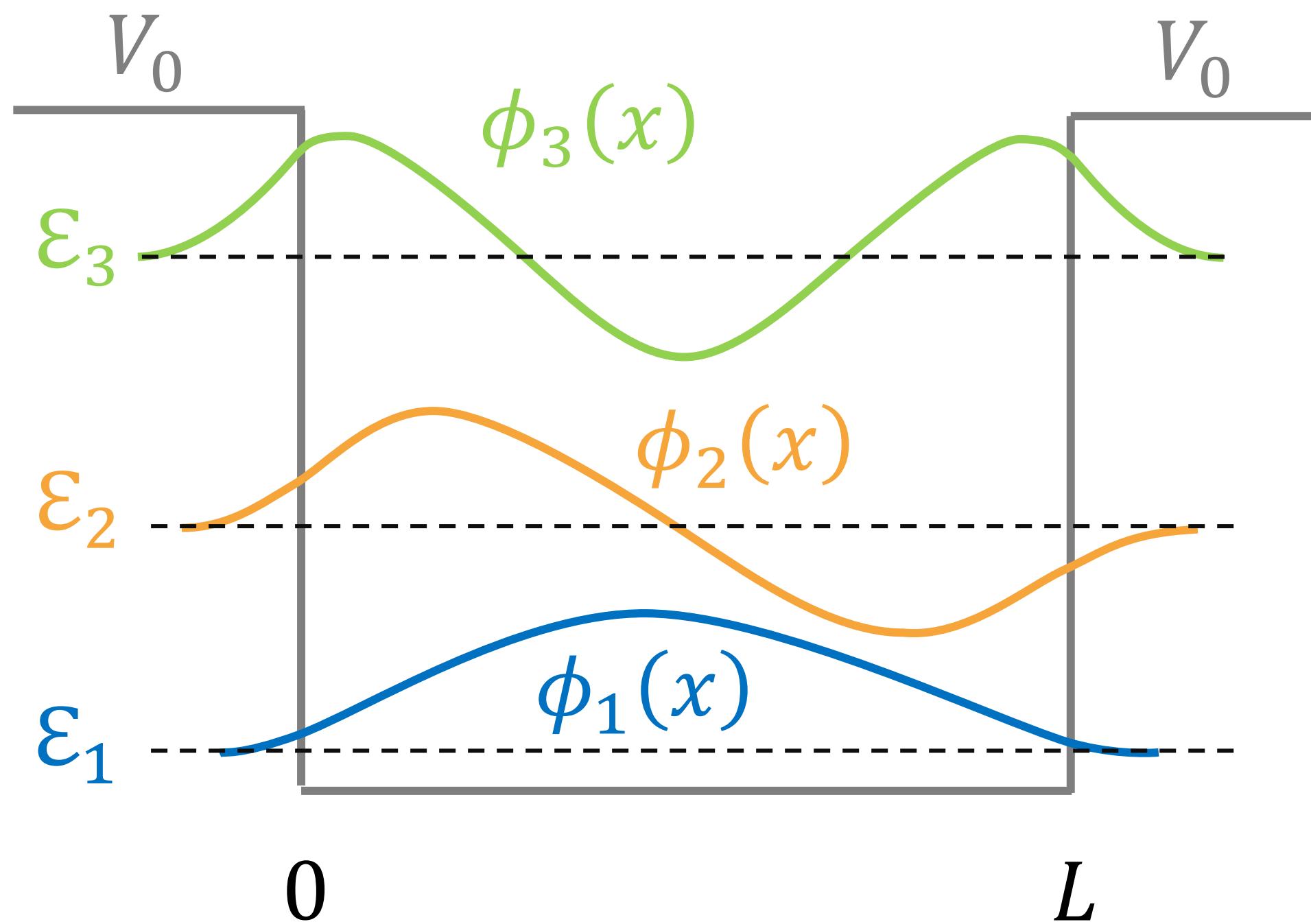
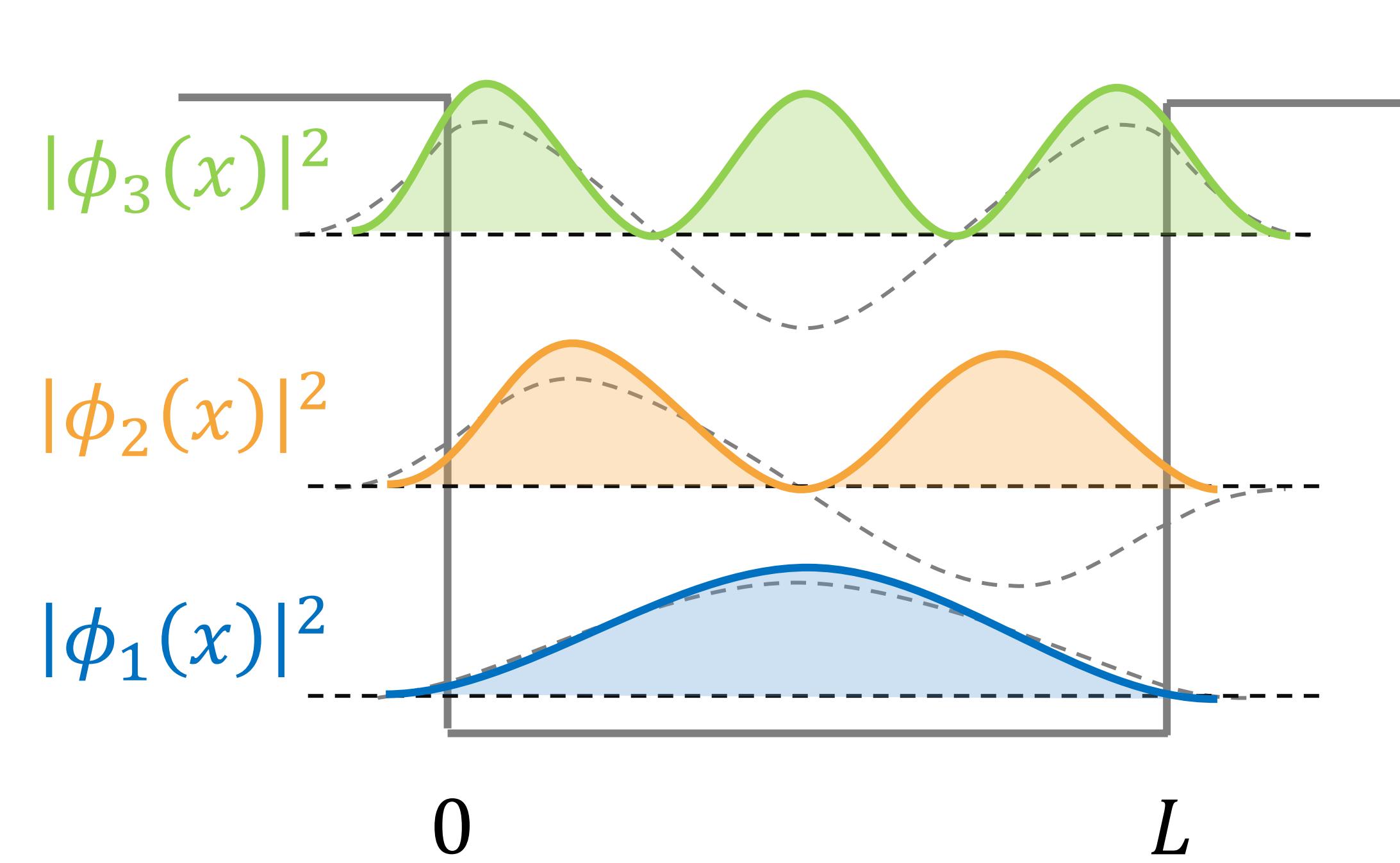
Finite well

- Standing waves $\phi_n(x)$ penetrate the walls
- Energies \mathcal{E}_n lower since $\phi_n(x)$ less confined



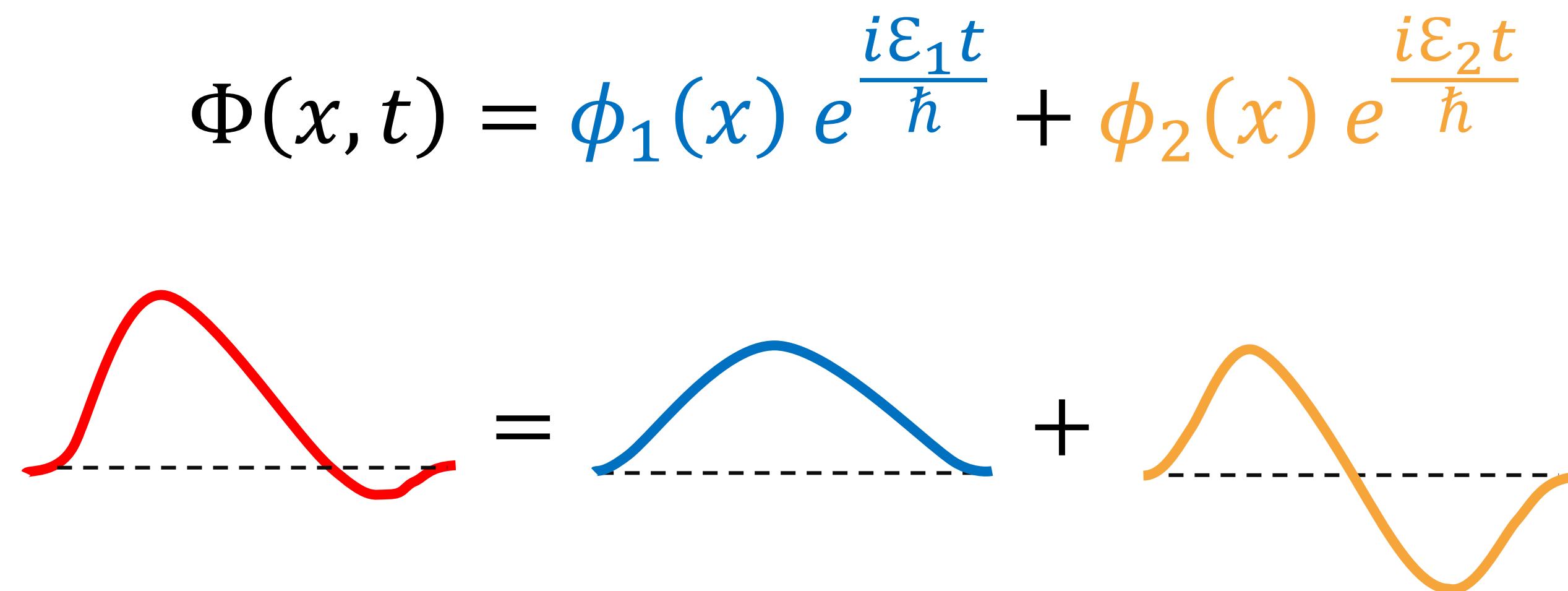
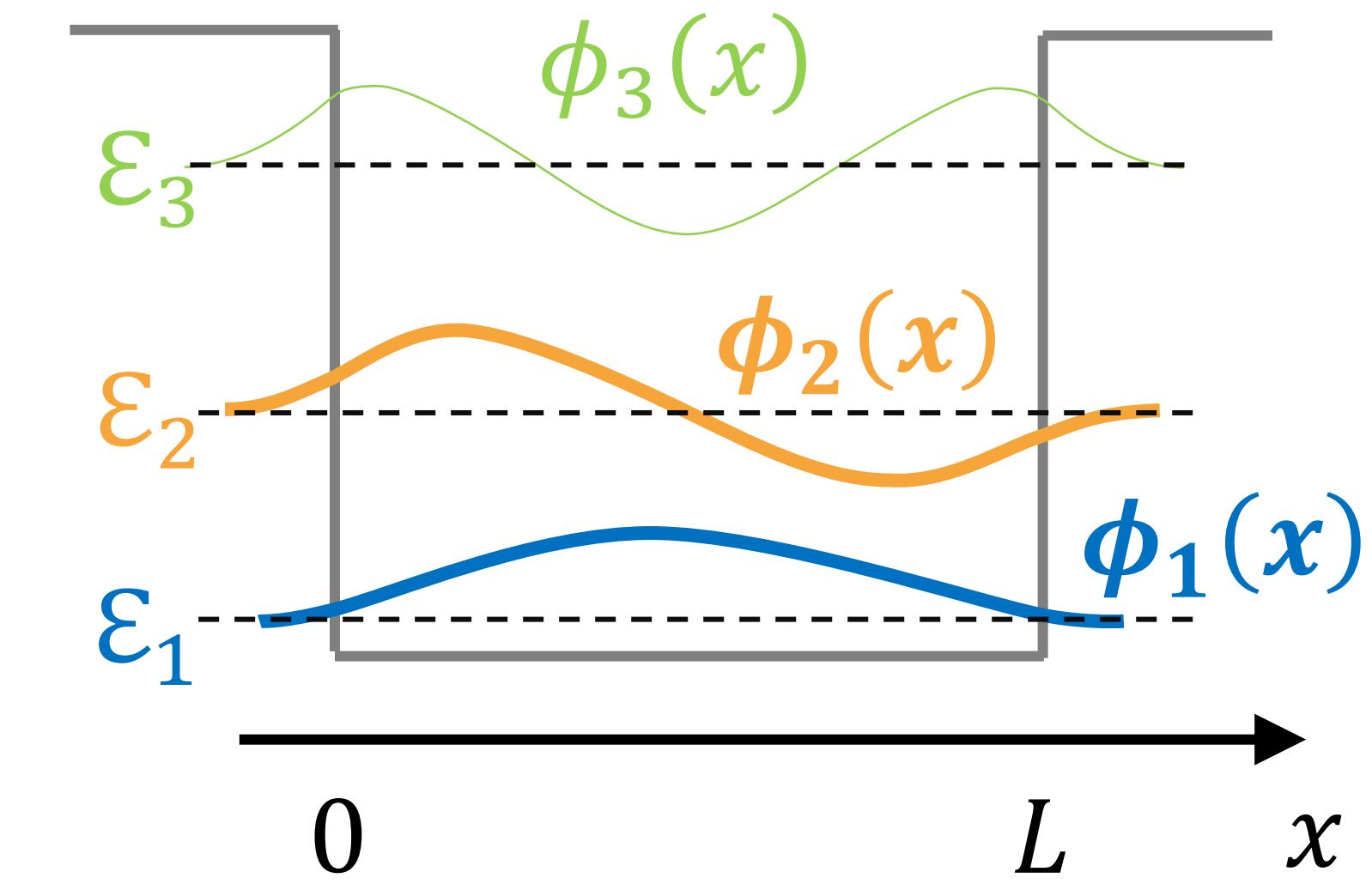
FINITE WELL: PROBABILITY DENSITY FUNCTION

- Nonzero probability for particle to be outside well
- Exponential decay of ϕ_n (and probability $|\phi_n|^2$) outside well
- Penetration larger for highest energy level in well



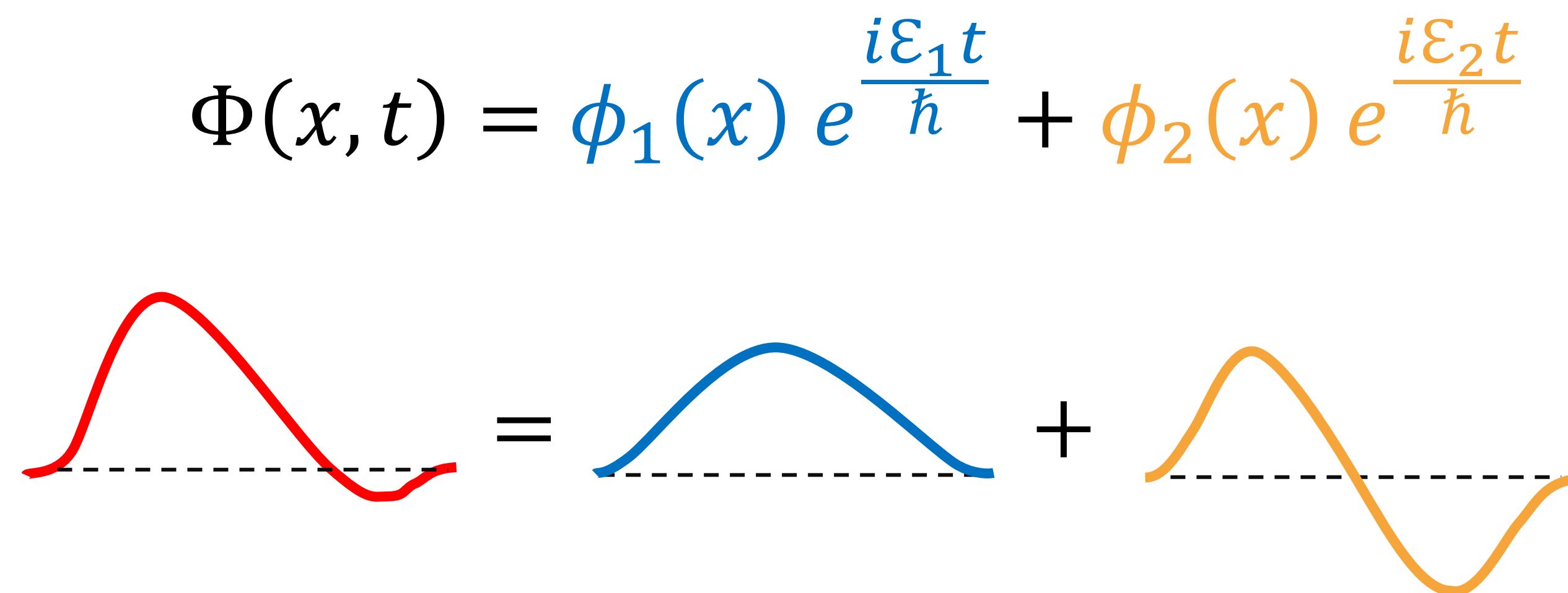
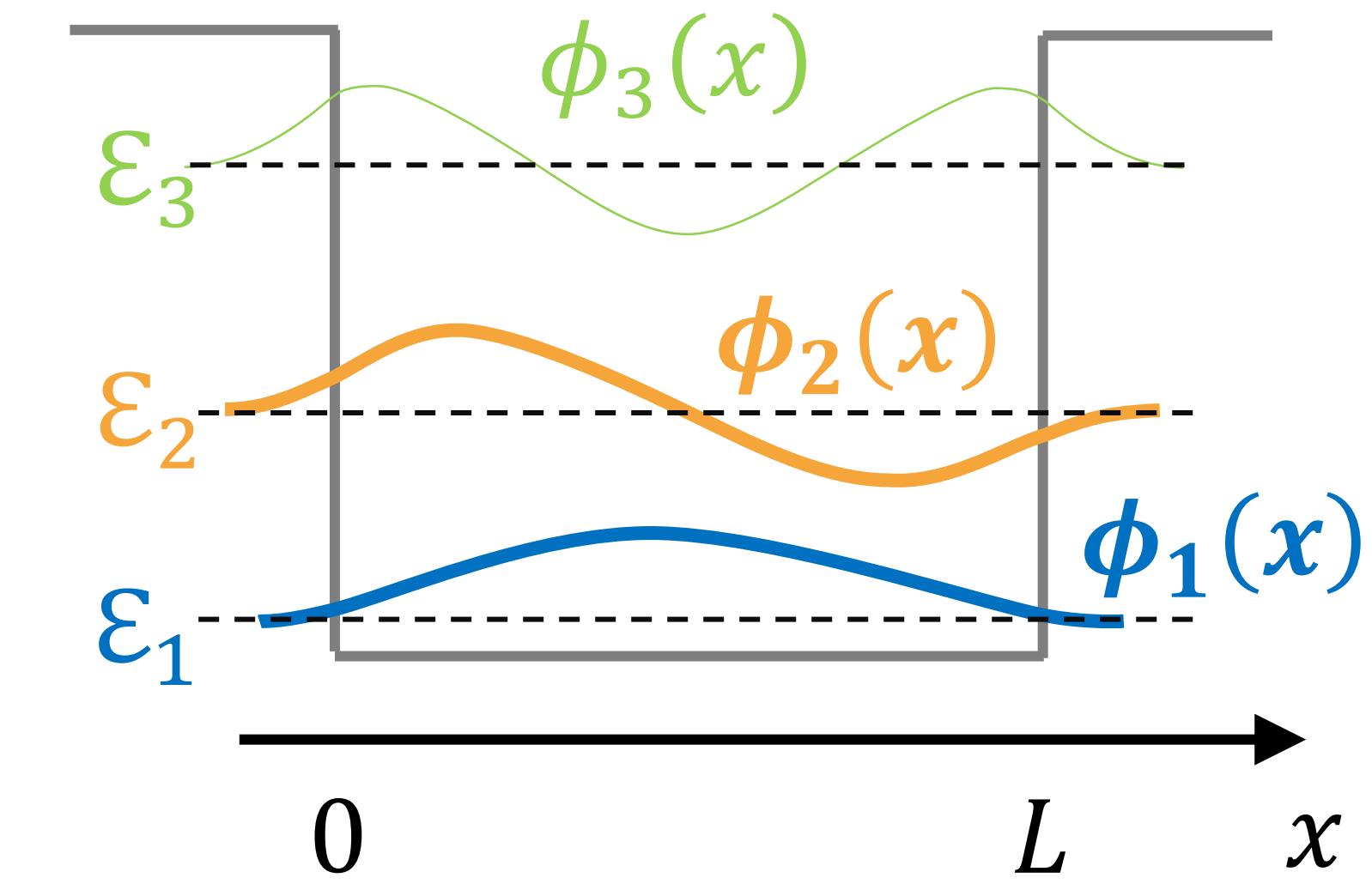
FINITE WELL: SUPERPOSITION

- Unlike infinite well (box) energies are not multiples: $\mathcal{E}_n \neq n^2 \mathcal{E}_1$
- Interference of 2 solutions results in **chaotic** probability density in time
- Example superposition:



FINITE WELL: SUPERPOSITION

- Unlike infinite well (box) energies are not multiples: $\mathcal{E}_n \neq n^2 \mathcal{E}_1$
- Interference of 2 solutions results in **chaotic** probability density in time
- Example superposition:



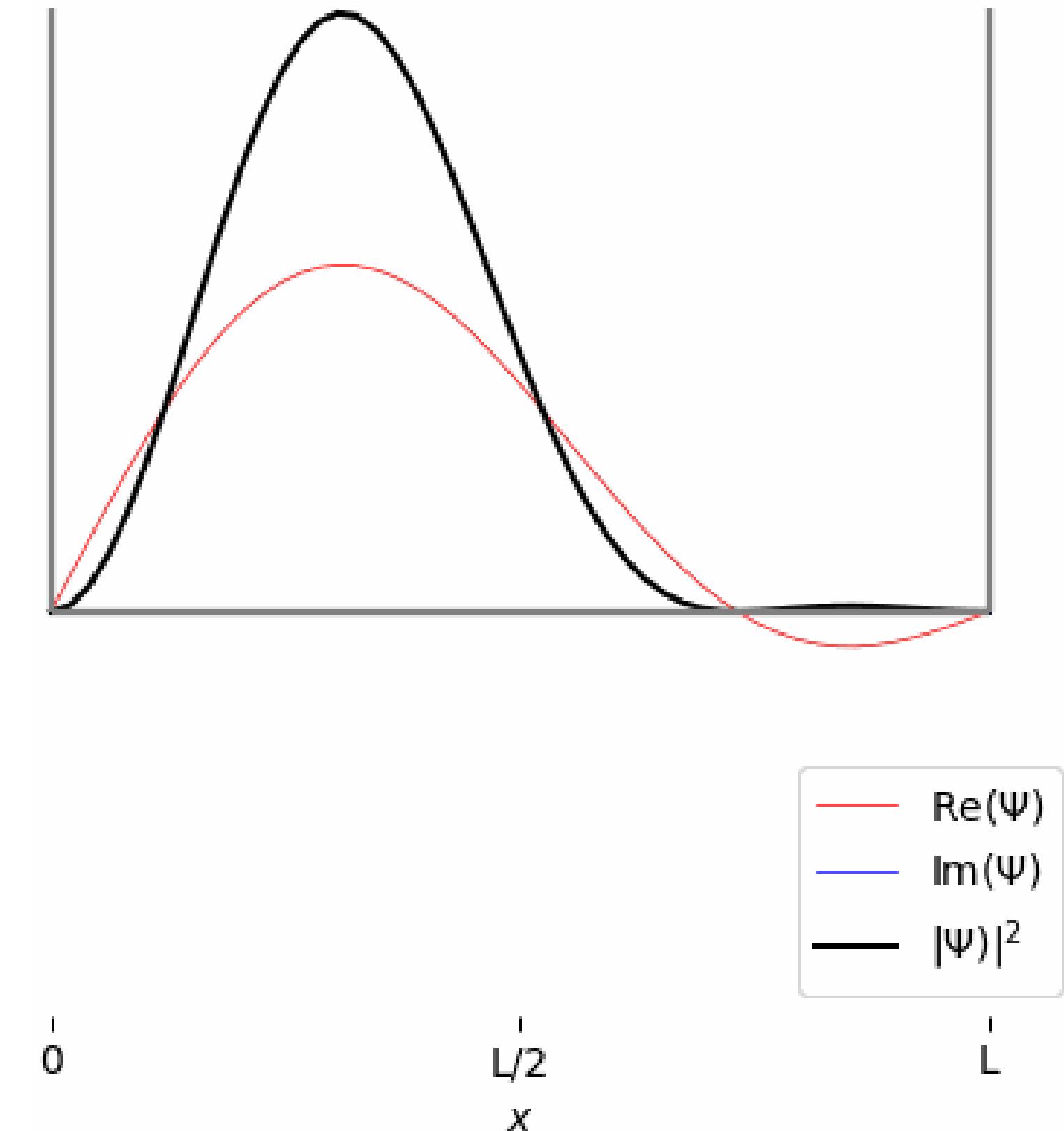
INFINITE WELL VERSUS FINITE WELL: SUPERPOSITION

- For an **infinite well** energies were multiples

$$E_n = n^2 E_1$$

- **Interference** gives probability density **periodic in time**:

$$\Psi(x, t) = \psi_1(x) e^{\frac{iE_1 t}{\hbar}} + \psi_2(x) e^{\frac{i4E_1 t}{\hbar}}$$



INFINITE WELL VERSUS FINITE WELL: SUPERPOSITION

- For an **infinite well** energies are multiples

$$E_n = n^2 E_1$$

- **Interference** gives probability density **periodic in time**:

$$\Psi(x, t) = \psi_1(x) e^{\frac{iE_1 t}{\hbar}} + \psi_2(x) e^{\frac{i4E_1 t}{\hbar}}$$

- Finite well **interference** of 2 solutions results in **chaotic** probability density in time:

$$\Phi(x, t) = \phi_1(x) e^{\frac{i\varepsilon_1 t}{\hbar}} + \phi_2(x) e^{\frac{i\varepsilon_2 t}{\hbar}}$$

SUMMARY FINITE WELL

- For energies lower than the potential outside the well:
 - Discrete energies **lower** than those of the infinite well
 - Wave functions penetrate the walls
 - **Nonzero probability outside** well
 - **Superposition** of solutions leads to **chaotic** wave function (and probability densities) in time
- For energies higher than the outside potential
 - **Continuous spectrum**
 - Solutions are left and right traveling waves
 - Wave numbers inside the well are larger (larger frequency)